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NON-CONTINUOUS FUNCTIONS
ASSOCIATED WITH A COVERING
PROPERTY DEFINED BY -OPEN SETS

Abstract

In this paper, new classes of non-continuous functions and multifunc-
tions stronger than lower (upper) 8-continuous functions and multifunc-
tions due to Popa and Noiri [28] and [30] are introduced and investigated
for characterizing the covering property S-closedness [7] from different
angles.

1 Introduction.

The notions of B-open [1] (=semi-preopen [4]) sets and [-closure of a set in
general topology have received a great deal of study in recent years; some of
which are found in papers [1-8, 12, 16-18, 19-20, 27-30]. In the paper [1], using
[-open sets, Abd El-Monsef et al. introduced the notion of (-continuity as
a generalization of semi-continuity [22]. Borsik and Dobos [13] have initiated
the notion of almost quasi-continuity. The equivalence of (-continuity and
almost quasi-continuity is shown by Borsik [12] and Ewert [17]. The notion
of B-continuity has been generalized to multifunction by Popa and Noiri [30].
In this paper, we initiate new classes of non-continuous functions stronger
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than lower (resp. upper) (-continuous functions and multifunctions [28, 30]
for studying the covering property (-closedness which has been investigated
recently by Basu and Ghosh [7]. Although (-closedness is independent of
compactness and stronger than quasi H-closed (QHC, in short) but employing
these newly introduced non-continuous functions as well as multifunctions and
certain kind of partial orders, we produce analogues for 5-closed spaces of the
following well known theorems: first of G. Birkhoff [10] that each lower (resp.
upper) semi-continuous function from a compact space X to a poset assumes
a minimal (resp. maximal) value, second of the corresponding theorem in
terms of multifunctions of J. Ceder [15] and in the end, of a theorem of A. D.
Wallace [33] that a compact space X has a minimal (resp. maximal) element
with respect to each lower (resp. upper) semi-continuous quasi-order on X.

Throughout the paper, X and Y denote topological spaces and int(S) and
cl(S) denote the interior and the closure of a subset S C X respectively. A
subset S is said to be (-open [1] or semi-preopen [4] (resp. preopen [24],
semi-open [22], a-open [26]) if S C cl(int(cl(S))) (resp. S C int(cl(S)), S C
c(int(S)), S C int(cl(int(S))). [-closed, preclosed etc. are defined in a
manner analogous to the corresponding concept of closed sets. The intersection
of all S-closed (resp. preclosed, semi-closed, a-closed) sets containing S is
called the (-closure [4] (resp. preclosure, semiclosure, a-closure) of S and
is denoted by Bcl(S) (resp. pcl(S), scl(S), acl(S)). A set S is called -
regular [7] (=sp-regular [27]) (resp. semi-regular [23]) if it is both [-open
(resp. semi-open) as well as (B-closed (resp. semi-closed). A point z € X
is said to be a 3-6-adherent point of a subset S of X if S N Bcl(U) # 0
for every [-open set U containing x. The set of all $-6-adherent points of
S is called -6-closure [7] (=sp-6-closure [27]) of S and is denoted by (-6-
cl(S) (= sp-6-cl(S)). A subset S is called (-0-closed [7] (= sp-f-closed) if
B-0-cl(S) = S. The complement of a 3-6-closed set is called a (-6-open (=sp-
f-open [27]) set. The family of all S-open (resp. pre-open, semi-open, a-
open, (-regular, 3-6-open) sets of X is denoted by SO(X) (resp. PO(X),
SO(X), 1o(X), BR(X), p-0-O(X)) and that containing a point x of X is
denoted by SO(X,z) (resp. PO(X,z), SO(X,z), (X, z), BR(X,x), 5-6-
O(X,z)). Tt is well known that for a topological space (X, 1), 7 C 7*(X) =
PO(X)NSO(X) C PO(X)USO(X) C BO(X), whereas the reverse inclusions
are false. One can check easily that a set S is #-6-open if for each x € 5,
there exists a V' € BR(X,x) such that € V. C S. A net (z,) is said
to B-0-converge [7] to a point = of X if it is eventually in Bcl(V') for every
V € BO(X,z). A multifunction @ : X — Y is a correspondence from X to
Y with a(x), a non-empty subset of Y, for each € X. For a multifunction
a : X — Y, the upper and lower inverse of a set B of Y will be denoted
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by at(B) and a~(B) respectively; i.e. a™(B) = {z € X : a(z) C B} and
a (B) ={z € X : a(x) N B # 0}. For lower (resp. upper) semi-continuous
multifunctions we refer to the book of C. Berge [9].

