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A SIMPLE PROOF OF ZAHORSKI’S
DESCRIPTION OF

NON-DIFFERENTIABILITY SETS OF
LIPSCHITZ FUNCTIONS

Abstract

We provide a simplification of Zahorski’s argument showing that for
every Lebesgue null Gδσ subset G of the line there is a Lipschitz function
that is non-differentiable precisely at the points of G.

1 Introduction.

In [4], Zahorski characterized non-differentiability sets of various classes of
functions. The main step in the proof of Zahorski’s [4] characterization of
non-differentiability sets of continuous functions was the construction, for any
given Gδ set G ⊂ R of measure zero, of a Lipschitz function g : R→ R that is
differentiable at every point outside G and non-differentiable, with particular
estimates of non-differentiability, at every point of G. In this note we show
that a slightly stronger variant of this statement follows relatively easily from
an in-between theorem proved in [2]:

Theorem 1. Given any Gδ set G ⊂ R of measure zero, there exists a Lip-
schitz function g : R → R with Lipschitz constant 1, which is differentiable
everywhere outside G and for any x ∈ G,

lim sup
y→x

g(y)− g(x)
y − x

= 1 and lim inf
y→x

g(y)− g(x)
y − x

= −1.
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By a simple argument, which we will reproduce below, Zahorski deduced
a characterization of non-differentiability sets of Lipschitz functions. Notice
that it is rather easy to see that these sets are Gδσ and Lebesgue’s Theorem
implies that they are of measure zero.

Theorem 2. Given any Gδσ set G ⊂ R of measure zero, there exists a Lip-
schitz function g : R → R which is differentiable everywhere on R \ G and
non-differentiable everywhere on G.

In the main result of [4], Zahorski proved that a necessary and sufficient
condition for a set M to be the set of non-differentiability of a continuous real-
valued function is that M = M1∪M2, where M1 is an arbitrary Gδ set and M2

is a Gδσ set of measure zero. The main point of the proof is, after observing
that M1,M2 may be taken disjoint, to add the function from Theorem 2 to a
continuous function whose non-differentiability set coincides with M1. Since
we do not contribute anything to this part of Zahorski’s argument, we will not
reproduce it here. Let us just remark that for any given Gδ set G, Zahorski’s
construction of a continuous function whose non-differentiability set coincides
with G is not simple.

A geometric approach to the proof of the above described results of Za-
horski was given by Piranian in [3]. Our approach is quite different: instead of
relying on geometric intuition, we replace Zahorski’s construction by a topolog-
ical argument. An advantage of this is the improvement of Theorem 1, where
we reached the maximal strength of non-differentiability. Let us also notice
that full verification of Piranian’s geometric arguments is far from simple, and
so the last part of Zahorski’s proof is still waiting for a simple argument.

For the convenience of the reader who would like to consult Zahorski’s
original paper, we should also remark that although he proved Theorem 2, he
never stated it. Instead, he stated an analogous result for monotone functions.
Of course, since a Lipschitz function becomes monotone after adding a linear
function, the monotone functions case follows immediately from Theorem 1.

2 Preliminaries.

The letter R denotes the set of all real numbers, λ the Lebesgue measure on
R. A point z ∈ R is called a point of density of a measurable set M ⊂ R if

lim
h→0+

1
2h
λ (M ∩ (z − h, z + h)) = 1.

A measurable set M ⊂ R is said to be d-open if every point of M is a point of
density of M . If a set A is a subset of the set of density points of M , we write
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A ⊂·M . It is known that the family of d-open sets is a topology on R; this is
called the density topology.

Functions f : R → R which are continuous with the density topology on
the domain and the ordinary (Euclidean) topology on the range are called ap-
proximately continuous. Equivalently, f : R→ R is approximately continuous
at z ∈ R if there is a measurable set M ⊂ R such that z is a point of density
of M and for every x ∈M ,

lim
x→z

f (x) = f (z) .

In this note, any topological notions will be prefixed d- when we refer to the
density topology; there is no prefix when we refer to the Euclidean topology.
The density interior of a set A will be denoted Åd and the density closure A

d
.

