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NON-CONTINUOUS FUNCTIONS
ASSOCIATED WITH A COVERING

PROPERTY DEFINED BY β-OPEN SETS

Abstract

In this paper, new classes of non-continuous functions and multifunc-
tions stronger than lower (upper) β-continuous functions and multifunc-
tions due to Popa and Noiri [28] and [30] are introduced and investigated
for characterizing the covering property β-closedness [7] from different
angles.

1 Introduction.

The notions of β-open [1] (=semi-preopen [4]) sets and β-closure of a set in
general topology have received a great deal of study in recent years; some of
which are found in papers [1-8, 12, 16-18, 19-20, 27-30]. In the paper [1], using
β-open sets, Abd El-Monsef et al. introduced the notion of β-continuity as
a generalization of semi-continuity [22]. Borśık and Doboš [13] have initiated
the notion of almost quasi-continuity. The equivalence of β-continuity and
almost quasi-continuity is shown by Borśık [12] and Ewert [17]. The notion
of β-continuity has been generalized to multifunction by Popa and Noiri [30].
In this paper, we initiate new classes of non-continuous functions stronger
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than lower (resp. upper) β-continuous functions and multifunctions [28, 30]
for studying the covering property β-closedness which has been investigated
recently by Basu and Ghosh [7]. Although β-closedness is independent of
compactness and stronger than quasi H-closed (QHC, in short) but employing
these newly introduced non-continuous functions as well as multifunctions and
certain kind of partial orders, we produce analogues for β-closed spaces of the
following well known theorems: first of G. Birkhoff [10] that each lower (resp.
upper) semi-continuous function from a compact space X to a poset assumes
a minimal (resp. maximal) value, second of the corresponding theorem in
terms of multifunctions of J. Ceder [15] and in the end, of a theorem of A. D.
Wallace [33] that a compact space X has a minimal (resp. maximal) element
with respect to each lower (resp. upper) semi-continuous quasi-order on X.

Throughout the paper, X and Y denote topological spaces and int(S) and
cl(S) denote the interior and the closure of a subset S ⊂ X respectively. A
subset S is said to be β-open [1] or semi-preopen [4] (resp. preopen [24],
semi-open [22], α-open [26]) if S ⊆ cl(int(cl(S))) (resp. S ⊆ int(cl(S)), S ⊆
cl(int(S)), S ⊆ int(cl(int(S))). β-closed, preclosed etc. are defined in a
manner analogous to the corresponding concept of closed sets. The intersection
of all β-closed (resp. preclosed, semi-closed, α-closed) sets containing S is
called the β-closure [4] (resp. preclosure, semiclosure, α-closure) of S and
is denoted by βcl(S) (resp. pcl(S), scl(S), αcl(S)). A set S is called β-
regular [7] (=sp-regular [27]) (resp. semi-regular [23]) if it is both β-open
(resp. semi-open) as well as β-closed (resp. semi-closed). A point x ∈ X
is said to be a β-θ-adherent point of a subset S of X if S ∩ βcl(U) 6= ∅
for every β-open set U containing x. The set of all β-θ-adherent points of
S is called β-θ-closure [7] (=sp-θ-closure [27]) of S and is denoted by β-θ-
cl(S) (= sp-θ-cl(S)). A subset S is called β-θ-closed [7] (= sp-θ-closed) if
β-θ-cl(S) = S. The complement of a β-θ-closed set is called a β-θ-open (=sp-
θ-open [27]) set. The family of all β-open (resp. pre-open, semi-open, α-
open, β-regular, β-θ-open) sets of X is denoted by βO(X) (resp. PO(X),
SO(X), τα(X), βR(X), β-θ-O(X)) and that containing a point x of X is
denoted by βO(X,x) (resp. PO(X,x), SO(X,x), τα(X,x), βR(X,x), β-θ-
O(X,x)). It is well known that for a topological space (X, τ), τ ⊆ τα(X) =
PO(X)∩SO(X) ⊆ PO(X)∪SO(X) ⊆ βO(X), whereas the reverse inclusions
are false. One can check easily that a set S is β-θ-open if for each x ∈ S,
there exists a V ∈ βR(X,x) such that x ∈ V ⊂ S. A net (xµ) is said
to β-θ-converge [7] to a point x of X if it is eventually in βcl(V ) for every
V ∈ βO(X,x). A multifunction α : X → Y is a correspondence from X to
Y with α(x), a non-empty subset of Y , for each x ∈ X. For a multifunction
α : X → Y , the upper and lower inverse of a set B of Y will be denoted
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by α+(B) and α−(B) respectively; i.e. α+(B) = {x ∈ X : α(x) ⊆ B} and
α−(B) = {x ∈ X : α(x) ∩ B 6= ∅}. For lower (resp. upper) semi-continuous
multifunctions we refer to the book of C. Berge [9].