2 [(-Closed Spaces, Lower (Resp. Upper) -6-Continuous
Functions and Partial Orders.

Definition 2.1. A function ¢ : X — Y is said to be 3-0-continuous (resp.
B-continuous [1]) if the inverse image of each open set is 3-0-open (resp. (-
open).

Definition 2.2. A function ¢ : X — R, where R is the real line is said to be
upper (resp. lower) 3-0-continuous if for each r € R, the set {x € X : ¢(x) <
r} (resp. {x € X : ¢(x) > r}) is B-0-open in X.

If for the function ¥ : X — R, the set {x € X : ¢(x) < r} (resp. {z €
X :¢(z) > r}) € BO(X) for each r € R, then v is called upper (resp. lower)
B-continuous [30].

Theorem 2.3. A function ¢ : X — R is lower (resp. upper) (3-0-continuous
if and only if for each p € R, {x € X : ¢(x) < p} (resp. {x € X : ¢(x) > u})
is 3-0-closed in X.

Corollary 2.4. A subset S of X is 3-0-open (resp. 3-0-closed) if and only if
the characteristic function xs : X — R is lower (resp. upper) 3-0-continuous.

Remark 2.5. The lower (resp. upper) ($-0-continuity is independent respec-
tively of lower (resp. upper) semi-continuity. The following examples establish
these facts.

Example 2.6. Let X = R, the set of reals and 7 = {0, X,Q, R\ Q}, where
Q is the set of rationals. We define a function ¢ : X — R by ¥(2) = 3 and
P(QN\ {2}) = {4} and y(R\ Q) = {3.5}. Then v is neither lower nor upper
semi-continuous. Since BO(X) = BR(X) = P(X), ¢ is obviously lower as
well as upper (-0-continuous.

Example 2.7. Let X = {a,b,c} and 7 = {0, X, {a}, {0}, {a,b},{b,c}}. Then
obviously fO(X) = SO(X) = 7 and BR(X) = $-0-O(X) = {0, X, {a}, {b, c}}.
Now we define a function ¥ as follows 11(a) = ¥1(c) =2 and ¥1(b) = 3 and
put o = —b1. Then 1 is lower semi-continuous but not lower 3-0-continuous
and s is upper semi-continuous but is not upper [(3-8-continuous.
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Theorem 2.8. Let {tpy : X — R : a € I} be any family of B-0-continuous
maps. Then

(a) M(z) = sup{va(z) : @ € I} (if exists) is lower 3-0-continuous.

(b) m(x) =inf{eo(x) : a € I} (if exists) is upper B-0-continuous.

PROOF. (a) The proof is immediate from the fact that for each r € R, {z €
X :M(x)>r}=Uqser{z € X : fo(x) >r}.
(b) The proof is similar to (a). O

Remark 2.9. The above theorem can be generalized if 3-0-continuity of g
in (a) is replaced by lower B-0-continuity and in (b) is replaced by upper [(3-0-
continuity.

Remark 2.10. If v, and 1o are two lower (3-0-continuous functions from X
into R, then the function ¥ = min{v1, s} may not be lower 5-0-continuous.

