C. K. Basu, Department of Mathematics, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata-700126, (North) 24 Pgs., West Bengal, India. email: ckbasu1962@yahoo.com

M. K. Ghosh, Department of Mathematics, Dumkal College, Basantapur, Basantapur-742406, Murshidabad, West Bengal, India. email: manabghosh@gmail.com

NON-CONTINUOUS FUNCTIONS ASSOCIATED WITH A COVERING PROPERTY DEFINED BY β -OPEN SETS

Abstract

In this paper, new classes of non-continuous functions and multifunctions stronger than lower (upper) β -continuous functions and multifunctions due to Popa and Noiri [28] and [30] are introduced and investigated for characterizing the covering property β -closedness [7] from different angles.

1 Introduction.

The notions of β -open [1] (=semi-preopen [4]) sets and β -closure of a set in general topology have received a great deal of study in recent years; some of which are found in papers [1-8, 12, 16-18, 19-20, 27-30]. In the paper [1], using β -open sets, Abd El-Monsef et al. introduced the notion of β -continuity as a generalization of semi-continuity [22]. Borsík and Doboš [13] have initiated the notion of almost quasi-continuity. The equivalence of β -continuity and almost quasi-continuity is shown by Borsík [12] and Ewert [17]. The notion of β -continuity has been generalized to multifunction by Popa and Noiri [30]. In this paper, we initiate new classes of non-continuous functions stronger

Mathematical Reviews subject classification: Primary: 54C10, 54C60, 54D20, 54D99 Key words: β -open set, β -closure, β -closed space, β -regular sets, β - θ -closed sets, β -continuous, lower (resp. upper) β - θ -continuous

Received by the editors August 17, 2008 Communicated by: Udayan Darji than lower (resp. upper) β -continuous functions and multifunctions [28, 30] for studying the covering property β -closedness which has been investigated recently by Basu and Ghosh [7]. Although β -closedness is independent of compactness and stronger than quasi H-closed (QHC, in short) but employing these newly introduced non-continuous functions as well as multifunctions and certain kind of partial orders, we produce analogues for β -closed spaces of the following well known theorems: first of G. Birkhoff [10] that each lower (resp. upper) semi-continuous function from a compact space X to a poset assumes a minimal (resp. maximal) value, second of the corresponding theorem in terms of multifunctions of J. Ceder [15] and in the end, of a theorem of A. D. Wallace [33] that a compact space X has a minimal (resp. maximal) element with respect to each lower (resp. upper) semi-continuous quasi-order on X.

Throughout the paper, X and Y denote topological spaces and int(S) and cl(S) denote the interior and the closure of a subset $S \subset X$ respectively. A subset S is said to be β -open [1] or semi-preopen [4] (resp. preopen [24], semi-open [22], α -open [26]) if $S \subseteq cl(int(cl(S)))$ (resp. $S \subseteq int(cl(S))$, $S \subseteq$ $cl(int(S)), S \subseteq int(cl(int(S))).$ β -closed, preclosed etc. are defined in a manner analogous to the corresponding concept of closed sets. The intersection of all β -closed (resp. preclosed, semi-closed, α -closed) sets containing S is called the β -closure [4] (resp. preclosure, semiclosure, α -closure) of S and is denoted by $\beta cl(S)$ (resp. pcl(S), scl(S), $\alpha cl(S)$). A set S is called β regular [7] (=sp-regular [27]) (resp. semi-regular [23]) if it is both β -open (resp. semi-open) as well as β -closed (resp. semi-closed). A point $x \in X$ is said to be a β - θ -adherent point of a subset S of X if $S \cap \beta cl(U) \neq \emptyset$ for every β -open set U containing x. The set of all β - θ -adherent points of S is called β - θ -closure [7] (=sp- θ -closure [27]) of S and is denoted by β - θ cl(S) (= sp- θ -cl(S)). A subset S is called β - θ -closed [7] (= sp- θ -closed) if $\beta - \theta - cl(S) = S$. The complement of a $\beta - \theta$ -closed set is called a $\beta - \theta$ -open (=sp- θ -open [27]) set. The family of all β -open (resp. pre-open, semi-open, α open, β -regular, β - θ -open) sets of X is denoted by $\beta O(X)$ (resp. PO(X), SO(X), $\tau_{\alpha}(X)$, $\beta R(X)$, $\beta - \theta - O(X)$) and that containing a point x of X is denoted by $\beta O(X,x)$ (resp. PO(X,x), SO(X,x), $\tau_{\alpha}(X,x)$, $\beta R(X,x)$, $\beta -\theta$ -O(X,x)). It is well known that for a topological space $(X,\tau), \tau \subset \tau^{\alpha}(X) =$ $PO(X) \cap SO(X) \subseteq PO(X) \cup SO(X) \subseteq \beta O(X)$, whereas the reverse inclusions are false. One can check easily that a set S is β - θ -open if for each $x \in S$, there exists a $V \in \beta R(X,x)$ such that $x \in V \subset S$. A net (x_{μ}) is said to β - θ -converge [7] to a point x of X if it is eventually in $\beta cl(V)$ for every $V \in \beta O(X,x)$. A multifunction $\alpha: X \to Y$ is a correspondence from X to Y with $\alpha(x)$, a non-empty subset of Y, for each $x \in X$. For a multifunction $\alpha: X \to Y$, the upper and lower inverse of a set B of Y will be denoted

by $\alpha^+(B)$ and $\alpha^-(B)$ respectively; i.e. $\alpha^+(B) = \{x \in X : \alpha(x) \subseteq B\}$ and $\alpha^-(B) = \{x \in X : \alpha(x) \cap B \neq \emptyset\}$. For lower (resp. upper) semi-continuous multifunctions we refer to the book of C. Berge [9].