2 β-Closed Spaces, Lower (Resp. Upper) β-θ-Continuous
Functions and Partial Orders.

Definition 2.1. A function ψ : X → Y is said to be β-θ-continuous (resp.
β-continuous [1]) if the inverse image of each open set is β-θ-open (resp. β-
open).

Definition 2.2. A function ψ : X → R, where R is the real line is said to be
upper (resp. lower) β-θ-continuous if for each r ∈ R, the set {x ∈ X : ψ(x) <
r} (resp. {x ∈ X : ψ(x) > r}) is β-θ-open in X.

If for the function ψ : X → R, the set {x ∈ X : ψ(x) < r} (resp. {x ∈
X : ψ(x) > r}) ∈ βO(X) for each r ∈ R, then ψ is called upper (resp. lower)
β-continuous [30].

Theorem 2.3. A function ψ : X → R is lower (resp. upper) β-θ-continuous
if and only if for each µ ∈ R, {x ∈ X : ψ(x) ≤ µ} (resp. {x ∈ X : ψ(x) ≥ µ})
is β-θ-closed in X.

Corollary 2.4. A subset S of X is β-θ-open (resp. β-θ-closed) if and only if
the characteristic function χS : X → R is lower (resp. upper) β-θ-continuous.

Remark 2.5. The lower (resp. upper) β-θ-continuity is independent respec-
tively of lower (resp. upper) semi-continuity. The following examples establish
these facts.

Example 2.6. Let X = R, the set of reals and τ = {∅, X,Q,R \ Q}, where
Q is the set of rationals. We define a function ψ : X → R by ψ(2) = 3 and
ψ(Q \ {2}) = {4} and ψ(R \ Q) = {3.5}. Then ψ is neither lower nor upper
semi-continuous. Since βO(X) = βR(X) = P (X), ψ is obviously lower as
well as upper β-θ-continuous.

Example 2.7. Let X = {a, b, c} and τ = {∅, X, {a}, {b}, {a, b}, {b, c}}. Then
obviously βO(X) = SO(X) = τ and βR(X) = β-θ-O(X) = {∅, X, {a}, {b, c}}.
Now we define a function ψ1 as follows ψ1(a) = ψ1(c) = 2 and ψ1(b) = 3 and
put ψ2 = −ψ1. Then ψ1 is lower semi-continuous but not lower β-θ-continuous
and ψ2 is upper semi-continuous but is not upper β-θ-continuous.
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Theorem 2.8. Let {ψα : X → R : α ∈ I} be any family of β-θ-continuous
maps. Then

(a) M(x) = sup{ψα(x) : α ∈ I} (if exists) is lower β-θ-continuous.

(b) m(x) = inf{ψα(x) : α ∈ I} (if exists) is upper β-θ-continuous.

Proof. (a) The proof is immediate from the fact that for each r ∈ R, {x ∈
X : M(x) > r} = ∪α∈I{x ∈ X : fα(x) > r}.
(b) The proof is similar to (a).

Remark 2.9. The above theorem can be generalized if β-θ-continuity of ψα
in (a) is replaced by lower β-θ-continuity and in (b) is replaced by upper β-θ-
continuity.

Remark 2.10. If ψ1 and ψ2 are two lower β-θ-continuous functions from X
into R, then the function ψ = min{ψ1, ψ2} may not be lower β-θ-continuous.

Lemma 2.11. [27] (a) If V ∈ βO(X), then βcl(V ) ∈ βO(X).
(b) If V ∈ βR(X), then V is β-θ-open in X, but the reverse is not true.

Example 2.12. Let X = {x1, x2, x3}, τ = {∅, X, {x2}, {x3}, {x2, x3}}.
βO(X) = {∅, X, {x2}, {x3}, {x2, x3}, {x1, x2}, {x1, x3}}.
β-θ-O(X) = {∅, X, {x2}, {x3}, {x2, x3}, {x1 , x2}, {x1, x3}}.