A set in a metric space is called Gδ if it can be written as a countable
intersection of open sets and Fσ if it can be written as a countable union of
closed sets. A countable union of Gδ sets is called a Gδσ set. A function
f : X → R defined on a metric space X is called Gδ-measurable if for each
a ∈ R, the sets {x ∈ X | f(x) ≤ a} and {x ∈ X | f(x) ≥ a} are Gδ sets in X.

The following results are vital in our construction:

Theorem 3. [1] Let f : R → R be bounded and measurable and fix a ∈ R.
Define

g (x) =
∫ x

a

f (t) dt.

Then for any point x0 ∈ R at which f is approximately continuous, g is
differentiable at x0 and g′ (x0) = f (x0).

Theorem 4. [2] Let E ⊂ R be a measurable set, F ⊂ E be closed. Then for
every c > 0 there is a closed set H such that F ⊂ H ⊂ E and

λ ((x− h, x+ h) ∩ (E \H)) ≤ ch2

whenever x ∈ F and h > 0.

Theorem 5 (In-Between Theorem). [2] Let F ⊂ R and let t, s : F → R
be bounded functions such that t (x) ≤ s (x) for all x ∈ F , t is supposed to
be d-upper semicontinuous and s d-lower semicontinuous. If there is a Gδ-
measurable function r : F → R such that t (x) ≤ r (x) ≤ s (x) for all x ∈ F ,
then there is an approximately continuous function f : F → R such that
t (x) ≤ f (x) ≤ s (x) for all x ∈ F .

We now proceed with the construction of the function g described in The-
orem 2. In the following section we prove Theorem 1. In the final section, we
follow Zahorski’s argument to deduce from it Theorem 2.
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3 A Lipschitz Function Differentiable Everywhere Ex-
cept a Gδ Set of Measure Zero.

Let G ⊂ R be a Gδ set of measure zero. Then F = R \G is an Fσ set which
has full measure in R.

Our plan of action is to choose suitable functions r, s and t to be able
to apply Theorem 5. Then using Theorem 3, we can integrate the resulting
approximately continuous function to obtain a function which is differentiable
on F . We will ensure, however that this function is still badly behaved enough
to be non-differentiable on G, even in the strong sense required in Theorem 1.

Proposition 6. [2] We can write F =
⋃∞
k=0 Fk where Fk are closed sets such

that for each x ∈ Fk, k ≥ 0 and any h > 0,

λ [(x, x+ h) \ Fk+1] ≤ λ [(x− h, x+ h) \ Fk+1] ≤ h2.

In particular, Fk ⊂· Fk+1 and F =
⋃∞
k=0 F̊

d
k .

Proof. F is an Fσ set, so F =
⋃∞
n=0 F̃n, where F̃n is closed for each n.

We set F0 = F̃0 and define Fk inductively as follows: By hypothesis, F is
measurable, Fk is closed and Fk ⊂ F , so the conditions for Theorem 4 are
satisfied. Therefore, there exists a closed set Hk such that Fk ⊂ Hk ⊂ F for
each k ≥ 0; for each x ∈ F and any h > 0,

λ [(x− h, x+ h) ∩ (F \Hk)] ≤ h2.

Therefore, λ [(x− h, x+ h) \Hk] ≤ h2, since F has full measure in R. Set

Fk+1 = F̃k ∪Hk.

Then Fk ⊂· Hk ⊂ Fk+1, so that Fk ⊂· Fk+1 for each k ≥ 0 and sinceHk ⊂ Fk+1,
we have

λ [(x− h, x+ h) \ Fk+1] ≤ λ [(x− h, x+ h) \Hk] ≤ h2

as required.

