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Stwosza 57, 80-952 Gdańsk, Poland. e:mail: mattn@ksinet.univ.gda.pl

ON SUMS AND PRODUCTS OF
EXTENDABLE FUNCTIONS

Abstract

We study the maximal additive, multiplicative and lattice-like fam-
ilies for the class of all extendable functions. This article is a contin-
uation of earlier papers, in which the same questions concerning other
Darboux-like functions have been studied.

1 Preliminaries

Our terminology is standard. By R and I we denote the set of all reals and
the interval [0, 1], respectively. The letters X, Y and Z will denote topological
spaces. The symbols A, int(A) and bd(A) denote the closure, interior and
boundary of a set A, respectively.

No distinction is made between a function and its graph. For functions
f : X → Y and g : X → Z, the symbol (f, g) denotes the diagonal of f and g,
i.e., (f, g) : X → Y × Z, (f, g)(x) = (f(x), g(x)) for every x ∈ X.

For a function f : R→ R and x ∈ R the symbols C−(f, x), C+(f, x) denote
the cluster sets from the left and right, respectively, of the function f at the
point x.

By C(X, Y ) and Const(X, Y ) we denote the family of all continuous func-
tions and constant functions from X to Y , respectively. We shall write C and
Const when X and Y are clear from the context.

We shall consider the following classes of functions from X to Y .
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PC(X, Y ) — the class of all peripherally continuous functions. A function
f : X → Y is peripherally continuous if for every x ∈ X and for all pairs
of open sets U and V containing x and f(x), respectively, there exists
an open subset W ⊂ U such that x ∈W and f(bd(W )) ⊂ V .

E(X, Y ) — the class of all functions with property E . A function f : X → Y
has property E if it is extendable to a peripherally continuous function,
i.e., if there exists a peripherally continuous function F : X×I→ Y such
that f(x) = F (x, 0) for all x ∈ X.

Conn(X, Y ) — the class of all connectivity functions. A function f : X → Y
is connectivity, if the restriction f |̀C is a connected subset of X × Y
whenever C is a connected subset of X.

Ext(X, Y ) — the family of extendable functions, i.e., functions f : X → Y for
which there exists a connectivity function F : X × I→ Y with property
that F (x, 0) = f(x) for every x ∈ X.

It is well-known that PC(R2, R) = Conn(R2, R). (The inclusion “⊂” was
proved by Hamilton [OH] and by Stallings [JS], and the inclusion “⊃” by
Hagan [H].) Therefore, E(R, R) = Ext(R, R).

Moreover, we shall consider the following class of real functions of one real
variable that was introduced by R. Fleissner [RF].

M – the class of all functions f : R → R such that if x0 is a right (left)
point of discontinuity of f , then f(x0) = 0 and there is a sequence (xn)
converging to x0 such that xn > x0 (xn < x0) and f(xn) = 0.

Recall that if f ∈ M, then the set D of all points at which f is not
continuous is nowhere dense, D ⊂ f−1(0), the set f−1(0) is closed, and f is
continuous on the closure of every component of R\bd(f−1(0)). Consequently,
f is a Darboux Baire one function. Thus it is also an extendable function.
(See [BHL].)

Let X be a class of real functions. The maximal additive (multiplicative,
lattice-like, respectively) class for X is defined to be the class of all f ∈ X for
which f + g ∈ X (fg ∈ X , max(f, g) ∈ X and min(f, g) ∈ X , respectively)
whenever g ∈ X . The respective classes are denoted by Ma(X ), Mm(X )
and Ml(X ). Those classes for some families of Darboux-like functions from
R to R were studied by several authors. (See, e.g., [Ra] and [Fa] for the
class of all Darboux functions, [AB] and [RF] for the class of all Darboux,
Baire one functions, [KB] for the class of all perfect road functions and for the
class of all peripherally continuous functions and [JJN] for the class of almost
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continuous functions, for the class of connectivity functions and for the class
of functionally connected functions. See also the survey [GN] for definitions
and relations between those properties.) The first systematic study of the
operators Ma( ), Mm( ) and Ml( ) was done by Jastrzȩbski, Jȩdrzejewski
and Natkaniec in [JJN]. In particular, they proved the following two basic
lemmas.