Define ψ1 : X → R and ψ2 : X → R as follows:
ψ1(x1) = 3, ψ1(x2) = 2, ψ1(x3) = 4, ψ2(x1) = 6, ψ2(x2) = 8, ψ2(x3) = 2.

Clearly ψ1 and ψ2 are lower β-θ-continuous; since {x2, x3} is not β-θ-
closed, the function ψ = min{ψ1, ψ2} is not lower β-θ-continuous.

Definition 2.13. A non-empty subset A of a topological space X is said to
be β-closed relative to X (β-set, for short) if for every cover {Uα : α ∈ I}
of A by β-open sets of X, there exists a finite subset I0 of I such that A ⊆
∪{βcl(Uα) : α ∈ I0}. If, in addition A = X, then X is called a β-closed space
[7].

Theorem 2.14. [7] For a space X, the following are equivalent:
(a) X is β-closed.
(b) Every family of β-θ-closed sets having finite intersection property has a
non-void intersection.
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(c) Every cover by β-regular sets has a finite subcover.
(d) Every net with a well order index set as domain has a β-θ-adherent point.

(e) Every net in X β-θ-adheres at some point in X.

Theorem 2.15. Let ψ : X → R be lower β-θ-continuous. If for some µ ∈ R,
the set ∆µ = {x ∈ X : ψ(x) ≤ µ} is non-empty and β-closed relative to X
(i.e. β-set) then ψ has a minimum value.

Proof. By the definition of lower β-θ-continuity, for each x ∈ X, the set
{y ∈ X : ψ(y) > ψ(x)−m} for m(> 0) ∈ R is a β-θ-open set in X containing
x. So, there exists Ux ∈ βR(X,x) such that ψ(x)−m < ψ(y) for each y ∈ Ux.
Since ∆µ is a β-set and {Ux : x ∈ ∆µ} is cover of ∆µ by β-regular sets, there
exist x1, x2, . . . , xk ∈ ∆µ such that {Ux1 , . . . , Uxk} covers ∆µ. Therefore,
infj≤k ψ(xj) − m ≤ infy∈∆µ

ψ(y) = infy∈X ψ(y). The last equality follows
from the fact that whenever y 6∈ ∆µ then ψ(y) > µ. Therefore ψ is bounded
below and hence infy∈X ψ(y) exists. Let β = infy∈X ψ(y). So, for each k ∈ N,
the set of naturals, ψ(yk) ≤ min{β + 1

k , µ} for some yk ∈ ∆µ. Since ∆µ is
β-closed (i.e. β-set), the net {yk : k ∈ N} in ∆µ has a β-θ-adherent point
say y in ∆µ. Clearly, for each k ∈ N, yλ ∈ ∆β+ 1

k
for all λ ≥ k where

∆β+ 1
k

= {x ∈ X : ψ(x) ≤ β + 1
k}. Since ψ is lower β-θ-continuous then by

Theorem 2.3, ∆β+ 1
k

is β-θ-closed in X and hence y ∈ ∆β+ 1
k

, for each k ∈ N.
Therefore ψ(y) ≤ β. So ψ(y) = β.

Theorem 2.16. Let a function ψ : X → R be upper β-θ-continuous. If for
some µ ∈ R, the set Dµ = {x ∈ X : ψ(x) ≥ µ} is non-empty and β-closed
relative to X (i.e. β-set), then ψ has a maximum value.

Proof. The proof is similar to the proof of the above theorem.

Definition 2.17. A partial order relation ‘≤’ on a topological space X is
said to be upper (resp. lower) β-θ-continuous if for each x? ∈ X, the set
{x ∈ X : x? ≤ x} (resp. {x ∈ X : x ≤ x?}) is β-θ-closed in X.

Theorem 2.18. A topological space X is β-closed if and only if X has a
maximal element with respect to each upper β-θ-continuous partial order on
X.
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Proof. Let L be a chain in X. Since the partial order ‘≤’ on X is upper
β-θ-continuous, for each y ∈ X the set L(y) = {x ∈ X : y ≤ x} is β-θ-closed
in X. Therefore the family F = {L(y) : y ∈ L} has the finite intersection
property (since L is a chain). Since X is β-closed, then by Theorem 2.14,
∩F = ∩{L(y) : y ∈ L} 6= ∅. If y0 ∈ ∩F , then y ≤ y0 for all y ∈ L. Hence by
Zorn’s lemma, X has a maximal element.

