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ON AN IMPROVEMENT OF THE HAKE
THEOREM

Abstract

The well-known Hake Theorem asserts that if a function f is Denjoy™
integrable then it is also Perron integrable, and the two integrals are
equal. In [3] we introduced a very strong Perron integration (Pi,1)
and proved the corresponding Hake-type theorem, using the Vitali-
Carathéodory Theorem. In this paper we give a new, less technical
proof of this result, using essentially Lusin’s Theorem.

1 Introduction

The well-known Hake Theorem asserts that if a function f is Denjoy* in-
tegrable then it is also Perron integrable, and the two integrals are equal.
In fact these two integrals are equivalent (see the Hake-Alexandroff-Looman
Theorem), and there are many definitions of Perron-type integrals that are
equivalent to the Denjoy* integral. In [3, Corollary 5.9.1], we made a study
of many (at least 108) of these equivalences. One of the strongest Perron
type definition is that of Skljarenko, where the major and minor functions are
AC*@G and continuous. Using the Tolstoff-Zahorski Theorem we showed that
in addition, the major and minor functions have finite or infinite derivatives at
each point, obtaining the (P;,1)-integral. To prove that the D*-integrability
implies the (P4 1)-integrability (i.e., a Hake type theorem) we used essentially
the Vitali-Carathéodory Theorem [11, p. 166]. In the present paper we give a
different, less technical proof of this result, using essentially Lusin’s Theorem
[13, p. 72]. Both proofs use different techniques from that of Skljarenko. We
conclude the paper with some comments and a question related to the subject.
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2 Preliminaries

For the definitions of VB, VB*, AC, AC*, AC*G see [13]. We denote by
P(E) ={X : X C E} whenever E CR. By O(F; X) we mean the oscillation
of the function F on the set X. We denote by m(X) the Lebesgue measure of
the Lebesgue measurable set X.

Definition 1. Let F' : [a,b] — R, and let P be a closed subset of [a,b],
¢ = inf(P), d = sup(P). Let Fp : [¢,d] — R be defined as follows: Fp(z) =
F(z), x € P and Fp is linear on each [ck,dy], where {(ck,d)}r>1 are the
intervals contiguous to P.

Definition 2. [3, p. 174]. Let f : [a,b] — R. We define the following classes
of major and minor functions and the corresponding (P 1)-integral:

o Mi(f)={M :[a,b] =R : M(a) =0, M € AC*G; M'(x) exists (finite
or infinite); f(z) < M'(z) # —oo};

o My(f)={m:[a,b] >R : —m e Mi(-f)}.

o If My(f) # 0 then we denote by I(b) the lower bound of all M (b),
M € My(f). If M;(f) # 0 then we denote by I, (b) the upper bound of
all m(b), m € M, (f).

e f is said to have a (Py1)-integral on [a,b], if My (f) x M, (f) # 0 and
L) = Lio) = (1) J; f(t)at

Lemma A. [3, Lemma 5.8.2]. Let F,H,G : [a,b] — R, and let H(z) =
O(F;[a,b]) — O(F;[z,b]) + O(G; [a,z]), G =F + H. If F € AC*G on [a,]
then: H(a) =0 and H(b) =2 - (9( i[a,b]); H is increasing and AC on [a,b];
G € AC*G and G(a) < G(z) < G(b ) n [a,b).
(
(

0

Lemma B. [3, Theorem 2.11.1, (xviii)]. Let F': [a,b] — R, and let P be a
subset of [a,b], ¢ = inf(P) d = sup(P). F € AC on P if and only if F5z € AC
on [e,d];

Lemma C. Let F : [a,b] - R, F € AC, and let V : [a,b] — R, V(z) =
V(F;la,z]) (here V(f; X) stands for the variation of F' on the set X ). Then
Ve AC on [a,b].

PRrROOF. This follows by definitions. O

Lemma D. [3, Lemma 5.8.3]. Let {ri}r be a sequence of positive numbers
such that > o rmx = r < 4o0o0. Let Fj, : [a,b] — [0,7%] such that Fy is
increasing and AC on [a,b]. Let F : [a,b] — R, F(z) = > =, Fi(z). Then:
F(a) =0 and F(b) < r; F is increasing and AC on [a,b].
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3 A Hake Type Theorem

Lemma 1. Let F : [a,b] = R, F € AC*G on [a,b]. Let P be a closed subset of
[a,b] such that F' € AC* on P. Then for € > 0, there is a § > 0 such that for
every open set E with m(E) < §, there exists a function FE : [a,b] — [0, +00)
having the following properties:

a) F¥(a) =0, FE(b) < ¢;

b) FE is AC and increasing on |a,b];

¢) D(F+FF)(x) >0 forallz € PNE # 0;

d) For some E we have that D(F + F¥) is bounded below on P.

PRrROOF. Let Q = {a,b}UP,V : [a,b] — R, V(z) = V(Fg;[a,z]). By Lemma B
and Lemma C, the function V' belongs to AC on [a,b]. Let {(a;,bi)}32, (we
suppose the infinite case, otherwise the situation is easy) be the intervals
contiguous to Q. Let H; : [a,b] — [0, +00),

0 if x € [a, ;]
Q-O(F; [ai,bi]) ifx € [b“b}

By Lemma A, each H; is AC and increasing on [a,b]. Since V(b)+>"7°, H;(b)
# +oo (because F is VB* on P, so on @), by Lemma D, the function G :
la,b] = R, G(z) = V(z) + > ;2 Hi(x) is increasing and AC on [a,b]. Hence
G’ exists and is finite a.e. on [a,b], G'(z) > 0 a.e. on [a,b], G’ is Lebesgue
integrable on [a,b], and G(z) = (£) [ G'(t)dt (see [11, p. 255] or [3, p. 62]).
For € > 0, let § > 0 be such that [, G'(t)dt < ¢, whenever S is a Lebesgue
measurable subset of [a,b] with m(S) < § (see [11, p. 148]. Let E be an
open set with m(E) < §, ENP # 0, and let FE : [a,b] — R, FE(2) =
(£) Jig.0np G'(t) dt . Clearly we have a) and b).