Lemma 1.1. ([JJN, Lemma 2.1]) Let Φ be a property of functions and X be
a topological space. For i = 1, 2 let Xi be the class of all functions f : X → Ri

with property Φ. Suppose the classes X1 and X2 fulfill the following conditions.

(1.1) If g ∈ X2 and h ∈ C(R2, R), then h ◦ g ∈ X1.

(1.2) If f ∈ X1 and g ∈ C(X, R), then (f, g) ∈ X2.

Then C(X, R) ⊂Ma(X1) ∩Mm(X1) ∩Ml(X1).

Lemma 1.2. ([JJN, Lemma 2.2]) Let X be a family of real functions defined
on intervals that fulfills the following conditions.

(2.0) If f ∈ X and x belongs to the domain of f , then the sets C+(f, x),
C−(f, x) are connected and f(x) ∈ C+(f, x) ∩ C−(f, x).

(2.1) If f : I → R, f ∈ X and J is a subinterval of an interval I, then f |̀J ∈ X .

(2.2) If h : (a, b) → R, h ∈ X , y ∈ C+(h, a), z ∈ C−(h, b), then the functions
h1 : [a, b) → R, h2 : (a, b] → R and h3 : [a, b] → R belong to X , where
h1 = h ∪ {(a, y)}, h2 = h ∪ {(b, z)}, h3 = h1 ∪ h2.

(2.3) If I ⊂ R is an interval, a ∈ I and f |̀(I∩(−∞, a]) ∈ X , f |̀(I∩ [a, +∞)) ∈
X , then f ∈ X .

(2.4) Const ⊂Ma(X ) and −1 ∈Mm(X ).

(2.5) If f : I → (0,∞) and f ∈ X , then 1/f ∈ X .

Then

(i) Ma(X ) ∪Ml(X ) ⊂ C;

(ii) Mm(X ) ⊂ M.

We shall employ those lemmas for description of the maximal additive,
multiplicative and lattice-like classes for the family of all extendable functions.
In our study we shall use the characterization of extendable functions via
families of peripheral intervals. (See [GR].)
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Definition 1. Let f : I → I be a function. A family of peripheral intervals
(or simply, a PI family) for f consists of a sequence of ordered pairs (In, Jn)
of subintervals of I such that

(1) In is open in I and the length of In converges to 0;

(2) for each x ∈ I and for any ε > 0 there exists (In, Jn) such that x ∈ In,
f(x) ∈ Jn and the length of In and Jn are less than ε;

(3) both endpoints of In map into Jn;

(4) if In and Im have points in common but neither is a subset of the other,
then Jn and Jm have points in common.

Gibson and Roush in [GR, Theorems 1 and 2] proved the following theorem.

Theorem 1.1. If f : I → I is an extendable function, then there exists a PI
family for f . On the other hand, if for f : I→ I there exists a PI family, then
f is an extendable function. Moreover, then f is the restriction of connectivity
function F : I2 → I such that F is continuous on the complement of I× {0}.

It is easy to observe that the analogous characterization is valid for any
real function defined on an interval.

2 Extendable Functions

Lemma 2.1. If g ∈ PC(X, Y ) and h ∈ C(Y,Z), then h ◦ g ∈ PC(X, Z).

Proof. Let x ∈ X, U and V be open neighborhoods of x and h(g(x)),
respectively. Then there exists an open neighborhood W ⊂ Y of the point
g(x) such that h(W ) ⊂ V and there exists an open neighborhood U0 ⊂ U of
the point x such that g(bd U0) ⊂W . Hence h(g(bd U0)) ⊂ V .

Corollary 2.1. If g ∈ E(X, Y ) and h ∈ C(Y,Z), then h ◦ g ∈ E(X, Z).

Proof. There exists a peripherally continuous function G : X × I → Y such
that g(x) = G(x, 0) for all x ∈ X. Then, by Lemma 2.1, the function h ◦
G : X × I → Z is peripherally continuous, and h ◦ g(x) = h ◦ G(x, 0) for all
x ∈ X. So h ◦ g has property E .