Conversely, suppose X be not β-closed. So by Theorem 2.14, there exists
a net {xµ : µ ∈ D}, where D is a well ordered directed set, which has no β-θ-
adherent point in X. So, for each x ∈ X, there exists a V ∈ βR(X,x) and a
µ0 ∈ D such that xµ 6∈ V for all µ ≥ µ0. Consider B = {V ∈ βR(X,x) : ∃ µ0 ∈
D such that xµ 6∈ V for µ ≥ µ0}. Now, for each V ∈ B, let µ(V ) be the smallest
element of D satisfying xµ 6∈ V for all µ ≥ µ(V ). Let µ(x) be the smallest
element of D?(x) = {µ(V ) : V ∈ B}. Clearly for each x ∈ X, µ(x) is the first
element of D?(x) such that x 6∈ β-θ-cl{xµ : µ ≥ µ(x)}. So corresponding to
µ(x) there exists a V ∈ B, say Vµ(x) such that {xµ : µ ≥ µ(x)}∩Vµ(x) = ∅ and
hence for β < µ(x), Vµ(x) ∩ {xµ : µ ≥ β} 6= ∅. We define the relation on X
as follows: x1 ≤ x2 in X if and only if µ(x1) ≤ µ(x2). Clearly ≤ is a partial
order on X.

In order to show ‘≤’ is upper β-θ-continuous it is sufficient to show that
for each x ∈ X, {y ∈ X : x ≤ y} is β-θ-closed. Suppose there exists x? ∈ X
such that y? ∈ β-θ-cl{y ∈ X : x? ≤ y} but y? < x?. Now as discussed above
Vµ(y?) is a β-regular set containing y? such that y ∈ Vµ(y?) with y? < y; i.e.
µ(y?) < µ(y) and Vµ(y?) ∩ {xµ : µ ≥ µ(y?)} = ∅; i.e. y 6∈ β-θ-cl{xµ : µ ≥
µ(y?)}. But µ(y) is the smallest element such that y 6∈ β-θ-cl{xµ : µ ≥ µ(y)}
— a contradiction. Therefore ‘≤’ is upper β-θ-continuous.

Next we shall show that (X,≤) has no maximal element. Indeed, if y? ∈
X is a maximal element of X, then for some fixed µ0 = µ(y?) ∈ D, β-θ-
cl{xµ : µ ≥ µ0} ⊆ β-θ-cl{xµ : µ ≥ λ} for each λ ∈ M = {µ(x) : x ∈ X},
where µ(x) is as discussed above. Then xµ0 ∈ β-θ-cl{xµ : µ ≥ λ} for each
λ ∈ M . But as xµ0 ∈ X, there must exist µ(xµ0) ∈ M such that xµ0 6∈ β-θ-
cl{xµ : µ ≥ µ(xµ0)} which is a contradiction.

Theorem 2.19. A space X is β-closed if and only if X has a minimal element
with respect to each lower β-θ-continuous partial order on X.

Definition 2.20. Let ψ : X → Y be a function where X is a topological space
and (Y,≤) is a poset. Then ψ is said to be upper (resp. lower) β-θ-continuous
if for each y0 ∈ Y , the set ψ−1{y ∈ Y : y0 ≤ y} (resp. ψ−1{y ∈ Y : y ≤ y0})
is β-θ-closed in X.
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Theorem 2.21. A space X is β-closed if and only if each upper β-θ-continuous
function from X into a poset assumes a maximal value.

Proof. Let φ : X → Z be an upper β-θ-continuous function, where X is
β-closed and (Z,≤Z) is a poset. On X, the relation ‘≤X ’ defined by x1 ≤X x2

if and only if φ(x1) ≤Z φ(x2), is clearly a partial order relation. Since φ is
upper β-θ-continuous, for each x0 ∈ X, the set {x ∈ X : x0 ≤X x} = φ−1{z ∈
Z : φ(x0) ≤Z z} is β-θ-closed in X. Hence ‘≤X ’ is an upper β-θ-continuous
partial order on X and since X is β-closed, by above Theorem 2.18, X has a
maximal element, say x

′ ∈ X. φ(x
′
) is therefore a maximal element of φ(X).