2 β -Closed Spaces, Lower (Resp. Upper) β - θ -Continuous Functions and Partial Orders.

Definition 2.1. A function $\psi: X \to Y$ is said to be β - θ -continuous (resp. β -continuous [1]) if the inverse image of each open set is β - θ -open (resp. β -open).

Definition 2.2. A function $\psi: X \to \mathbb{R}$, where \mathbb{R} is the real line is said to be upper (resp. lower) β - θ -continuous if for each $r \in \mathbb{R}$, the set $\{x \in X : \psi(x) < r\}$ (resp. $\{x \in X : \psi(x) > r\}$) is β - θ -open in X.

If for the function $\psi: X \to \mathbb{R}$, the set $\{x \in X : \psi(x) < r\}$ (resp. $\{x \in X : \psi(x) > r\}$) $\in \beta O(X)$ for each $r \in \mathbb{R}$, then ψ is called upper (resp. lower) β -continuous [30].

Theorem 2.3. A function $\psi: X \to \mathbb{R}$ is lower (resp. upper) β - θ -continuous if and only if for each $\mu \in \mathbb{R}$, $\{x \in X : \psi(x) \le \mu\}$ (resp. $\{x \in X : \psi(x) \ge \mu\}$) is β - θ -closed in X.

Corollary 2.4. A subset S of X is β - θ -open (resp. β - θ -closed) if and only if the characteristic function $\chi_S: X \to \mathbb{R}$ is lower (resp. upper) β - θ -continuous.

Remark 2.5. The lower (resp. upper) β - θ -continuity is independent respectively of lower (resp. upper) semi-continuity. The following examples establish these facts.

Example 2.6. Let $X = \mathbb{R}$, the set of reals and $\tau = \{\emptyset, X, \mathbb{Q}, \mathbb{R} \setminus \mathbb{Q}\}$, where \mathbb{Q} is the set of rationals. We define a function $\psi : X \to \mathbb{R}$ by $\psi(2) = 3$ and $\psi(\mathbb{Q} \setminus \{2\}) = \{4\}$ and $\psi(\mathbb{R} \setminus \mathbb{Q}) = \{3.5\}$. Then ψ is neither lower nor upper semi-continuous. Since $\beta O(X) = \beta R(X) = P(X)$, ψ is obviously lower as well as upper β - θ -continuous.

Example 2.7. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}\}$. Then obviously $\beta O(X) = SO(X) = \tau$ and $\beta R(X) = \beta \cdot \theta \cdot O(X) = \{\emptyset, X, \{a\}, \{b, c\}\}\}$. Now we define a function ψ_1 as follows $\psi_1(a) = \psi_1(c) = 2$ and $\psi_1(b) = 3$ and put $\psi_2 = -\psi_1$. Then ψ_1 is lower semi-continuous but not lower $\beta \cdot \theta$ -continuous and ψ_2 is upper semi-continuous but is not upper $\beta \cdot \theta$ -continuous.

Theorem 2.8. Let $\{\psi_{\alpha}: X \to \mathbb{R}: \alpha \in I\}$ be any family of β - θ -continuous maps. Then

- (a) $M(x) = \sup \{ \psi_{\alpha}(x) : \alpha \in I \}$ (if exists) is lower β - θ -continuous.
- (b) $m(x) = \inf\{\psi_{\alpha}(x) : \alpha \in I\}$ (if exists) is upper β - θ -continuous.

PROOF. (a) The proof is immediate from the fact that for each $r \in \mathbb{R}$, $\{x \in X : M(x) > r\} = \bigcup_{\alpha \in I} \{x \in X : f_{\alpha}(x) > r\}$. (b) The proof is similar to (a).

Remark 2.9. The above theorem can be generalized if β - θ -continuity of ψ_{α} in (a) is replaced by lower β - θ -continuity and in (b) is replaced by upper β - θ -continuity.

Remark 2.10. If ψ_1 and ψ_2 are two lower β - θ -continuous functions from X into \mathbb{R} , then the function $\psi = \min\{\psi_1, \psi_2\}$ may not be lower β - θ -continuous.

Lemma 2.11. [27] (a) If $V \in \beta O(X)$, then $\beta cl(V) \in \beta O(X)$. (b) If $V \in \beta R(X)$, then V is β - θ -open in X, but the reverse is not true.