Lemma 2.2. Assume that X is a regular topological space. If f ∈ PC(X,Y )
and g ∈ C(X, Z), then (f, g) ∈ PC(X, Y × Z).
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Proof. Fix x0 ∈ X. Let U be an open neighborhood of x0 and V be an open
neighborhood of (f(x0), g(x0)). There exist open neighborhoods V1 ⊂ Y and
V2 ⊂ Z of f(x0) and g(x0), respectively, such that V1 × V2 ⊂ V . Let U1 be
an open subset of U such that x0 ∈ U1, g(U1) ⊂ V2 and let U2 be an open set
such that U2 ⊂ U1, x0 ∈ U2 and f(bd U2) ⊂ V1. Hence

(f, g)(bd U2) ⊂ f(bd U2)× g(bd U2) ⊂ V1 × V2 ⊂ V.

Thus (f, g) is a peripherally continuous function at x0.

Corollary 2.2. Assume that X is a regular topological space. If f ∈ E(X,Y )
and g ∈ C(X, Z), then (f, g) ∈ E(X, Y × Z).

Now, Corollaries 2.1, 2.2 and Lemma 1.1 imply the following inclusions.

Corollary 2.3.

C(R, R) ⊂Ma(E(R, R)) ∩Mm(E(R, R)) ∩Ml(E(R, R))

Corollary 2.4.

C(R, R) ⊂Ma(Ext(R, R)) ∩Mm(Ext(R, R)) ∩Ml(Ext(R, R))

Now we shall verify that the class of all extendable real functions satisfies
all assumptions of Lemma 1.2.

Lemma 2.3. Assume that g : (c,∞) → R is an extendable function and y ∈
C+(g, c) ∩ R. Then f = g ∪ {(c, y)} is also an extendable function.

Proof. Let J0 be a PI family for g. For every n ∈ N choose cn ∈ (c, c + 1]
such that

(a) c0 = c + 1;

(b) cn < min(c + 1
n , cn−1);

(c) |g(cn)− y| < 1
n .

Put C = {cn : n ∈ N} ∪ {c}. Now we shall construct a PI family J for f . A
pair (I, J) belongs to J iff either

(i) I = [c, cn) and J = (y − 1
n , y + 1

n ) for some n ∈ N; or

(ii) (I, J) ∈ J0, I ∩ C = {cm} and g(cm) ∈ J ; or

(iii) (I, J) ∈ J0 and C ∩ I = ∅.
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We shall verify that J is a PI family for f . Arrange all elements of J in
a sequence (In, Jn)n∈N . Then all In are open in [c,∞) and the lengths of In

converge to 0; so condition (1) from Definition 1 is satisfied.
For x = c condition (2) is clear by (i). For x 6= c, (2) follows easily from

the fact that J0 is a PI family for g.
Condition (3) is also obvious. Thus we have to verify only condition (4).

Fix n, m such that In ∩ Im 6= ∅ and neither is a subset of the other. Note
that either c 6∈ In or c 6∈ Im. If c 6∈ In ∪ Im, then (In, Jn), (Im, Jm) ∈ J0 and
therefore Jn∩Jm 6= ∅. So, suppose that c ∈ In and c 6∈ Im. Then In = [c, ckn

)
for some kn ∈ N and ckn

∈ Im. By (ii), g(ckn
) ∈ Jm and, by (i) and (c),

g(ckn
) ∈ Jn. Thus Jn ∩ Jm 6= ∅.

Lemma 2.4. If c ∈ R, f : R → R and f |̀(−∞, c], f |̀[c,∞) are extendable
functions, then f is also an extendable function.

Proof. Let J0 and J1 denote PI families for f |̀(−∞, c] and f |̀[c,∞) re-
spectively. For every n ∈ N choose (I−n , J−n ) ∈ J0, (I+

n , J+
n ) ∈ J1 such that

c ∈ I−n ∩ I+
n and the lengths of I−n ∪ I+

n and J−n ∪ J+
n are less than 1

n . Now we
shall define a PI family J for f . A pair (I, J) belongs to J iff either

(i) (I, J) ∈ J0 ∪ J1 and c 6∈ I; or

(ii) I = I−n ∪ I+
n and J = J−n ∪ J+

n for some n ∈ N.