Conversely, let X be not β-closed. Then by Theorem 2.14, there exists
a net (xµ)µ∈D with a well ordered directed set (D,≤), with no β-θ-adherent
point. We define a function φ : X → D by φ(x) = µ(x) for each x ∈ X,
where µ(x) is the first element of the set {µ0 ∈ D : x 6∈ β-θ-cl{xµ : µ0 ≤ µ}}.
Since (D,≤) is well ordered, the function φ is well defined. It is clear that
φ(X) has no maximal element. We shall show that φ is upper β-θ-continuous.
For this we define a relation ≤X on X as follows: x1 ≤X x2 if and only if
µ(x1) ≤ µ(x2). Let µ(x?) ∈ D for some x? ∈ X. Then as {x ∈ X : x? ≤ x} =
φ−1{µ ∈ D : µ(x?) ≤ µ} and {x ∈ X : x0 ≤ x} is β-θ-closed (as discussed
in the proof of Theorem 2.18), φ is upper β-θ-continuous. So we arrive at a
contradiction. Therefore X is β-closed.

Theorem 2.22. A space X is β-closed if and only if each lower β-θ-continuous
function from X into a poset assumes a minimal value.

Remark 2.23. It is clear that every lower (resp. upper) β-θ-continuous func-
tion is lower (resp. upper) β-continuous [28, 30] but the converses are not true,
in general.

Example 2.24. Let R be the set of reals with the co-countable topology τ .
Since a subset S is β-open if S ⊆ cl(int(cl(S)), βO(R) = {A ⊆ R : A is
uncountable or A = ∅}. Also it is clear that β-θ-O(R, τ) = {∅,R}. We define
a function ψ : (R, τ) → (R,U), where (R,U) is the set of reals with the usual
topology U , as follows:

ψ(x) =
{

1 if x ∈ (−∞, 0],
2 if x ∈ (0,∞).

Then ψ is lower (resp. upper) β-continuous but is not lower (resp. upper)
β-θ-continuous.
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3 β-Closed Spaces and β-θ-Continuous Multifunctions.

In this section, we introduce lower (resp. upper) β-θ-continuous multifunctions
to characterize β-closed spaces and investigate some of their properties also.

Definition 3.1. [25] Let (X, τ) be a topological space and CL(X) denotes
the class of all non-empty closed subsets of X. The ‘upper Vietories topology’
denoted by τUV is the topology generated by the base {U+ : U ∈ τ}, where
U+ = {A ∈ CL(X) : A ⊆ U}.

The ‘lower Vietories topology’ denoted by τLV is the topology generated by
the subbase {U− : U ∈ τ}, where U− = {A ⊆ CL(X) : A ∩ U 6= ∅}.

The ‘Vietories topology’ denoted by τV is the topology generated by the
subbase {U+ : U ∈ τ} ∪ {U− : U ∈ τ}.

Definition 3.2. A multifunction α : X → Y is said to be lower (resp. upper)
β-θ-continuous if (when viewed as a function) α : X → (CL(Y ), τLV ) (resp.
α : X → (CL(Y ), τUV )) is β-θ-continuous.

We deduce the following characterizations using the definitions of lower
and upper Vietoris topologies τLV and τUV .

Theorem 3.3. For a multifunction α : X → Y , the following are equivalent:

(a) α is lower (resp. upper) β-θ-continuous.

(b) For each x ∈ X and each open set U in Y with x ∈ α−(U) (resp.
x ∈ α+(U)), there exists a V ∈ βR(X,x) such that V ⊆ α−(U) (resp.
V ⊆ α+(U)).

(c) For each open set U in Y , α−(U) (resp. α+(U)) is β-θ-open in X.

(d) For each closed set F in Y , α+(F ) (resp. α−(F )) is β-θ-closed in X.

Theorem 3.4. For a function f : X → R, let us define a multifunction as
F (x) = {µ ∈ R : f(x) ≥ µ} for each x ∈ X. Then

(a) f is lower β-θ-continuous if and only if F is lower β-θ-continuous.

(b) f is upper β-θ-continuous if and only if F is upper β-θ-continuous.

Proof. (a) Let f be a lower β-θ-continuous function and U be a non-empty
open set in R such that x ∈ F−(U). Let r ∈ F (x) ∩ U . Since U is open in R,
there is r

′ ∈ U , r′ < r. Since f is lower β-θ-continuous, {y ∈ X : f(y) > r
′}
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is a β-θ-open set containing x. Hence there is a V ∈ βR(X,x) such that
V ⊆ {y ∈ X : f(y) > r

′}. Now let z ∈ V . Since f(z) > r
′
, r

′ ∈ F (z) ∩ U . So
V ⊆ F−(U). Therefore, by Theorem 3.3, F is lower β-θ-continuous.