Example 2.12. Let $X = \{x_1, x_2, x_3\}$, $\tau = \{\emptyset, X, \{x_2\}, \{x_3\}, \{x_2, x_3\}\}$. $\beta O(X) = \{\emptyset, X, \{x_2\}, \{x_3\}, \{x_2, x_3\}, \{x_1, x_2\}, \{x_1, x_3\}\}$. β - θ - $O(X) = \{\emptyset, X, \{x_2\}, \{x_3\}, \{x_2, x_3\}, \{x_1, x_2\}, \{x_1, x_3\}\}$. Define $\psi_1 : X \to \mathbb{R}$ and $\psi_2 : X \to \mathbb{R}$ as follows: $\psi_1(x_1) = 3$, $\psi_1(x_2) = 2$, $\psi_1(x_3) = 4$, $\psi_2(x_1) = 6$, $\psi_2(x_2) = 8$, $\psi_2(x_3) = 2$. Clearly ψ_1 and ψ_2 are lower β - θ -continuous; since $\{x_2, x_3\}$ is not β - θ -closed, the function $\psi = \min\{\psi_1, \psi_2\}$ is not lower β - θ -continuous.

Definition 2.13. A non-empty subset A of a topological space X is said to be β -closed relative to X (β -set, for short) if for every cover $\{U_{\alpha} : \alpha \in I\}$ of A by β -open sets of X, there exists a finite subset I_0 of I such that $A \subseteq \bigcup \{\beta cl(U_{\alpha}) : \alpha \in I_0\}$. If, in addition A = X, then X is called a β -closed space [7].

Theorem 2.14. [7] For a space X, the following are equivalent:

- (a) X is β -closed.
- (b) Every family of β - θ -closed sets having finite intersection property has a non-void intersection.

- (c) Every cover by β -regular sets has a finite subcover.
- (d) Every net with a well order index set as domain has a β - θ -adherent point.
- (e) Every net in X β - θ -adheres at some point in X.

Theorem 2.15. Let $\psi: X \to \mathbb{R}$ be lower β - θ -continuous. If for some $\mu \in \mathbb{R}$, the set $\Delta_{\mu} = \{x \in X : \psi(x) \leq \mu\}$ is non-empty and β -closed relative to X (i.e. β -set) then ψ has a minimum value.

PROOF. By the definition of lower β - θ -continuity, for each $x \in X$, the set $\{y \in X : \psi(y) > \psi(x) - m\}$ for $m(>0) \in \mathbb{R}$ is a β - θ -open set in X containing x. So, there exists $U_x \in \beta R(X,x)$ such that $\psi(x) - m < \psi(y)$ for each $y \in U_x$. Since Δ_{μ} is a β -set and $\{U_x : x \in \Delta_{\mu}\}$ is cover of Δ_{μ} by β -regular sets, there exist $x_1, x_2, \ldots, x_k \in \Delta_{\mu}$ such that $\{U_{x_1}, \ldots, U_{x_k}\}$ covers Δ_{μ} . Therefore, $\inf_{j \leq k} \psi(x_j) - m \leq \inf_{y \in \Delta_{\mu}} \psi(y) = \inf_{y \in X} \psi(y)$. The last equality follows from the fact that whenever $y \notin \Delta_{\mu}$ then $\psi(y) > \mu$. Therefore ψ is bounded below and hence $\inf_{y \in X} \psi(y)$ exists. Let $\beta = \inf_{y \in X} \psi(y)$. So, for each $k \in \mathbb{N}$, the set of naturals, $\psi(y_k) \leq \min\{\beta + \frac{1}{k}, \mu\}$ for some $y_k \in \Delta_{\mu}$. Since Δ_{μ} is β -closed (i.e. β -set), the net $\{y_k : k \in \mathbb{N}\}$ in Δ_{μ} has a β - θ -adherent point say y in Δ_{μ} . Clearly, for each $k \in \mathbb{N}$, $y_{\lambda} \in \Delta_{\beta + \frac{1}{k}}$ for all $\lambda \geq k$ where $\Delta_{\beta + \frac{1}{k}} = \{x \in X : \psi(x) \leq \beta + \frac{1}{k}\}$. Since ψ is lower β - θ -continuous then by Theorem 2.3, $\Delta_{\beta + \frac{1}{k}}$ is β - θ -closed in X and hence $y \in \Delta_{\beta + \frac{1}{k}}$, for each $k \in \mathbb{N}$. Therefore $\psi(y) \leq \beta$. So $\psi(y) = \beta$.

Theorem 2.16. Let a function $\psi: X \to \mathbb{R}$ be upper β - θ -continuous. If for some $\mu \in \mathbb{R}$, the set $D_{\mu} = \{x \in X : \psi(x) \geq \mu\}$ is non-empty and β -closed relative to X (i.e. β -set), then ψ has a maximum value.

PROOF. The proof is similar to the proof of the above theorem. \Box

Definition 2.17. A partial order relation '\(\leq'\) on a topological space X is said to be upper (resp. lower) β - θ -continuous if for each $x^* \in X$, the set $\{x \in X : x^* \leq x\}$ (resp. $\{x \in X : x \leq x^*\}$) is β - θ -closed in X.

Theorem 2.18. A topological space X is β -closed if and only if X has a maximal element with respect to each upper β - θ -continuous partial order on X.