Define the following sets:

A0 = F̊ d1 , Ak = (F̊ d4k+1 \ F4k−2) (k ≥ 1), A =
⋃∞
k=0Ak

Bk = (F̊ d4k+3 \ F4k) (k ≥ 1), B =
⋃∞
k=1Bk

R−k = (F4k−2 \ F4k−4) (k ≥ 1), R− =
⋃∞
k=1R

−
k

R+
k = (F4k \ F4k−2) (k ≥ 1), R+ = F0 ∪

(⋃∞
k=1R

+
k

)
.
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Observe that A and B are d-open sets. It is also clear that R− ∪R+ = F
and R− ∩ R+ = ∅. Then since Fn is closed for every n, R+ and R− are Fσ
sets. Therefore R− = F \ R+ and R+ = F \ R− are Gδ sets in F . We use
these sets to define functions s, t and r from F to R as follows:

s (x) =
{

1 if x ∈ A
−1 if x ∈ F \A

t (x) =
{
−1 if x ∈ B

1 if x ∈ F \B

r (x) =
{
−1 if x ∈ R−

1 if x ∈ R+.

By careful consideration of the various subsets of A,B,R− and R+, it is fairly
straightforward to prove that t(x) ≤ r(x) ≤ s(x) for every x ∈ F . We call
t(x) the lower function and s(x) the upper function. We will prove that s is
d-upper semicontinuous, t is d-lower semicontinuous and r is Gδ-measurable.
Recalling that Fk ⊂ Fk+1 for each k, the diagram below gives an idealized
view of what the sets and functions we have defined above may look like:

Figure 1: Diagram of the sets and functions defined above
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Consider the sets

Ec(s) = {x ∈ F |s (x) > c} , Ec(t) = {x ∈ F |t (x) < c} .

There are three distinct cases for each set:

Ec(s) :

 c ≥ 1⇒ Ec(s) = ∅
−1 ≤ c < 1⇒ Ec(s) = A
c < −1⇒ Ec(s) = F

Ec(t) :

 c ≥ 1⇒ Ec(t) = F
−1 ≤ c < 1⇒ Ec(t) = B
c < −1⇒ Ec(t) = ∅

.

In every case, Ec(s) and Ec(t) are d-open, so s is d-lower semicontinuous on
F and t is d-upper semicontinuous on F . Consider now the sets

Ẽc(r) = {x ∈ F |r (x) ≥ c} , Ẽc(r) = {x ∈ F |r (x) ≤ c} .

Again, there are three distinct cases for each set:

Ẽc(r) :


c ≥ 1⇒ Ẽc(r) = ∅
−1 ≤ c < 1⇒ Ẽc(r) = R+

c < −1⇒ Ẽc(r) = F

Ẽc(r) :


c ≥ 1⇒ Ẽc(r) = F

−1 ≤ c < 1⇒ Ẽc(r) = R−

c < −1⇒ Ẽc(r) = ∅
.

In every case, Ẽc(r) and Ẽc(r) are Gδ subsets of F , so r is Gδ measurable on
F .

Applying Theorem 5 using the functions t, r and s as defined, we obtain an
approximately continuous function f : F → R such that t (x) ≤ f (x) ≤ s (x)
for all x ∈ F . So f is defined almost everywhere on R and the way we defined
s and t forces f to take value −1 on (F \A) and 1 on (F \B). We now fix
a ∈ R and define a function g : R→ R by

g (x) =
∫ x

a

f (t) dt.

f is bounded and measurable, so since f is approximately continuous on F , it
follows from Theorem 3 that g is differentiable and g′ = f on F . We also have

|g (y)− g (x)| =
∣∣∣∣∫ y

a

f(t) dt−
∫ x

a

f(t) dt
∣∣∣∣ =

∣∣∣∣∫ y

x

f(t) dt
∣∣∣∣

≤
∫ y

x

|f(t)| dt ≤
∫ y

x

dt = |y − x|
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so g is Lipschitz with constant 1.

Proposition 7. For any x ∈ G,

lim sup
y→x+

g(y)− g(x)
y − x

= 1, lim inf
y→x+

g(y)− g(x)
y − x

= −1.

Proof. Recall that

F = (R \G) =
∞⋃
n=0

Fn,

where Fn is closed for each n. For x ∈ G, we know that x /∈ Fk for any k and
moreover, since G has measure zero, we know that F is dense in R.

Therefore, for each sufficiently large k we can choose hk to be the minimal
positive real number which satisfies

x+ hk ∈ Fk and (x, x+ hk) ∩ Fk = ∅,

and by Proposition 6,

λ [(x, x+ hk) \ Fk+1] ≤ λ [(x− hk, x+ hk) \ Fk+1] ≤ h2
k.