It is easy to verify that J is a PI family for f .
From Lemmas 1.2, 2.3 and 2.4 we obtain the following inclusions.

Corollary 2.5.

Ma(Ext(R, R)) ∪Ml(Ext(R, R)) ⊂ C(R, R)
Mm(Ext(R, R)) ⊂ M

Thus, Corollaries 2.4 and 2.5 yield the following equalities:

Theorem 2.1.

Ma(Ext(R, R)) = C(R, R) =Ml(Ext(R, R))

Lemma 2.5. Assume that C is a nowhere dense closed subset of R and g : R→
R satisfies

(a) g(x) = 0 for x ∈ C;

(b) if J ⊂ R is a component of R \ C, then g|̀J is an extendable function.
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Then g is an extendable function.

Proof. Let {(an, bn)}n be the sequence of all components of R \C. For each
n let Kn be a PI family for g|̀(an, bn). For every positive integer n choose a
finite family In of open intervals such that

• C ⊂
⋃
In;

• the length of each I ∈ In is less than 1/n;

• the end-points of every I ∈ In belong to I \ C;

• if I ∈ In, inf(I) ∈ (ai, bi), sup(I) ∈ (aj , bj), I− = I ∩ (ai, bi] and
I+ = I∩[aj , bj), then there are intervals J−, J+ such that (I−, J−) ∈ Ki,
(I+, J+) ∈ Kj and the length of J− ∪ J+ is less than 1/n.

We shall define a PI family J for g. A pair (I, J) belongs to J iff either

(i) there exists n such that (I, J) ∈ Kn and I ∩ C = ∅; or

(ii) I ∈ In for some n and J = J− ∪J+, where J−, J+ are described above.

Now we shall verify that J is a PI family for g. We can arrange all elements
of J in a sequence {(In, Jn)}n such that the lengths of In converge to 0; so
condition (1) from Definition 1 is satisfied.

To prove condition (2), fix x ∈ R and ε > 0. If x 6∈ C, then x ∈ (am, bm)
for some m. There exists (I, J) ∈ Km that fulfills (2) and, by (i), (I, J) ∈ J .
If x ∈ C, then there exist n ∈ N and (I, J) ∈ J such that I ∈ In, 1/n < ε
and x ∈ I. Then g(x) = 0 ∈ J and the lengths of I and J are less than 1/n;
so the pair (I, J) satisfies (2).

Statement (3) is obvious by the definition of J .
To verify (4), fix (In, Jn) and (Im, Jm) such that In ∩ Im 6= ∅ and neither

is a subset of the other. Note that 0 ∈ Jk whenever Ik ∩ C 6= ∅. Thus,
if In ∩ C 6= ∅ 6= Im ∩ C, then 0 ∈ Jn ∩ Jm. If (In ∪ Im) ∩ C = ∅, then
In ∪ Im ⊂ (ai, bi) for some i ∈ N and therefore (In, Jn), (Im, Jm) ∈ Ki. Thus
Jn ∩ Jm 6= ∅. So, assume that In ∩C 6= ∅ and Im ∩C = ∅. Then Im ⊂ (ai, bi)
for some i ∈ N and either ai ∈ In or bi ∈ In. Suppose that bi ∈ In. By
the definition of J there exist (I0, J0) ∈ Ki such that I0 = In ∩ (ai, bi] and
J0 ⊂ Jn. Because (Im, Jm), (I0, J0) ∈ Ki and Im ∩ I0 6= ∅, we get Jm ∩J0 6= ∅.
Consequently, Jm ∩ Jn 6= ∅; so J satisfies condition (4).

Theorem 2.2.
Mm(Ext(R, R)) = M .
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Proof. By Corollary 2.5, it is enough to prove that M ⊂ Mm(Ext(R, R)).
Assume that f ∈ Ext(R, R) and g ∈ M. Then D = bd(f−1(0)) is a closed and
nowhere dense set. Let J be a component of the complement of D. Then g
is continuous on J and, by Corollary 2.4, fg is extendable on J . Moreover,
fg(x) = 0 for x ∈ D, and according to Lemma 2.5, fg is an extendable
function.

