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ON AN IMPROVEMENT OF THE HAKE
THEOREM

Abstract

The well-known Hake Theorem asserts that if a function f is Denjoy∗

integrable then it is also Perron integrable, and the two integrals are
equal. In [3] we introduced a very strong Perron integration (P1,1)
and proved the corresponding Hake-type theorem, using the Vitali-
Carathéodory Theorem. In this paper we give a new, less technical
proof of this result, using essentially Lusin’s Theorem.

1 Introduction

The well-known Hake Theorem asserts that if a function f is Denjoy∗ in-
tegrable then it is also Perron integrable, and the two integrals are equal.
In fact these two integrals are equivalent (see the Hake-Alexandroff-Looman
Theorem), and there are many definitions of Perron-type integrals that are
equivalent to the Denjoy∗ integral. In [3, Corollary 5.9.1], we made a study
of many (at least 108) of these equivalences. One of the strongest Perron
type definition is that of Skljarenko, where the major and minor functions are
AC∗G and continuous. Using the Tolstoff-Zahorski Theorem we showed that
in addition, the major and minor functions have finite or infinite derivatives at
each point, obtaining the (P1,1)-integral. To prove that the D∗-integrability
implies the (P1,1)-integrability (i.e., a Hake type theorem) we used essentially
the Vitali-Carathéodory Theorem [11, p. 166]. In the present paper we give a
different, less technical proof of this result, using essentially Lusin’s Theorem
[13, p. 72]. Both proofs use different techniques from that of Skljarenko. We
conclude the paper with some comments and a question related to the subject.
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2 Preliminaries

For the definitions of V B, V B∗, AC, AC∗, AC∗G see [13]. We denote by
P(E) = {X : X ⊆ E} whenever E ⊆ R. By O(F ;X) we mean the oscillation
of the function F on the set X. We denote by m(X) the Lebesgue measure of
the Lebesgue measurable set X.

Definition 1. Let F : [a, b] 7→ R, and let P be a closed subset of [a,b],
c = inf(P ), d = sup(P ). Let FP : [c, d] → R be defined as follows: FP (x) =
F (x), x ∈ P and FP is linear on each [ck, dk], where {(ck, dk)}k≥1 are the
intervals contiguous to P .

Definition 2. [3, p. 174]. Let f : [a, b] → R. We define the following classes
of major and minor functions and the corresponding (P1,1)-integral:

• M1(f) = {M : [a, b]→ R : M(a) = 0, M ∈ AC∗G; M ′(x) exists (finite
or infinite); f(x) ≤M ′(x) 6= −∞};

• M1(f) = {m : [a, b]→ R : −m ∈M1(−f)}.

• If M1(f) 6= ∅ then we denote by I1(b) the lower bound of all M(b),
M ∈M1(f). IfM1(f) 6= ∅ then we denote by I1(b) the upper bound of
all m(b), m ∈M1(f).

• f is said to have a (P1,1)-integral on [a, b], if M1(f) ×M1(f) 6= ∅ and
I1(b) = I1(b) = (P1,1)

∫ b

a
f(t)dt.

Lemma A. [3, Lemma 5.8.2]. Let F,H,G : [a, b] → R, and let H(x) =
O(F ; [a, b]) − O(F ; [x, b]) + O(G; [a, x]), G = F + H. If F ∈ AC∗G on [a, b]
then: H(a) = 0 and H(b) = 2 · O(F ; [a, b]); H is increasing and AC on [a, b];
G ∈ AC∗G and G(a) ≤ G(x) ≤ G(b) on [a, b].

Lemma B. [3, Theorem 2.11.1, (xviii)]. Let F : [a, b] → R, and let P be a
subset of [a, b], c = inf(P ) d = sup(P ). F ∈ AC on P if and only if FP ∈ AC
on [c, d];

Lemma C. Let F : [a, b] → R, F ∈ AC, and let V : [a, b] → R, V (x) =
V (F ; [a, x]) (here V (f ;X) stands for the variation of F on the set X). Then
V ∈ AC on [a, b].

Proof. This follows by definitions.