PROOF. Let L be a chain in X. Since the partial order ' \leq ' on X is upper β - θ -continuous, for each $y \in X$ the set $L(y) = \{x \in X : y \leq x\}$ is β - θ -closed in X. Therefore the family $\mathcal{F} = \{L(y) : y \in L\}$ has the finite intersection property (since L is a chain). Since X is β -closed, then by Theorem 2.14, $\cap \mathcal{F} = \cap \{L(y) : y \in L\} \neq \emptyset$. If $y_0 \in \cap \mathcal{F}$, then $y \leq y_0$ for all $y \in L$. Hence by Zorn's lemma, X has a maximal element.

Conversely, suppose X be not β -closed. So by Theorem 2.14, there exists a net $\{x_{\mu}: \mu \in D\}$, where D is a well ordered directed set, which has no β - θ -adherent point in X. So, for each $x \in X$, there exists a $V \in \beta R(X, x)$ and a $\mu_0 \in D$ such that $x_{\mu} \notin V$ for all $\mu \geq \mu_0$. Consider $\mathcal{B} = \{V \in \beta R(X, x): \exists \mu_0 \in D \text{ such that } x_{\mu} \notin V \text{ for } \mu \geq \mu_0\}$. Now, for each $V \in \mathcal{B}$, let $\mu(V)$ be the smallest element of D satisfying $x_{\mu} \notin V$ for all $\mu \geq \mu(V)$. Let $\mu(x)$ be the smallest element of $D^*(x) = \{\mu(V): V \in \mathcal{B}\}$. Clearly for each $x \in X$, $\mu(x)$ is the first element of $D^*(x)$ such that $x \notin \beta$ - θ - $cl\{x_{\mu}: \mu \geq \mu(x)\}$. So corresponding to $\mu(x)$ there exists a $V \in \mathcal{B}$, say $V_{\mu(x)}$ such that $\{x_{\mu}: \mu \geq \mu(x)\} \cap V_{\mu(x)} = \emptyset$ and hence for $\beta < \mu(x)$, $V_{\mu(x)} \cap \{x_{\mu}: \mu \geq \beta\} \neq \emptyset$. We define the relation on X as follows: $x_1 \leq x_2$ in X if and only if $\mu(x_1) \leq \mu(x_2)$. Clearly \leq is a partial order on X.

In order to show ' \leq ' is upper β - θ -continuous it is sufficient to show that for each $x \in X$, $\{y \in X : x \leq y\}$ is β - θ -closed. Suppose there exists $x^* \in X$ such that $y^* \in \beta$ - θ - $cl\{y \in X : x^* \leq y\}$ but $y^* < x^*$. Now as discussed above $V_{\mu(y^*)}$ is a β -regular set containing y^* such that $y \in V_{\mu(y^*)}$ with $y^* < y$; i.e. $\mu(y^*) < \mu(y)$ and $V_{\mu(y^*)} \cap \{x_{\mu} : \mu \geq \mu(y^*)\} = \emptyset$; i.e. $y \notin \beta$ - θ - $cl\{x_{\mu} : \mu \geq \mu(y^*)\}$. But $\mu(y)$ is the smallest element such that $y \notin \beta$ - θ - $cl\{x_{\mu} : \mu \geq \mu(y)\}$ — a contradiction. Therefore '<' is upper β - θ -continuous.

Next we shall show that (X, \leq) has no maximal element. Indeed, if $y^* \in X$ is a maximal element of X, then for some fixed $\mu_0 = \mu(y^*) \in D$, β - θ - $cl\{x_{\mu} : \mu \geq \mu_0\} \subseteq \beta$ - θ - $cl\{x_{\mu} : \mu \geq \lambda\}$ for each $\lambda \in M = \{\mu(x) : x \in X\}$, where $\mu(x)$ is as discussed above. Then $x_{\mu_0} \in \beta$ - θ - $cl\{x_{\mu} : \mu \geq \lambda\}$ for each $\lambda \in M$. But as $x_{\mu_0} \in X$, there must exist $\mu(x_{\mu_0}) \in M$ such that $x_{\mu_0} \notin \beta$ - θ - $cl\{x_{\mu} : \mu \geq \mu(x_{\mu_0})\}$ which is a contradiction.

Theorem 2.19. A space X is β -closed if and only if X has a minimal element with respect to each lower β - θ -continuous partial order on X.

Definition 2.20. Let $\psi: X \to Y$ be a function where X is a topological space and (Y, \leq) is a poset. Then ψ is said to be upper (resp. lower) β - θ -continuous if for each $y_0 \in Y$, the set $\psi^{-1}\{y \in Y: y_0 \leq y\}$ (resp. $\psi^{-1}\{y \in Y: y \leq y_0\}$) is β - θ -closed in X.

Theorem 2.21. A space X is β -closed if and only if each upper β - θ -continuous function from X into a poset assumes a maximal value.