Lemma 2.11. [27] (a) If V € O(X), then Bcl(V) € BO(X).
(b) If Ve BR(X), then V is 3-0-open in X, but the reverse is not true.

Example 2.12. Let X = {1, z0, 23}, 7 = {0, X, {z2}, {xs}, {z2, 25}}.
BO(X) = {0, X, {x2}, {xs}, {w2, 3}, {x1, 22}, {x1,23}}.
ﬂ_H_O(X) = {®7X7 {ZQ}v {1‘3}, {1‘271‘3}, {561 ,l‘g}, {56171’3}}.
Define 91 : X — R and ¥ : X — R as follows:
Vi(z1) =3, Yi(w2) =2, P1(a3) =4, Ya(x1) =6, tho(z2) =8, P2(a3) = 2.
Clearly 11 and 9 are lower (3-0-continuous; since {x2,x3} is not [-0-
closed, the function ¢ = min{yy, 2} is not lower 5-0-continuous.

Definition 2.13. A non-empty subset A of a topological space X is said to
be B-closed relative to X (B-set, for short) if for every cover {U, : o € I}
of A by B-open sets of X, there exists a finite subset Iy of I such that A C
U{Bcl(Uy) : « € Ip}. If, in addition A = X, then X is called a B-closed space

[7]-

Theorem 2.14. [7] For a space X, the following are equivalent:

(a) X is B-closed.

(b) Every family of 3-0-closed sets having finite intersection property has a
non-void intersection.
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(¢) Every cover by (-reqular sets has a finite subcover.
(d) Every net with a well order index set as domain has a 3-6-adherent point.

(e) Every net in X (3-0-adheres at some point in X.

Theorem 2.15. Let ¢ : X — R be lower 3-0-continuous. If for some u € R,
the set A, = {z € X : ¢(x) < p} is non-empty and [-closed relative to X
(i.e. [B-set) then v has a minimum value.

PROOF. By the definition of lower (-6-continuity, for each x € X, the set
{y € X : ¢Y(y) > ¢(x) —m} for m(> 0) € Ris a §-6-open set in X containing
x. So, there exists U, € SR(X,x) such that ¥ (z) —m < ¥ (y) for each y € U,.
Since A, is a B-set and {U, : € A, } is cover of A, by (-regular sets, there
exist x1,x2,...,25 € A, such that {U,,,...,Us,} covers A,. Therefore,
infj<p¥(x;) —m < infyea, ¥(y) = infyex ¥(y). The last equality follows
from the fact that whenever y ¢ A, then 1 (y) > p. Therefore v is bounded
below and hence inf, e x ¥(y) exists. Let 8 = inf,ex ¥(y). So, for each k € N,
the set of naturals, ¢ (yx) < min{8 + £, u} for some y, € A,. Since A, is
B-closed (i.e. (-set), the net {yy : k£ € N} in A, has a §-0-adherent point
say y in A,. Clearly, for each kK € N, y) € AﬁJr% for all A > k where
Ag1 ={z € X :¢(z) < B+ 1} Since ¢ is lower 3-f-continuous then by
Theorem 2.3, Aﬂ+% is B-0-closed in X and hence y € Aﬁ+%’ for each k£ € N.
Therefore ¥(y) < 5. So ¥(y) = S. O

Theorem 2.16. Let a function v : X — R be upper (3-0-continuous. If for
some pn € R, the set D, = {x € X : ¥(x) > pu} is non-empty and [B-closed
relative to X (i.e. (-set), then ¥ has a maximum value.

PROOF. The proof is similar to the proof of the above theorem. O

Definition 2.17. A partial order relation ‘<’ on a topological space X is
said to be upper (resp. lower) (3-0-continuous if for each x* € X, the set
{reX :ax* <z} (resp. {vr € X:x<uaz*}) is f-0-closed in X.