3 Applications

The next lemma shows that in the definition of extendability (for real func-
tions) we can replace the compact interval I by whole real line.

Lemma 3.1. For a function f : R→ R the following conditions are equivalent.

(i) f ∈ Ext(R, R).

(ii) there is F ∈ PC(R2, R) such that f(x) = F (x, 0) for each x ∈ R.

Proof. Let f ∈ Ext(R, R). Then there exists F0 ∈ PC(R × I, R)) such that
f(x) = F0(x, 0) for x ∈ R. According to [GR, Theorem 2], we can assume
that F0 is continuous on R× (0, 1]. Thus F+ : R× [0,∞)→ R defined by

F+(x, y) =

{
F0(x, y) for (x, y) ∈ R× I
F0(x, 1) for (x, y) ∈ R× [1,∞)

is a peripherally continuous function and consequently F : R2 → R defined by

F (x, y) =

{
F+(x, y) for (x, y) ∈ R× [0,∞)
F+(x,−y) for (x, y) ∈ R× (−∞, 0]

is also a peripherally continuous function with f(x) = F (x, 0) for every x ∈ R.
Now, if F ∈ PC(R2, R) and f(x) = F (x, 0) for each x ∈ R, then F |̀(R× I)

is also a peripherally continuous extension of f . Thus f ∈ Ext(R, R).

Theorem 3.1.

Ma(PC((R2, R)) = C(R2, R) =Ml(PC(R2, R))

Proof. By Lemmas 2.1 and 2.2, C(R2, R) ⊂ Ma(PC(R2, R)). On the other
hand, Ma(PC(R2, R)) ⊂ PC(R2, R) because f ≡ 0 belongs to PC(R2, R).
Suppose that g ∈ PC(R2, R) is discontinuous at x0 ∈ R2. Let h : R→ R2 be a
homeomorphic injection of R into R2 such that
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• h(0) = x0 and g ◦ h is discontinuous at 0;

• there is a homeomorphism h1 : R2 → R2 such that h1(x, 0) = h(x) for
x ∈ R.

By Corollary 2.5, there is f0 ∈ Ext(R, R) such that f0 + g ◦h 6∈ Ext(R, R). Let
f1 : R2 → R be a peripherally continuous extension of f0, i.e., f1(x, 0) = f0(x)
for x ∈ R. Then f = f1 ◦ h−1

1 ∈ PC(R2, R). Suppose that f + g ∈ PC(R2, R).
Then

f1 + g ◦ h1 = (f + g) ◦ h1 ∈ PC(R2, R).

On the other hand, for each x ∈ R we have

(f1 + g ◦ h1)(x, 0) = f1(x, 0) + g(h1(x, 0)) = f0(x) + g ◦ h(x).

Thus f0 + g ◦ h ∈ Ext(R, R), contrary to the choice of f0. Consequently,

Ma(PC(R2, R)) ⊂ C(R2, R).

In a similar way we can prove that

Ml(PC(R2, R)) = C(R2, R).

To see it, note thatMl(PC(R2, R)) ⊂ PC(R2, R). Indeed, suppose that f : R2 →
R is not peripherally continuous at x0 ∈ R2. Then there is an open neighbor-
hood W of x0 and ε > 0 such that f(bd(U)) ⊂ (f(x0) − ε, f(x0) + ε) for no
open neighborhood U of x0 with U ⊂W . Then the function max(f, f(x0)−ε)
is not peripherally continuous at x0 and the constant function f(x0) − ε is
peripherally continuous. Thus f 6∈ Ml(PC(R2, R)).

Finally, note that Lemmas 2.1 and 2.2 yield C(R2, R) ⊂Mm(PC(R2, R)).
On the other hand, it is easy to verify that f : R2 → R defined by

f(x) =

{
sin(||x||−1) if x 6= 0;
0 if x = 0

is a discontinuous function that belongs to Mm(PC(R2, R)). Thus we finish
with the following problem:

Problem 1. Characterize the class Mm(PC(R2, R)).
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[Fa] J. Farková, About the maximum and the minimum of Darboux functions,
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