PROOF. Let $\phi: X \to Z$ be an upper β - θ -continuous function, where X is β -closed and (Z, \leq_Z) is a poset. On X, the relation ' \leq_X ' defined by $x_1 \leq_X x_2$ if and only if $\phi(x_1) \leq_Z \phi(x_2)$, is clearly a partial order relation. Since ϕ is upper β - θ -continuous, for each $x_0 \in X$, the set $\{x \in X : x_0 \leq_X x\} = \phi^{-1}\{z \in Z : \phi(x_0) \leq_Z z\}$ is β - θ -closed in X. Hence ' \leq_X ' is an upper β - θ -continuous partial order on X and since X is β -closed, by above Theorem 2.18, X has a maximal element, say $x' \in X$. $\phi(x')$ is therefore a maximal element of $\phi(X)$.

Conversely, let X be not β -closed. Then by Theorem 2.14, there exists a net $(x_{\mu})_{\mu \in D}$ with a well ordered directed set (D, \leq) , with no β - θ -adherent point. We define a function $\phi: X \to D$ by $\phi(x) = \mu(x)$ for each $x \in X$, where $\mu(x)$ is the first element of the set $\{\mu_0 \in D: x \notin \beta$ - θ - $cl\{x_{\mu}: \mu_0 \leq \mu\}\}$. Since (D, \leq) is well ordered, the function ϕ is well defined. It is clear that $\phi(X)$ has no maximal element. We shall show that ϕ is upper β - θ -continuous. For this we define a relation \leq_X on X as follows: $x_1 \leq_X x_2$ if and only if $\mu(x_1) \leq \mu(x_2)$. Let $\mu(x^*) \in D$ for some $x^* \in X$. Then as $\{x \in X: x^* \leq x\} = \phi^{-1}\{\mu \in D: \mu(x^*) \leq \mu\}$ and $\{x \in X: x_0 \leq x\}$ is β - θ -closed (as discussed in the proof of Theorem 2.18), ϕ is upper β - θ -continuous. So we arrive at a contradiction. Therefore X is β -closed.

Theorem 2.22. A space X is β -closed if and only if each lower β - θ -continuous function from X into a poset assumes a minimal value.

Remark 2.23. It is clear that every lower (resp. upper) β - θ -continuous function is lower (resp. upper) β -continuous [28, 30] but the converses are not true, in general.

Example 2.24. Let \mathbb{R} be the set of reals with the co-countable topology τ . Since a subset S is β -open if $S \subseteq cl(int(cl(S)), \beta O(\mathbb{R}) = \{A \subseteq \mathbb{R} : A \text{ is uncountable or } A = \emptyset\}$. Also it is clear that β - θ - $O(R, \tau) = \{\emptyset, \mathbb{R}\}$. We define a function $\psi : (\mathbb{R}, \tau) \to (\mathbb{R}, \mathcal{U})$, where $(\mathbb{R}, \mathcal{U})$ is the set of reals with the usual topology \mathcal{U} , as follows:

$$\psi(x) = \begin{cases} 1 & \text{if } x \in (-\infty, 0], \\ 2 & \text{if } x \in (0, \infty). \end{cases}$$

Then ψ is lower (resp. upper) β -continuous but is not lower (resp. upper) β - θ -continuous.

3 β -Closed Spaces and β - θ -Continuous Multifunctions.

In this section, we introduce lower (resp. upper) β - θ -continuous multifunctions to characterize β -closed spaces and investigate some of their properties also.

Definition 3.1. [25] Let (X, τ) be a topological space and CL(X) denotes the class of all non-empty closed subsets of X. The 'upper Vietories topology' denoted by τ_{UV} is the topology generated by the base $\{U^+ : U \in \tau\}$, where $U^+ = \{A \in CL(X) : A \subseteq U\}$.

The 'lower Vietories topology' denoted by τ_{LV} is the topology generated by the subbase $\{U^-: U \in \tau\}$, where $U^- = \{A \subset CL(X): A \cap U \neq \emptyset\}$.

The 'Vietories topology' denoted by τ_V is the topology generated by the subbase $\{U^+: U \in \tau\} \cup \{U^-: U \in \tau\}$.

Definition 3.2. A multifunction $\alpha: X \to Y$ is said to be lower (resp. upper) β - θ -continuous if (when viewed as a function) $\alpha: X \to (CL(Y), \tau_{LV})$ (resp. $\alpha: X \to (CL(Y), \tau_{UV})$) is β - θ -continuous.

We deduce the following characterizations using the definitions of lower and upper Vietoris topologies τ_{LV} and τ_{UV} .

Theorem 3.3. For a multifunction $\alpha: X \to Y$, the following are equivalent:

- (a) α is lower (resp. upper) β - θ -continuous.
- (b) For each $x \in X$ and each open set U in Y with $x \in \alpha^{-}(U)$ (resp. $x \in \alpha^{+}(U)$), there exists a $V \in \beta R(X,x)$ such that $V \subseteq \alpha^{-}(U)$ (resp. $V \subset \alpha^{+}(U)$).
- (c) For each open set U in Y, $\alpha^-(U)$ (resp. $\alpha^+(U)$) is β - θ -open in X.
- (d) For each closed set F in Y, $\alpha^+(F)$ (resp. $\alpha^-(F)$) is β - θ -closed in X.