Theorem 2.18. A topological space X is (B-closed if and only if X has a
mazimal element with respect to each upper (3-0-continuous partial order on
X.
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PROOF. Let L be a chain in X. Since the partial order ‘<’ on X is upper
B-6-continuous, for each y € X the set L(y) = {x € X : y < x} is B-0-closed
in X. Therefore the family F = {L(y) : y € L} has the finite intersection
property (since L is a chain). Since X is (-closed, then by Theorem 2.14,
NF=n{L(y):y € L} #0. If yg € NF, then y < yo for all y € L. Hence by
Zorn’s lemma, X has a maximal element.

Conversely, suppose X be not (-closed. So by Theorem 2.14, there exists
anet {z, : p € D}, where D is a well ordered directed set, which has no 3-6-
adherent point in X. So, for each = € X, there exists a V € SR(X,x) and a
po € D such that z, ¢ V for all u > p9. Consider B={V € fR(X,z):3 po €
D such that z, & V for p > po}. Now, for each V' € B, let (V') be the smallest
element of D satisfying x, ¢ V for all p > (V). Let p(x) be the smallest
element of D*(x) = {u(V) : V € B}. Clearly for each x € X, pu(x) is the first
element of D*(z) such that « & 8-6-cl{z, : p > p(z)}. So corresponding to
p(x) there exists a V' € B, say V,(; such that {z, : p > p(x)} NV, ) = 0 and
hence for 8 < p(x), Vym) N{z, - p > B} # 0. We define the relation on X
as follows: z7 < a9 in X if and only if pu(z1) < p(ze). Clearly < is a partial
order on X.

In order to show ‘<’ is upper (-6-continuous it is sufficient to show that
for each z € X, {y € X : © < y} is B-6-closed. Suppose there exists 2* € X
such that y* € g-0-cl{y € X : * < y} but y* < z*. Now as discussed above
Vi(y+) is a B-regular set containing y* such that y € V),(,~) with y* < y; i.e.
n(y*) < ply) and Vi N{z, o p > p(y*)} = 0; ie. y & p-0-cl{z, : p >
w(y*)}. But p(y) is the smallest element such that y & 8-6-cl{z, : p > p(y)}
— a contradiction. Therefore ‘<’ is upper (-6-continuous.

Next we shall show that (X, <) has no maximal element. Indeed, if y* €
X is a maximal element of X, then for some fixed puo = p(y*) € D, [-6-
cf{z, : p > po} C B-0-cl{zx, : p > A} for each A € M = {p(z) : v € X},
where p(x) is as discussed above. Then z,, € (-0-cl{z, : p > A} for each
A€ M. But as x,, € X, there must exist p(x,,) € M such that z,, & B-6-
cl{x, : p > p(z,,)} which is a contradiction. O

Theorem 2.19. A space X is B-closed if and only if X has a minimal element
with respect to each lower 3-0-continuous partial order on X.

Definition 2.20. Let ¢ : X — Y be a function where X is a topological space
and (Y, <) is a poset. Then 1 is said to be upper (resp. lower) B3-0-continuous
if for each yo €Y, the set "y € Y 1 yo <y} (resp. v H{y €Y :y <yo})
is 3-0-closed in X.
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Theorem 2.21. A space X is B-closed if and only if each upper 3-0-continuous
function from X into a poset assumes a mazimal value.

PROOF. Let ¢ : X — Z be an upper (-6-continuous function, where X is
B-closed and (7, <z) is a poset. On X, the relation ‘<x’ defined by z1 <x w2
if and only if ¢(z1) <z ¢(x2), is clearly a partial order relation. Since ¢ is
upper (3-f-continuous, for each zg € X, the set {x € X 129 <x 2} = ¢~z €
Z : ¢(xg) <z z} is -O-closed in X. Hence ‘<x’ is an upper [-6-continuous
partial order on X and since X is §-closed, by above Theorem 2.18, X has a
maximal element, say 2 € X. ¢(z') is therefore a maximal element of ¢(X).