¢) Fix some z, € ENP, and let > x, such that [x,,2] C EN[a,b]. Then

FE0) - FPe) = () [ G:)dz, () telmaal.
[‘Tmt]

Since (FF)'(t) = G'(t) a.e. on [z,, 7], and F¥ G € AC on [a, b], it follows that
FE — @ is constant on [z,,z]. For x € P we have

(F+FF)(z) — (F+ F¥)(z,) = F(z) — F(z,) + G(z) — G(z,) >
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V(z) = V(o) >

F(a) = Fzo) +
+ FE)(a;) — (F+FE) ) >0 and

F(z,
If z € (a;,b;) then from above, (F

(F+F¥)(z) — (F+ F¥)(a;) = F(2) — F(a;) + G(z) — G(a;) >

> F(z) - F<ai) + Hi(z) — Hi(a;) > 0
(see the last part of Lemma A). Thus (F + F¥)(z) — (F + F¥)(z,) > 0.
Similarly, we obtain that (F + F¥)(z,) — (F + F¥)(z) > 0 for # < z, and
[, 2,] C ENla,b] (in the computations we shall use b; instead of a;). Therefore
D(F + FF)(z,) > 0.

d) Since F' € AC*G on [a,b], it follows that F’(x) exists and is finite a.e.
on P. But F’ is also Lebesgue measurable on P. Thus by Lusin’s Theorem
(see [13, p. 72]), there exists a closed subset P, of P, such that (F')p, is
continuous and m(P \ P,) < §/2. Hence there exists an open set F such that
(P\ P,) C E and m(E) < 0. It follows that (F")|p\ g is bounded, and by b)
and c) we have that D(F + F¥) is bounded below on P. O

Theorem 1. [3, Corollary 5.8.1]. Let F : [a,b] = R, F € AC*G on [a,b], and
let r > 0. Then there exists H : [a,b] — R such that:

(i) H(a) =0 and H(b) <r
(i) H is increasing and AC on [a,b];
(ii)) G =F+ H is AC*G and DG(z) # —o0 on [a, b].

PROOF. Since F' € AC*G on [a,b], it follows that there exists a sequence
{E,}n of closed subsets of [a, b] that cover [a, b], such that F is AC* on each E,,.
By Lemma 1, for each positive integer n, there exists h,, : [a,b] — [0, 2%),
such that D(F + hy,)(z) # —oo for € E,, and h,, is AC and increasing on
la,b]. Let H : [a,b] — R, H(z) = Y..° | hy(x). Clearly we have (i), and by
Lemma D, we also have (ii) and (iii). O

Theorem 2. [3, Theorem 5.8.1]. Let f : [a,b] — R. If f is D*- integrable on
[a,b] then fis (P1,1)-integrable on [a,b] and the two integrals are equal.

PROOF. The proof follows by Theorem 1 and the Tolstoff-Zahorski Theorem
(see for example [3, Theorem 2.14.6]). O

Remark 1. Special cases of Theorem 2 and Theorem 3 have been studied
by many authors, from different points of view, using the constructive theory
of Denjoy ([11, Ch. XVI, §8]), or the descriptive theory of Denjoy ([13], [14],
[9], [3]), or the Kurzweil-Henstock theory ([4], [5], [15]), or combining the
descriptive theory of Denjoy with the Kurzweil-Henstock theory ([10]).
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4 Some Comments and Remarks

In [2, Corollary 1, (i), (vii)] and [3, Corollary 2.27.1, (i), (vii)] we have proved,
without using the Kurzweil-Henstock theory, the following result (two years
later, B. Bongiorno, L. Di Piazza, and V. Skvortsov gave another proof, using
the Kurzweil-Henstock theory [1, Theorem 4]):

Theorem A. A function F : [a,b] — R is AC*G on [a,b] if and only if F is
Ypo on [a,b].

Remark 2. Condition Yp. has been introduced by Jarnik and Kurzweil,
without naming it, in [6, (3.16) on p. 655]; later it has been used by several
authors, but with different names: the strong Lusin condition, short SLC' in
[8, p. 557], well-behaved in [7, p. 124], AC. in [12, p. 115], Yp, in [2, p. 503],
[3, p. 89], absolute continuity of the variational measure with respect to the
Lebesgue measure in [1], etc.

From Theorem A we easily obtain the following theorem:

Theorem B. [3, Theorem 5.12.1, (i), (iv)]. f : [a,b] — R is D*-integrable
on [a,b] if and only if F is (K H)-integrable (Kurzweil-Henstock integrable) on
[a,b] and the two integrals are equal.

Using Theorem B (or only Theorem A and the facts that ' € Ypo on [a, b],
and F'(z) = f(z) a.e. on [a,b] for F(z) = (KH) [ f(t)dt, x € [a,b]) together
with Theorem 2, we obtain:

Theorem 3. If f € (KH)-integrable on [a,b] then f is (P1,1)-integrable on
[a,b] and the two integrals are equal.

Question. In [15, Theorem 2], using the Kurzweil-Henstock theory, Skvortsov
constructed some continuous major and minor functions M, m for a KH-
integrable function. Is it possible to show that M and m are also major
respectively minor functions for the (P, ;)-integral?
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