Theorem 3.4. For a function $f: X \to \mathbb{R}$, let us define a multifunction as $F(x) = \{ \mu \in R : f(x) \ge \mu \}$ for each $x \in X$. Then

- (a) f is lower β - θ -continuous if and only if F is lower β - θ -continuous.
- (b) f is upper β - θ -continuous if and only if F is upper β - θ -continuous.

PROOF. (a) Let f be a lower β - θ -continuous function and U be a non-empty open set in $\mathbb R$ such that $x \in F^-(U)$. Let $r \in F(x) \cap U$. Since U is open in $\mathbb R$, there is $r' \in U$, r' < r. Since f is lower β - θ -continuous, $\{y \in X : f(y) > r'\}$

is a β - θ -open set containing x. Hence there is a $V \in \beta R(X,x)$ such that $V \subseteq \{y \in X : f(y) > r'\}$. Now let $z \in V$. Since $f(z) > r', r' \in F(z) \cap U$. So $V \subseteq F^-(U)$. Therefore, by Theorem 3.3, F is lower β - θ -continuous.

Conversely, for each $\mu \in \mathbb{R}$, since $\{x \in X : \mu < f(x)\} = F^{-}(\mu, \infty)$ is β - θ -open then f is lower β - θ -continuous.

(b) The proof is similar to (a).

Theorem 3.5. A multifunction $\psi: X \to Y$ is lower β - θ -continuous if and only if $cl(\psi): X \to Y$ is lower β - θ -continuous (where $cl(\psi)$ is defined as $(cl(\psi))(x) = cl_Y(\psi(x))$ for each $x \in X$).

PROOF. Since for any open set U in Y, $\{x \in X : \psi(x) \cap U \neq \emptyset\} = \{x \in X : \psi(x) \cap U \neq \emptyset\}$ $(cl(\psi))(x) \cap U \neq \emptyset$. Then the proof follows easily.

Theorem 3.6. Let $\alpha: X \to Y$ be a upper β - θ -continuous multifunction such that for each $x \in X$, $\alpha(x)$ is compact. Then for each β -set S of X, $\alpha(S)$ is compact.

PROOF. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$ be an open cover of $\alpha(S)$. For each $x \in X$, since $\alpha(x)$ is compact, there exists $U_{\alpha_1}, ..., U_{\alpha_k} \in \mathcal{U}$ such that $\alpha(x) \subseteq \bigcup_{i=1}^k U_{\alpha_i} = U_x$ (say). Since α is upper β - θ -continuous, then for each $x \in S$, there exists $V_x \in \beta R(X,x)$ such that $\alpha(V_x) \subseteq U_x$. But as S is a β -set, there exists $x_1,...,x_n \in S$ such that $S \subseteq \bigcup_{i=1}^n V_{x_i}$. Hence $\alpha(S) \subseteq \bigcup_{i=1}^n U_{x_i}$ and therefore $\alpha(S)$ is compact.

A topological space X is said to be β -connected [3] if X can not be expressed as the union of two non-empty disjoint β -open sets.

Lemma 3.7. [1] Let A and Y be subsets of a space X. If $Y \in \tau^{\alpha}(X)$ and $A \in \beta O(X)$, then $A \cap Y \in \beta O(Y)$.

Theorem 3.8. Let $\alpha: X \to Y$ be a multifunction which is either lower β - θ continuous or upper β - θ -continuous with connected values. If $S \subseteq X$ is α -open and β -connected subset of X, $\alpha(S)$ is connected.

PROOF. Let $\alpha: X \to Y$ be a lower β - θ -continuous multifunction. Suppose there exist non-empty disjoint open sets V_1 and V_2 in the subspace $\alpha(S)$ such that $\alpha(S) = V_1 \cup V_2$. Then $V_i = U_i \cap \alpha(S)$ for open sets U_i in Y, i = 1, 2. Now, let $W_i = \{x \in X : \alpha(x) \cap U_i \neq \emptyset\}, i = 1, 2$. Since α is lower β - θ continuous, each W_i for i=1,2, is β - θ -open and hence is β -open in X. Let $A_i = W_i \cap S$. Since S is an α -open set, by Lemma 3.7, A_i is β -open in S. Clearly $S = A_1 \cup A_2$. Let $x \in S$. Since $\alpha(x) \subseteq V_1 \cup V_2$ and $\alpha(x)$ is connected, either $\alpha(x) \cap V_1 = \emptyset$ or $\alpha(x) \cap V_2 = \emptyset$. Hence either $x \notin W_1$ or $x \notin W_2$. Thus either $x \notin A_1$ or $x \notin A_2$. Therefore $S = A_1 \cup A_2$ where A_1 , A_2 are non-empty disjoint β -open sets in the subspace S of S. So S is not S-connected — a contradiction. So $\alpha(S)$ is connected.

For the upper β - θ -continuous case, the proof is quite similar.

Corollary 3.9. Let $\alpha: X \to Y$, where Y is Hausdorff, be an upper β - θ -continuous multifunction with, for each $x \in X$, $\alpha(x)$ is connected as well as compact. If X is β -closed and $\alpha(X) = Y$, then Y is a continuum.