Conversely, let X be not (-closed. Then by Theorem 2.14, there exists
a net (z,),ep with a well ordered directed set (D, <), with no §--adherent
point. We define a function ¢ : X — D by ¢(x) = p(x) for each z € X,
where p(x) is the first element of the set {0 € D : & & 5-0-cl{x, : po < p}}.
Since (D, <) is well ordered, the function ¢ is well defined. It is clear that
¢(X) has no maximal element. We shall show that ¢ is upper 3-6-continuous.
For this we define a relation <y on X as follows: 1 <x z9 if and only if
(1) < p(xs). Let p(xz*) € D for some z* € X. Then as {r € X : 2* <z} =
¢ Hp e D:pu(x*) <pland {x € X : 29 < x} is B-O-closed (as discussed
in the proof of Theorem 2.18), ¢ is upper (-f-continuous. So we arrive at a
contradiction. Therefore X is (-closed. O

Theorem 2.22. A space X is 3-closed if and only if each lower 3-0-continuous
function from X into a poset assumes a minimal value.

Remark 2.23. It is clear that every lower (resp. upper) 3-6-continuous func-
tion is lower (resp. upper) 3-continuous [28, 30] but the converses are not true,
in general.

Example 2.24. Let R be the set of reals with the co-countable topology T.
Since a subset S is f-open if S C cl(int(cl(S)), LOR) = {A C R : A is
uncountable or A = 0}. Also it is clear that 3-0-O(R,7) = {0, R}. We define
a function ¢ : (R,7) — (R,U), where (R,U) is the set of reals with the usual
topology U, as follows:

| 1 ifze(—00,0],
1/’(5”)_{ 2 ifz € (0,00).

Then 1 is lower (resp. upper) [-continuous but is not lower (resp. upper)
(-0-continuous.
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3 [(-Closed Spaces and (-6-Continuous Multifunctions.

In this section, we introduce lower (resp. upper) 3-6-continuous multifunctions
to characterize (-closed spaces and investigate some of their properties also.

Definition 3.1. [25] Let (X,7) be a topological space and CL(X) denotes
the class of all non-empty closed subsets of X. The ‘upper Vietories topology’
denoted by Tyy is the topology generated by the base {UT : U € 7}, where
Ut={AeCL(X): ACU}.

The ‘lower Vietories topology’ denoted by Trv s the topology generated by
the subbase {U~ : U € 7}, where U= = {ACCL(X): ANU # 0}.

The ‘Vietories topology’ denoted by Ty is the topology generated by the
subbase {UT :U ertu{U~ :U e 7}.

Definition 3.2. A multifunction o : X — Y is said to be lower (resp. upper)
B-0-continuous if (when viewed as a function) o : X — (CL(Y),Tpv) (resp.
a: X — (CL(Y),muv)) is B-0-continuous.

We deduce the following characterizations using the definitions of lower
and upper Vietoris topologies 7.y and 7y .

Theorem 3.3. For a multifunction a: X — Y, the following are equivalent:
(a) a is lower (resp. upper) (-6-continuous.

(b) For each x € X and each open set U in'Y with x € a= (U) (resp.
z € at(U)), there exists a V € BR(X,x) such that V. C a~(U) (resp.
V Cat(U)).

(c¢) For each open set U in'Y, o~ (U) (resp. o (U)) is B-0-open in X.

(d) For each closed set F in'Y, a™(F) (resp. a~(F)) is §-0-closed in X.
Theorem 3.4. For a function f : X — R, let us define a multifunction as
F(z)={ue€ R: f(x) > u} for each x € X. Then

(a) f is lower B-0-continuous if and only if F is lower 3-0-continuous.