Lemma D. [3, Lemma 5.8.3]. Let {rk}k be a sequence of positive numbers
such that

∑∞
k=1 rk = r < +∞. Let Fk : [a, b] → [0, rk] such that Fk is

increasing and AC on [a, b]. Let F : [a, b] → R, F (x) =
∑∞

k=1 Fk(x). Then:
F (a) = 0 and F (b) < r; F is increasing and AC on [a, b].
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3 A Hake Type Theorem

Lemma 1. Let F : [a, b]→ R, F ∈ AC∗G on [a, b]. Let P be a closed subset of
[a, b] such that F ∈ AC∗ on P . Then for ε > 0, there is a δ > 0 such that for
every open set E with m(E) < δ, there exists a function FE : [a, b]→ [0,+∞)
having the following properties:

a) FE(a) = 0, FE(b) < ε;

b) FE is AC and increasing on [a, b];

c) D(F + FE)(x) ≥ 0 for all x ∈ P ∩ E 6= ∅;

d) For some E we have that D(F + FE) is bounded below on P .

Proof. LetQ = {a, b}∪P , V : [a, b]→ R, V (x) = V (FQ; [a, x]). By Lemma B
and Lemma C, the function V belongs to AC on [a, b]. Let {(ai, bi)}∞i=1 (we
suppose the infinite case, otherwise the situation is easy) be the intervals
contiguous to Q. Let Hi : [a, b]→ [0,+∞),

Hi(x) =


0 if x ∈ [a, ai]

O
(
F ; [ai, bi]

)
−O

(
F ; [x, bi]

)
+O

(
F ; [ai, x]

)
if x ∈ [ai, bi]

2 · O
(
F ; [ai, bi]

)
if x ∈ [bi, b]

By Lemma A, each Hi is AC and increasing on [a, b]. Since V (b)+
∑∞

i=1Hi(b)
6= +∞ (because F is V B∗ on P , so on Q), by Lemma D, the function G :
[a, b] → R, G(x) = V (x) +

∑∞
i=1Hi(x) is increasing and AC on [a, b]. Hence

G′ exists and is finite a.e. on [a, b], G′(x) ≥ 0 a.e. on [a, b], G′ is Lebesgue
integrable on [a, b], and G(x) = (L)

∫ x

a
G′(t) dt (see [11, p. 255] or [3, p. 62]).

For ε > 0, let δ > 0 be such that
∫

S
G′(t) dt < ε, whenever S is a Lebesgue

measurable subset of [a, b] with m(S) < δ (see [11, p. 148]. Let E be an
open set with m(E) < δ, E ∩ P 6= ∅, and let FE : [a, b] → R, FE(x) =
(L)

∫
[a,x]∩E

G′(t) dt . Clearly we have a) and b).
c) Fix some xo ∈ E ∩P , and let x > xo such that [xo, x] ⊂ E ∩ [a, b]. Then

FE(t)− FE(xo) = (L)
∫

[xo,t]

G′(z) dz , (∀) t ∈ [xo, x] .

Since (FE)′(t) = G′(t) a.e. on [xo, x], and FE , G ∈ AC on [a, b], it follows that
FE −G is constant on [xo, x]. For x ∈ P we have(

F + FE
)
(x)−

(
F + FE

)
(xo) = F (x)− F (xo) +G(x)−G(xo) ≥
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≥ F (x)− F (xo) + V (x)− V (xo) ≥ 0 .

If x ∈ (ai, bi) then from above,
(
F + FE

)
(ai)−

(
F + FE

)
(xo) ≥ 0 and(

F + FE
)
(x)−

(
F + FE

)
(ai) = F (x)− F (ai) +G(x)−G(ai) ≥

≥ F (x)− F (ai) +Hi(x)−Hi(ai) ≥ 0

(see the last part of Lemma A). Thus
(
F + FE

)
(x) −

(
F + FE

)
(xo) ≥ 0.