Theorem 3.10. A space X is β -closed if and only if every lower β - θ -continuous multifunction from X into the closed subsets of a space assumes a minimal value with respect to set inclusion relation.

PROOF. Let $\alpha: X \to Y$ be a lower β - θ -continuous multifunction from the β -closed space X into Y. Also let CL(Y) be the set of all non-empty closed subsets of Y together with the set inclusion relation ' \subseteq ' as a poset. Let $F \in CL(Y)$ and let $x \notin \alpha^{-1}\{K \in CL(Y): K \subseteq F\}$. Then for each $K \in CL(Y)$ for which $K \subseteq F$, $\alpha(x) \neq K$ and hence $\alpha(x) \cap (Y - F) \neq \emptyset$. Therefore, $x \in \alpha^-(Y - F)$. Hence by Theorem 3.3, there exists a $V \in \beta R(X, x)$ such that $V \subset \alpha^-(Y - F)$. So for each $v \in V$, $\alpha(v) - F \neq \emptyset$. Hence $V \cap \alpha^{-1}\{K \in CL(Y): K \subseteq F\} = \emptyset$. So, $\alpha^{-1}\{K \in CL(Y): K \subseteq F\}$ is β - θ -closed in X for each $F \in CL(Y)$. Therefore $\alpha: X \to (CL(Y), \subseteq)$ is lower β - θ -continuous function and hence by Theorem 2.22, α assumes a minimal value.

Conversely, let X be not β -closed. Then by Theorem 2.14, there is a net $S = \{x_{\mu}\}_{\mu \in D}$, where D is a well ordered directed set, such that S has no β - θ -adherent point in X. Let D have the order topology. We define a multifunction $\alpha: X \to D$ by $\alpha(x) = \{\mu \in D: \mu \geq \mu(x)\}$, where $\mu(x)$ is as in the proof of Theorem 2.21. Clearly $\alpha(x) \in CL(D)$ and as the set $\{\mu(x): x \in X\}$ has no greatest element, α does not assume any minimal value with respect to set inclusion relation. In order to show that α is lower β - θ -continuous multifunction, it is enough to show that by Theorem 3.3, that $\alpha^-(V)$ is β - θ -open for each open set V of D. Suppose $x \in \alpha^-(V)$. Then $\alpha(x) \cap V \neq \emptyset$. Let $\mu_0 \in \alpha(x) \cap V$. Then by definition of α and $\mu(x)$ we have $x \notin \beta$ - θ - $cl\{x_{\mu}: \mu_0 \leq \mu\}$ with $\mu(x) \leq \mu_0$. So there is a non-empty $W \in \beta R(X,x)$ such that $W \cap \{x_{\mu}: \mu_0 \leq \mu\} = \emptyset$. Let $x_0 \in W$ be an arbitrary point. Then $x_0 \notin \beta$ - θ - $cl\{x_{\mu}: \mu_0 \leq \mu\}$. So $\mu(x_0) \leq \mu_0$ and hence $\mu_0 \in \{\mu \in D: \mu(x_0) \leq \mu\} = \alpha(x_0) \cap V$. So $x \in W \subseteq \alpha^-(V)$. Therefore $\alpha^-(V)$ is β - θ -open. This contradicts the hypothesis of the theorem. \square

Theorem 3.11. A space X is β -closed if and only if each upper β - θ -continuous multifunction from X into a T_1 space assumes a maximal value with respect to set inclusion relation.

PROOF. The proof of the sufficiency is quite similar to that of Theorem 3.10. For the necessary part, let for a T_1 space Y, $\alpha: X \to Y$ be an upper β - θ -continuous multifunction. If we can show that $\alpha: X \to (P(Y), \subseteq)$ is upper β - θ -continuous, then the proof will be completed by Theorem 2.21. Let $F \in P(Y)$ and let $x \notin \alpha^{-1}\{K \subseteq Y: F \subseteq K\}$. Then obviously $F - \alpha(x) \neq \emptyset$ and let $z \in F - \alpha(x)$. So, $\alpha(x) \subseteq Y - \{z\}$, which is open since Y is T_1 . Then by Theorem 3.3, there exists a $V \in \beta R(X, x)$ such that $\alpha(V) \subseteq Y - \{z\}$ and hence $z \in F - \alpha(V)$. Therefore $V \cap \alpha^{-1}\{K \subseteq Y: F \subseteq K\} = \emptyset$. So, $\alpha^{-1}\{K \subseteq Y: F \subseteq K\}$ is β - θ -closed. Therefore, α is an upper β - θ -continuous function.

Theorem 3.12. If $\alpha: X \to X$ is a multifunction on a β -closed space X which satisfies $\alpha(K)$ is β - θ -closed whenever K is β - θ -closed, then there exists a non-empty β -set S of X such that $\alpha(S) = S$.