(b) [ is upper B-0-continuous if and only if F is upper (3-0-continuous.
PRrROOF. (a) Let f be a lower $-6-continuous function and U be a non-empty

open set in R such that x € F~(U). Let r € F(z) NU. Since U is open in R,
there is r € U, r’ < r. Since f is lower §-6-continuous, {y € X : f(y) > r }
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is a (-0-open set containing z. Hence there is a V € BR(X,z) such that

VC{yeX:fly)>r} Nowlet ze V. Since f(z) >, 7 € F(z)NU. So

V C F~(U). Therefore, by Theorem 3.3, F' is lower (3--continuous.
Conversely, for each p € R, since {z € X : p < f(x)} = F~(p,0) is

(B-6-open then f is lower (-f-continuous.

(b) The proof is similar to (a). O

Theorem 3.5. A multifunction ¢ : X — Y is lower (3-0-continuous if and
only if cl(vp) : X — Y is lower B-0-continuous (where cl(v)) is defined as
(cl(¥))(x) = cly (Y(z)) for each x € X ).

PROOF. Since for any open set U in Y, {r € X : () NU # 0} ={x € X :
(cl())(x) NU # 0}. Then the proof follows easily. O

Theorem 3.6. Let a: X — Y be a upper B-0-continuous multifunction such
that for each © € X, a(x) is compact. Then for each (-set S of X, a(S) is
compact.

PROOF. Let U = {U, : a € I} be an open cover of a(S). For each x € X, since
a(x) is compact, there exists Uy, , ...., Us, € U such that a(z) C UK ,U,, = U,
(say). Since « is upper (-f-continuous, then for each = € S, there exists
Ve € BR(X,z) such that «(V;) C U,. But as S is a [-set, there exists
X1y .oy Tn € S such that S C U™, V,.. Hence «(S) C U™ ,U,, and therefore
«(S) is compact. O

A topological space X is said to be S-connected [3] if X can not be ex-
pressed as the union of two non-empty disjoint S-open sets.

Lemma 3.7. [1] Let A and Y be subsets of a space X. If Y € 7%(X) and
A€ BO(X), then ANY € BO(Y).

Theorem 3.8. Let o : X — Y be a multifunction which is either lower (3-0-
continuous or upper 3-0-continuous with connected values. If S C X is a-open
and (B-connected subset of X, a(S) is connected.

PrOOF. Let a : X — Y be a lower -f-continuous multifunction. Suppose
there exist non-empty disjoint open sets V7 and V5 in the subspace a(S) such
that «(S) = V1 U Vs, Then V; = U; N «(S) for open sets U; in Y, i = 1,2.
Now, let W; = {z € X : a(z) NU; # 0}, ¢ = 1,2. Since « is lower 3-6-
continuous, each W; for ¢+ = 1,2, is #-0-open and hence is S-open in X. Let
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A; = W;NS. Since S is an a-open set, by Lemma 3.7, A; is §-open in S.
Clearly S = A; U Ay. Let 2 € S. Since a(z) C V3 U V5 and a(x) is connected,
either a(z) NV, =0 or a(x) NVo = 0. Hence either z &€ Wy or x € Ws. Thus
either x € Ay or x &€ As. Therefore S = A; U A where Ay, Ay are non-empty
disjoint [-open sets in the subspace S of X. So S is not [-connected — a
contradiction. So «(S) is connected.

For the upper (-0-continuous case, the proof is quite similar. O

Corollary 3.9. Let o : X — Y, where Y is Hausdorff, be an upper 3-0-
continuous multifunction with, for each © € X, a(z) is connected as well as
compact. If X is B-closed and a(X) =Y, then Y is a continuum.

Theorem 3.10. A space X is 3-closed if and only if every lower 3-0-continuous
multifunction from X into the closed subsets of a space assumes a minimal
value with respect to set inclusion relation.