We also have that g(x) = f ′(x) = 1 for x ∈ (F \B). Thus, if we take values
of k of the form k = 4t−1 for sufficiently large t, then

(
Fk+1 \ F̊k

)
⊂ (F \B)

and

g (x+ hk)− g (x) =
∫
Fk+1∩(x,x+hk)

f(y) dy +
∫

(x,x+hk)\Fk+1

f(y) dy

≥ λ [Fk+1 ∩ (x, x+ hk)]− λ [(x, x+ hk) \ Fk+1]

≥ hk − 2λ [(x, x+ hk) \ Fk+1] ≥ hk − 2h2
k.

Therefore,
g (x+ hk)− g (x)

hk
≥ 1− 2hk → 1 as hk → 0+,

so

lim sup
y→x+

g (y)− g(x)
y − x

= lim sup
h→0+

g (x+ h)− g(x)
h

= 1,

as required.
The argument for the limit inferior is similar. We choose hk as before, and

note that g(x) = f ′(x) = −1 for x ∈ (F \A). So if we take values of k of the
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form k = 4t+ 1 for sufficiently large t,
(
Fk+1 \ F̊k

)
⊂ (F \A) and in a similar

way to the previous case,

g (x+ hk)− g (x) ≤ −hk + 2h2
k.

Therefore,

g (x+ hk)− g (x)
hk

≤ −1 + 2hk → −1 as hk → 0+,

so

lim inf
y→x+

g (y)− g(x)
y − x

= lim inf
h→0+

g (x+ h)− g(x)
h

= −1,

as required.

In fact, adding an argument symmetric to the one used above, we can even
achieve that for every x ∈ G,

lim sup
y→x+

g(y)− g(x)
y − x

= lim sup
y→x−

g(y)− g(x)
y − x

= 1

and

lim inf
y→x+

g(y)− g(x)
y − x

= lim inf
y→x−

g(y)− g(x)
y − x

= −1.

The function g is therefore Lipschitz on R, differentiable everywhere except
the Gδ set G and its limit superior and inferior satisfy the requirements of
Theorem 1.

4 A Lipschitz Function Differentiable Everywhere Ex-
cept a Gδσ Set of Measure Zero.

Here we will follow Zahorski’s deduction of Theorem 2 from Theorem 1. The
only difference between what follows and what Zahorski, as well as Piranian
did, is that thanks to the slightly improved statement of Theorem 1, we can
choose a more natural geometric sequence to control the Lipschitz constant of
functions whose sum will be g.

Let G now be a Gδσ set of measure zero. Then

G =
∞⋃
n=1

G
(n)
δ
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where
{
G

(n)
δ

}∞
n=1

is a sequence of Gδ sets in R. Since the union has measure
zero, each Gδ set in the sequence must also have measure zero. Consider the
sequence of Fσ sets

{
F

(n)
σ

}∞
n=1

given by F (k)
σ = R\G(k)

δ for each k ∈ N. Using
the results of the previous section, for each k ∈ N, we can find a function
gk : R → R which is differentiable on F

(k)
σ , non-differentiable on G

(k)
δ and

satisfies

lim sup
y→x

g(y)− g(x)
y − x

= 1 and lim inf
y→x

g(y)− g(x)
y − x

= −1

for every x ∈ G(k)
δ . We define

g (x) =
∞∑
n=1

gn(x)
3n

.

It is easy to show (mimicking the argument following Proposition 7 above)
that for each n ∈ N, the function ĝn := gn3−n is Lipschitz with constant
Mn = 3−n. We use this fact to prove that g is Lipschitz on the whole of R.
The proof is given in Zahorski [4] but we repeat it here for completeness.

Proposition 8. g : R→ R is bounded and Lipschitz.

Proof. Set Sm(x) :=
∑m
n=1 ĝn(x). Then Sm is a sequence of partial sums;

Sm →∞ as m→∞. For each m ∈ N, Sm is Lipschitz, with

|Sm(y)− Sm(x)| ≤ 1
2
|x− y| ,

since
∞∑
n=1

1
3n

=
1
2
.