PROOF. Let $\mathcal{G} = \{K \subseteq X : K \text{ is } \beta\text{-}\theta\text{-closed and } \alpha(K) \subseteq K\}$. Clearly $\mathcal{G} \neq \emptyset$ as $X \in \mathcal{G}$. Let $\{K_{\lambda} : \lambda \in I\}$ be a linearly ordered subset of the poset (\mathcal{G}, \subseteq) . As $X \text{ is } \beta\text{-closed}$, $K = \bigcap_{\lambda \in I} K_{\lambda}$ is a non-empty $\beta\text{-}\theta\text{-closed}$ set. Since $\alpha(K) \subseteq K_{\lambda}$ for each λ , $\alpha(K) \subseteq K$; i.e. $K \in \mathcal{G}$. Therefore, K is the g.l.b. of $\{K_{\lambda} : \lambda \in I\}$. Hence by Zorn's lemma, a minimal element of \mathcal{G} is the required fixed set of α .

Remark 3.13. Clearly every lower (resp. upper) β - θ -continuous multifunction is lower (resp. upper) β -continuous [30], but the converses are not true. In the Example 2.24, when we define $\psi(x) = \{1\}$ for $x \in (-\infty, 0]$ and $\psi(x) = \{2\}$ for $x \in (0, \infty)$, the multifunction justifies our claim.

Acknowledgement: The authors are thankful to the learned referee for some constructive comments and suggestions towards some improvements of the earlier version of the paper.

References

[1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., **12** (1983), 77–90.

- [2] M. E. Abd El-Monsef, A. M. Kozae, Some generalized forms of compactness and closedness, Delta J. Sci., 9 (1985), 257–269.
- [3] T. Aho and T. Nieminen, Spaces in which preopen subsets are semi-open, Ricerche Mat., 43 (1994), 45–59.
- [4] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24–32.
- [5] D. Andrijević, On SPO-equivalent topologies, Suppl. Rend. Cir. Mat. Palermo, 29 (1992), 317–328.
- [6] D. Andrijević, On b-open sets, Math. Vesnik, 48 (1996), 59-64.
- [7] C. K. Basu and M. K. Ghosh, β -closed spaces and β - θ -subclosed graphs, Eur. J. Pure Appl. Math., 1 (2008), 40–50.
- [8] Y. Beceren and T. Noiri, Some functions defined by semi-open and β -open sets, Chaos, Solitons and Fractals, **36** (2008), 1225–1231.
- [9] C. Berge, Espaces topologiques: Fonctions multivoques, French, Collection Universitaire de Mathmatiques, 3, Dunod, Paris 1959.
- [10] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25, Revised edition, Amer. Math. Soc., New York, 1948.
- [11] J. Borsík, On almost quasi continuous functions, Math. Bohemica, 118 (1993), 241–248.
- [12] J. Borsík, Oscillation for almost continuity, Acta. Math. Hungar., 115 (2007), 319–332.
- [13] J. Borsík and J Doboš, On decomposition of quasi-continuity, Real Anal. Exchange, 16 (1990-1991), 292–305.
- [14] M. Caldas and S. Jafari, Some properties of contra β-continuous functions, Mem. Fac. Sci. Kochi. Univ. (Math), **22** (2001), 19–28.
- [15] J. Ceder, Compactness and semicontinuous carriers, Proc. Amer. Math. Soc., 14 (1963), 991-993.
- [16] Z. Duszyński, On some concepts of weak connectedness of topological spaces, Acta. Math. Hungar., 110 (2006), 81–90.
- [17] J. Ewert, On almost quasi-continuity of functions, Tatra Mt. Math. Publ., 2 (1993), 81–92.

- [18] M. Ganster and D. Andrijević, On some questions concerning semipreopen sets, J. Inst. Math. Comp. Sci. (Math. Ser.), 1 (1988), 65–75.
- [19] T. H. Halvac, Relations between new topologies obtained from old ones, Acta Math. Hungar., 64 (1994), 231–235.
- [20] S. Jafari and T. Noiri, *Properties of* β -connected spaces, Acta Math. Hungar., **101** (2003), 227–236.
- [21] J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc., 80 (1980), 341–348.
- [22] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, **70** (1963), 36–41.
- [23] G. Di Maio and T. Noiri, On s-closed spaces, Ind. J. Pure Appl. Math., 18 (1987), 226–233.
- [24] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [25] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152–183.
- [26] O. Njåstad, On some classes of nearly open sets, Pacific Jour. Math., 15 (1965), 961–970.
- [27] T. Noiri, Weak and strong forms of β -irresolute functions, Acta Math. Hungar., **99** (2003), 315–328.
- [28] V. Popa and T. Noiri, On β -continuous functions, Real Anal. Exchange, **18** (1992-1993), 544–548.
- [29] V. Popa and T. Noiri, Weakly β -continuous functions, An. Univ. Timisoara Ser. Mat. Inform., **32** (1994), 83–92.
- [30] V. Popa and T. Noiri, On upper and lower β -continuous multifunctions, Real Anal. Exchange, **22** (1996/1997), 362–376.
- [31] M. K. Singal and A. Mathur, On nearly compact spaces, Boll. Un. Mat. Ital., 4 (1969), 702–710.
- [32] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60 (1976), 335–338.

[33] A. D. Wallace, A fixed point theorem, Bull Amer. Math. Soc., ${\bf 51}$ (1945), 413–416.