PROOF. Let o : X — Y be a lower (3-f-continuous multifunction from the
B-closed space X into Y. Also let CL(Y') be the set of all non-empty closed
subsets of Y together with the set inclusion relation ‘C’ as a poset. Let F' €
CL(Y) and let z ¢ o *{K € CL(Y) : K C F}. Then for each K € CL(Y)
for which K C F, a(z) # K and hence a(z) N (Y — F) # (. Therefore,
x € a~ (Y — F). Hence by Theorem 3.3, there exists a V € SR(X,x) such
that V C a= (Y — F). So for each v € V, a(v) — F # 0. Hence VNa {K €
CL(YY): K CF} =0. So, a'{K € CL(Y) : K C F} is -6-closed in X
for each F' € CL(Y). Therefore a: X — (CL(Y), Q) is lower -6-continuous
function and hence by Theorem 2.22, o assumes a minimal value.
Conversely, let X be not (-closed. Then by Theorem 2.14, there is a
net S = {x,},ep, where D is a well ordered directed set, such that S has
no [B-6-adherent point in X. Let D have the order topology. We define a
multifunction « : X — D by a(x) = {g € D : u > p(zr)}, where pu(x)
is as in the proof of Theorem 2.21. Clearly a(x) € CL(D) and as the set
{u(z) : © € X} has no greatest element, o does not assume any minimal
value with respect to set inclusion relation. In order to show that « is lower
(-6-continuous multifunction, it is enough to show that by Theorem 3.3, that
a~ (V) is B-0-open for each open set V of D. Suppose x € o~ (V). Then
alz)NV # 0. Let po € a(z) N V. Then by definition of « and p(x) we
have & & [-0-cl{z, : po < pu} with p(z) < po. So there is a non-empty
W € BR(X,xz) such that W N {z, : po < p} = 0. Let 2o € W be an
arbitrary point. Then zo ¢ (3-0-cl{z, : po < p}. So pu(xe) < po and hence
po € {p € D : pu(xg) < p} = alzg)NV. Sox € W C a= (V). Therefore
a~ (V) is -0-open. This contradicts the hypothesis of the theorem. O
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Theorem 3.11. A space X is B-closed if and only if each upper 3-0-continuous
multifunction from X into a Ty space assumes a maximal value with respect
to set inclusion relation.

PROOF. The proof of the sufficiency is quite similar to that of Theorem 3.10.

For the necessary part, let for a 17 space Y, a : X — Y be an upper
B-0-continuous multifunction. If we can show that o : X — (P(Y),Q) is
upper (-6-continuous, then the proof will be completed by Theorem 2.21. Let
FeP(Y)andlet ¢ a '{K CY : F C K}. Then obviously F — a(x) # ()
and let z € F — a(x). So, a(r) C Y — {z}, which is open since Y is Tj.
Then by Theorem 3.3, there exists a V € SR(X, z) such that (V) CY — {2}
and hence z € F — a(V). Therefore VNa ' {K CY : F C K} = 0. So,
a H{K CY :FC K} is -6-closed. Therefore, o is an upper 3-f-continuous
function. O

Theorem 3.12. If o : X — X is a multifunction on a (-closed space X
which satisfies a(K) is B-0-closed whenever K is 3-0-closed, then there exists
a non-empty B-set S of X such that a(S) = S.

PROOF. Let G = {K C X : K is 3-6-closed and a(K) C K}. Clearly G # 0 as
X €G. Let {K) : A € I'} be a linearly ordered subset of the poset (G,C). As
X is B-closed, K = Nyer K is a non-empty (-6-closed set. Since a(K) C K
for each A, a(K) C K;ie. K € G. Therefore, K is the g.l.b. of {K) : A € I'}.
Hence by Zorn’s lemma, a minimal element of G is the required fixed set of
Q. O

Remark 3.13. Clearly every lower (resp. upper) 3-0-continuous multifunc-
tion is lower (resp. upper) B-continuous [30], but the converses are not true. In
the Example 2.24, when we define (x) = {1} for x € (—00,0] and y(x) = {2}
for x € (0,00), the multifunction justifies our claim.
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