Conversely, for each µ ∈ R, since {x ∈ X : µ < f(x)} = F−(µ,∞) is
β-θ-open then f is lower β-θ-continuous.
(b) The proof is similar to (a).

Theorem 3.5. A multifunction ψ : X → Y is lower β-θ-continuous if and
only if cl(ψ) : X → Y is lower β-θ-continuous (where cl(ψ) is defined as
(cl(ψ))(x) = clY (ψ(x)) for each x ∈ X).

Proof. Since for any open set U in Y , {x ∈ X : ψ(x) ∩ U 6= ∅} = {x ∈ X :
(cl(ψ))(x) ∩ U 6= ∅}. Then the proof follows easily.

Theorem 3.6. Let α : X → Y be a upper β-θ-continuous multifunction such
that for each x ∈ X, α(x) is compact. Then for each β-set S of X, α(S) is
compact.

Proof. Let U = {Uα : α ∈ I} be an open cover of α(S). For each x ∈ X, since
α(x) is compact, there exists Uα1 , ...., Uαk ∈ U such that α(x) ⊆ ∪ki=1Uαi = Ux
(say). Since α is upper β-θ-continuous, then for each x ∈ S, there exists
Vx ∈ βR(X,x) such that α(Vx) ⊆ Ux. But as S is a β-set, there exists
x1, ..., xn ∈ S such that S ⊆ ∪ni=1Vxi . Hence α(S) ⊆ ∪ni=1Uxi and therefore
α(S) is compact.

A topological space X is said to be β-connected [3] if X can not be ex-
pressed as the union of two non-empty disjoint β-open sets.

Lemma 3.7. [1] Let A and Y be subsets of a space X. If Y ∈ τα(X) and
A ∈ βO(X), then A ∩ Y ∈ βO(Y ).

Theorem 3.8. Let α : X → Y be a multifunction which is either lower β-θ-
continuous or upper β-θ-continuous with connected values. If S ⊆ X is α-open
and β-connected subset of X, α(S) is connected.

Proof. Let α : X → Y be a lower β-θ-continuous multifunction. Suppose
there exist non-empty disjoint open sets V1 and V2 in the subspace α(S) such
that α(S) = V1 ∪ V2. Then Vi = Ui ∩ α(S) for open sets Ui in Y , i = 1, 2.
Now, let Wi = {x ∈ X : α(x) ∩ Ui 6= ∅}, i = 1, 2. Since α is lower β-θ-
continuous, each Wi for i = 1, 2, is β-θ-open and hence is β-open in X. Let
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Ai = Wi ∩ S. Since S is an α-open set, by Lemma 3.7, Ai is β-open in S.
Clearly S = A1 ∪A2. Let x ∈ S. Since α(x) ⊆ V1 ∪ V2 and α(x) is connected,
either α(x) ∩ V1 = ∅ or α(x) ∩ V2 = ∅. Hence either x 6∈W1 or x 6∈W2. Thus
either x 6∈ A1 or x 6∈ A2. Therefore S = A1 ∪A2 where A1, A2 are non-empty
disjoint β-open sets in the subspace S of X. So S is not β-connected — a
contradiction. So α(S) is connected.

For the upper β-θ-continuous case, the proof is quite similar.

Corollary 3.9. Let α : X → Y , where Y is Hausdorff, be an upper β-θ-
continuous multifunction with, for each x ∈ X, α(x) is connected as well as
compact. If X is β-closed and α(X) = Y , then Y is a continuum.

Theorem 3.10. A space X is β-closed if and only if every lower β-θ-continuous
multifunction from X into the closed subsets of a space assumes a minimal
value with respect to set inclusion relation.