Similarly, we obtain that
(
F + FE

)
(xo) −

(
F + FE

)
(x) ≥ 0 for x < xo and

[x, xo] ⊂ E∩[a, b] (in the computations we shall use bi instead of ai). Therefore
D
(
F + FE

)
(xo) ≥ 0.

d) Since F ∈ AC∗G on [a, b], it follows that F ′(x) exists and is finite a.e.
on P . But F ′ is also Lebesgue measurable on P . Thus by Lusin’s Theorem
(see [13, p. 72]), there exists a closed subset Po of P , such that (F ′)|Po

is
continuous and m(P \ Po) < δ/2. Hence there exists an open set E such that
(P \ Po) ⊂ E and m(E) < δ. It follows that (F ′)|P\E is bounded, and by b)
and c) we have that D(F + FE) is bounded below on P .

Theorem 1. [3, Corollary 5.8.1]. Let F : [a, b]→ R, F ∈ AC∗G on [a, b], and
let r > 0. Then there exists H : [a, b]→ R such that:

(i) H(a) = 0 and H(b) < r;

(ii) H is increasing and AC on [a, b];

(iii) G = F +H is AC∗G and DG(x) 6= −∞ on [a, b].

Proof. Since F ∈ AC∗G on [a, b], it follows that there exists a sequence
{En}n of closed subsets of [a, b] that cover [a, b], such that F isAC∗ on each En.
By Lemma 1, for each positive integer n, there exists hn : [a, b] →

[
0, r

2n+1

)
,

such that D(F + hn)(x) 6= −∞ for x ∈ En, and hn is AC and increasing on
[a, b]. Let H : [a, b] → R, H(x) =

∑∞
n=1 hn(x). Clearly we have (i), and by

Lemma D, we also have (ii) and (iii).

Theorem 2. [3, Theorem 5.8.1]. Let f : [a, b] → R. If f is D∗- integrable on
[a, b] then f is (P1,1)-integrable on [a, b] and the two integrals are equal.

Proof. The proof follows by Theorem 1 and the Tolstoff-Zahorski Theorem
(see for example [3, Theorem 2.14.6]).

Remark 1. Special cases of Theorem 2 and Theorem 3 have been studied
by many authors, from different points of view, using the constructive theory
of Denjoy ([11, Ch. XVI, §8]), or the descriptive theory of Denjoy ([13], [14],
[9], [3]), or the Kurzweil-Henstock theory ([4], [5], [15]), or combining the
descriptive theory of Denjoy with the Kurzweil-Henstock theory ([10]).
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4 Some Comments and Remarks

In [2, Corollary 1, (i), (vii)] and [3, Corollary 2.27.1, (i), (vii)] we have proved,
without using the Kurzweil-Henstock theory, the following result (two years
later, B. Bongiorno, L. Di Piazza, and V. Skvortsov gave another proof, using
the Kurzweil-Henstock theory [1, Theorem 4]):

Theorem A. A function F : [a, b]→ R is AC∗G on [a, b] if and only if F is
YDo on [a, b].

Remark 2. Condition YDo has been introduced by Jarnik and Kurzweil,
without naming it, in [6, (3.16) on p. 655]; later it has been used by several
authors, but with different names: the strong Lusin condition, short SLC in
[8, p. 557], well-behaved in [7, p. 124], AC∗ in [12, p. 115], YDo in [2, p. 503],
[3, p. 89], absolute continuity of the variational measure with respect to the
Lebesgue measure in [1], etc.

From Theorem A we easily obtain the following theorem:

Theorem B. [3, Theorem 5.12.1, (i), (iv)]. f : [a, b] → R is D∗-integrable
on [a, b] if and only if F is (KH)-integrable (Kurzweil-Henstock integrable) on
[a, b] and the two integrals are equal.

Using Theorem B
(
or only Theorem A and the facts that F ∈ YDo on [a, b],

and F ′(x) = f(x) a.e. on [a, b] for F (x) = (KH)
∫ x

a
f(t) dt, x ∈ [a, b]

)
together

with Theorem 2, we obtain:

Theorem 3. If f ∈ (KH)-integrable on [a, b] then f is (P1,1)-integrable on
[a, b] and the two integrals are equal.

Question. In [15, Theorem 2], using the Kurzweil-Henstock theory, Skvortsov
constructed some continuous major and minor functions M , m for a KH-
integrable function. Is it possible to show that M and m are also major
respectively minor functions for the (P1,1)-integral?
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