Now choose k > 0. Since Sm(x) converges to g(x) as m → ∞, there exists
M ∈ N such that

|g(y)− SM (y)| < |y − x|
k

and |g(x)− SM (x)| < |y − x|
k

.

Therefore,

|g(y)− g(x)| ≤ |g(y)− SM (y)|+ |SM (y)− SM (x)|+ |SM (y)− g(x)|

<
2 |y − x|

k
+

1
2
|y − x| .
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Taking the limit as k →∞, we obtain

|g(y)− g(x)| ≤ 1
2
|y − x|

as required.

Finally, we establish the differentiability properties of our function g.

Proposition 9. If x /∈ G, then g is differentiable at x.

Proof. The sum of the Lipschitz constants for the functions ĝn is given by

∞∑
n=1

1
3n

=
1
2
.

Therefore, for any ε > 0, we can find N such that

∞∑
n=N+1

3−n < ε.

By the Lipschitz property of ĝn(x), we also have that for x /∈ G, ĝ′n(x) exists
and |ĝ′n(x)| ≤ 3−n. Therefore,∣∣∣∣∣g(x+ h)− g(x)

h
−
∞∑
n=1

ĝ′n(x)

∣∣∣∣∣ =

∣∣∣∣∣
N∑
n=1

(
g(x+ h)− g(x)

h
− ĝ′n(x)

)

+
∞∑

n=N+1

g(x+ h)− g(x)
h

−
∞∑

n=N+1

ĝ′n(x)

∣∣∣∣∣
<

∣∣∣∣∣
N∑
n=1

(
g(x+ h)− g(x)

h
− ĝ′n(x)

)∣∣∣∣∣+ 2ε.

Taking the limit as h→ 0, we get

lim sup
h→0

∣∣∣∣∣g(x+ h)− g(x)
h

−
∞∑
n=1

ĝ′n(x)

∣∣∣∣∣ ≤ 2ε.

Since this inequality holds for every ε > 0, the limit

lim
h→0

∣∣∣∣∣g(x+ h)− g(x)
h

−
∞∑
n=1

ĝ′n(x)

∣∣∣∣∣
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exists and is equal to zero. Therefore,

lim
h→0

g(x+ h)− g(x)
h

=
∞∑
n=1

ĝ′n(x) =
∞∑
n=1

g′n(x)
3n

=: g′(x)

where

|g′(x)| =

∣∣∣∣∣
∞∑
n=1

gn(x)
3n

∣∣∣∣∣ ≤
∞∑
n=1

1
3n

=
1
2
.

Proposition 10. If x ∈ G, then g is not differentiable at x.

Proof. Let x ∈ G and suppose that G(p)
δ is the first Gδ set for which x ∈ G(p)

δ .
Then x /∈ G(1)

δ , · · · , G(p−1)
δ and x ∈ G(p)

δ . Taking this into account, we have

g (x) =
∞∑
n=1

gn(x)
3n

=
p−1∑
n=1

gn(x)
3n

+
gp (x)

3p
+

∞∑
n=p+1

gn(x)
3n

.

If we now define

ϕ (x) =
p−1∑
n=1

gn(x)
3n

,

then by the proof of the preceding proposition, x /∈
⋃p−1
n=1G

(n)
δ implies that ϕ

is differentiable at x.
By Proposition 7, x ∈ G(p)

δ implies that

lim sup
y→x

gp(y)− gp(x)
y − x

= 1

and

lim inf
y→x

gp(y)− gp(x)
y − x

= −1.

Finally, we have
∞∑

n=p+1

1
3n

(gn(y)− gn(x))
y − x

≤
∞∑

n=p+1

1
3n

=
3−p

2
.

Therefore,

lim sup
y→x

g(y)− g(x)
y − x

≥ ϕ′(x) + 3−p − 3−p

2
= ϕ′(x) +

3−p

2
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and

lim inf
y→x

g(y)− g(x)
y − x

≤ ϕ′(x)− 3−p +
3−p

2
= ϕ′(x)− 3−p

2

for some p ∈ N.
Hence g is not differentiable at x ∈ G.
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