Proof. Let α : X → Y be a lower β-θ-continuous multifunction from the
β-closed space X into Y . Also let CL(Y ) be the set of all non-empty closed
subsets of Y together with the set inclusion relation ‘⊆’ as a poset. Let F ∈
CL(Y ) and let x 6∈ α−1{K ∈ CL(Y ) : K ⊆ F}. Then for each K ∈ CL(Y )
for which K ⊆ F , α(x) 6= K and hence α(x) ∩ (Y − F ) 6= ∅. Therefore,
x ∈ α−(Y − F ). Hence by Theorem 3.3, there exists a V ∈ βR(X,x) such
that V ⊂ α−(Y − F ). So for each v ∈ V , α(v)− F 6= ∅. Hence V ∩ α−1{K ∈
CL(Y ) : K ⊆ F} = ∅. So, α−1{K ∈ CL(Y ) : K ⊆ F} is β-θ-closed in X
for each F ∈ CL(Y ). Therefore α : X → (CL(Y ),⊆) is lower β-θ-continuous
function and hence by Theorem 2.22, α assumes a minimal value.

Conversely, let X be not β-closed. Then by Theorem 2.14, there is a
net S = {xµ}µ∈D, where D is a well ordered directed set, such that S has
no β-θ-adherent point in X. Let D have the order topology. We define a
multifunction α : X → D by α(x) = {µ ∈ D : µ ≥ µ(x)}, where µ(x)
is as in the proof of Theorem 2.21. Clearly α(x) ∈ CL(D) and as the set
{µ(x) : x ∈ X} has no greatest element, α does not assume any minimal
value with respect to set inclusion relation. In order to show that α is lower
β-θ-continuous multifunction, it is enough to show that by Theorem 3.3, that
α−(V ) is β-θ-open for each open set V of D. Suppose x ∈ α−(V ). Then
α(x) ∩ V 6= ∅. Let µ0 ∈ α(x) ∩ V . Then by definition of α and µ(x) we
have x 6∈ β-θ-cl{xµ : µ0 ≤ µ} with µ(x) ≤ µ0. So there is a non-empty
W ∈ βR(X,x) such that W ∩ {xµ : µ0 ≤ µ} = ∅. Let x0 ∈ W be an
arbitrary point. Then x0 6∈ β-θ-cl{xµ : µ0 ≤ µ}. So µ(x0) ≤ µ0 and hence
µ0 ∈ {µ ∈ D : µ(x0) ≤ µ} = α(x0) ∩ V . So x ∈ W ⊆ α−(V ). Therefore
α−(V ) is β-θ-open. This contradicts the hypothesis of the theorem.
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Theorem 3.11. A space X is β-closed if and only if each upper β-θ-continuous
multifunction from X into a T1 space assumes a maximal value with respect
to set inclusion relation.

Proof. The proof of the sufficiency is quite similar to that of Theorem 3.10.
For the necessary part, let for a T1 space Y , α : X → Y be an upper

β-θ-continuous multifunction. If we can show that α : X → (P (Y ),⊆) is
upper β-θ-continuous, then the proof will be completed by Theorem 2.21. Let
F ∈ P (Y ) and let x 6∈ α−1{K ⊆ Y : F ⊆ K}. Then obviously F − α(x) 6= ∅
and let z ∈ F − α(x). So, α(x) ⊆ Y − {z}, which is open since Y is T1.
Then by Theorem 3.3, there exists a V ∈ βR(X,x) such that α(V ) ⊆ Y −{z}
and hence z ∈ F − α(V ). Therefore V ∩ α−1{K ⊆ Y : F ⊆ K} = ∅. So,
α−1{K ⊆ Y : F ⊆ K} is β-θ-closed. Therefore, α is an upper β-θ-continuous
function.

Theorem 3.12. If α : X → X is a multifunction on a β-closed space X
which satisfies α(K) is β-θ-closed whenever K is β-θ-closed, then there exists
a non-empty β-set S of X such that α(S) = S.

Proof. Let G = {K ⊆ X : K is β-θ-closed and α(K) ⊆ K}. Clearly G 6= ∅ as
X ∈ G. Let {Kλ : λ ∈ I} be a linearly ordered subset of the poset (G,⊆). As
X is β-closed, K = ∩λ∈IKλ is a non-empty β-θ-closed set. Since α(K) ⊆ Kλ

for each λ, α(K) ⊆ K; i.e. K ∈ G. Therefore, K is the g.l.b. of {Kλ : λ ∈ I}.
Hence by Zorn’s lemma, a minimal element of G is the required fixed set of
α.

Remark 3.13. Clearly every lower (resp. upper) β-θ-continuous multifunc-
tion is lower (resp. upper) β-continuous [30], but the converses are not true. In
the Example 2.24, when we define ψ(x) = {1} for x ∈ (−∞, 0] and ψ(x) = {2}
for x ∈ (0,∞), the multifunction justifies our claim.
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