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ON THE EXISTENCE OF VECTOR
MEASURES WITH GIVEN MARGINALS

Abstract

A type of Strassen’s Theorem for measures taking values in the pos-
itive cone of a Banach lattice is proved. We generalize a result of A.
Hirshberg and R. M. Shortt and formulate a type of Strassen’s Theorem
in a topological context via closed sets.

1 Introduction

In joint work, M. Mérz and R. M. Shortt [10, Theorem 3.7] generalize a version
of the theorem known in probability theory as “Strassen’s Theorem” (see [13],
[6], [5, §11.6]) to the context of measures assuming values in a reflexive Banach
lattice.

Continuing the line of inquiry of [12], in [8, Theorem 2] A. Hirshberg and
R. M. Shortt prove a result of this type for measures taking values in Banach
lattices of a certain type: the KB-spaces. Since reflexive = KB = order
complete, their result is a generalization of [10, Theorem 3.7].

In this paper we give a formulation of Strassen’s Theorem for measures
taking values in Banach lattices with order continuous norm [Theorem 3.10].
These spaces occupy a position between the KB-spaces and the order complete
Banach lattices (reflexive = KB = order continuous norm = order complete),
hence our result is a generalization of [8, Theorem 2.

We also formulate a type of Strassen’s Theorem in a topological context
via closed sets [Theorem 3.15].
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2 Preliminaries

Let F be a field of subsets of a set X. Let B be a Banach space and B* its
dual.

We remind that a vector measure p : F — B is an additive set function,
ie, w(Fy U Fy) = p(Fy) + p(Fz), for disjoint F; and Fy in F. We denote by
ca(F,B) the vector space of all countably additive vector measures p : F — B
and by ||u|| the semivariation of p [4].

A class IC of subsets of a set X is compact if it has the following property:
given a sequence (K, )nen drawn from K such that K; N...N K,, # 0 for each
n € N, the intersection NS2 , K, is non-empty. Let F be a field of subsets of
X and let p : F — B be a vector measure taking values in a Banach space
B. We say that p is a compact measure if there exists a compact class I of
subsets of X such that, for every F' € F and € > 0, there are sets F' € F and
K € K with F' C K C F and ||u||(F — F') < e. In this case we say that the
class IC p-approximates F.

Now suppose that F is a o-field. We say that a vector measure u : F — B
is perfect if the restriction of u to every countably generated sub-o-field of F
is compact.

Given a Hausdorff topological space X and its Borel o-field B(X), a vector
measure p : B(X) — B is tight if, for each € > 0 and set B € B(X), there
is some compact set K C B such that ||u||(B — K) < e. Clearly, every tight
measure on the Borel o-field of a metric space is compact.

A Banach lattice B is a KB-space if every increasing norm bounded se-
quence of its positive cone B is norm convergent [1, Definition 14.10].

A normed vector lattice B is said to have order continuous norm [11,
Definition 5.12] if every order convergent filter in B norm converges. For
information on these spaces, see ([1], [11]). In these sources are to be found
the following results.

1. A countably order complete Banach lattice B has order continuous norm
iff no Banach sublattice of B is vector lattice isomorphic to I*° [11,
Theorem 5.14].

2. Every KB-space has order continuous norm [11, page 92]. The converse is
not true: the vector lattice ¢y of real null sequences under the supremum
norm is an important example of a Banach lattice with order continuous
norm, but it is not KB.

3. Every Banach lattice having order continuous norm is order complete
[11, page 92]. The converse is not true: {* is order complete, but it has
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not order continuous norm.

3 Strassen’s Theorem
Without further notice, in this section, for two sets X; and Xo,
1. P(X;1 x X>) is the power set of X7 x Xo,
2. for every F € P(X; x X5), xF is the indicator function of F,

3. m : X7 X Xo — X7 and m : X7 X X9 — X5 are the projections of the
product space X1 x Xo,

4. if X; and X5 are Hausdorff topological spaces, by B(X1), B(X2) and
B(X1 x X5) we denote the Borel o-fields of X1, X5 and X; x X, respec-
tively.

Definition 3.1. Let X; and X be Hausdorff topological spaces and let p
and po be tight elements of ca(B(X1),BT) and of ca(B(X2),B*), respec-
tively, such that p;(X;) = pe2(Xz2) =, where BT is the positive cone of
an order complete Banach lattice B. Let M = {u € ca(B(X; x X3),BT) :
w is tight and powyt = py and pomy ' = po} (ie. M = {u € ca(B(X; x
X3),BY) @ is tight and has marginals gy and po}). For every F € P(Xy x
Xo) we define

0 if M =10
S(F) = { VA{uw*(F):pn€ M} otherwise,

where 0 is the zero element of B and p*(F) is the outer measure of F,

and

2
I(F) = N{D _ni(Bi): Bi € B(X;) and F C U7_,; " (B;)}.

For the properties of I and S see [3] and [9].
Theorem 3.2. Let C € B(X1 x X3) be a closed set. Then

2
1(C) = N{D_ ni(Ci) : C; closed set in B(X;) and C C Ui_ym; " (Ci)}.

=1
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PROOF. The proof consists of four steps.
1. First we shall prove that, for every F € B(X; x X3),

() 1) = N [ Fuduss £ £06) and xr <3 from),

where £(X;) is the family of all u;-integrable Borel measurable functions
defined on X7, with values in [0, 1], and £(X3) is the family of all ps-integrable
Borel measurable functions defined on Xz, with values in [0, 1].

Notice that if B; € B(X;) with F C U?_,m;71(B;) then yp < Zle XB, OTi,
where xp, is the indicator function of B;.

Let f; and fo be any two elements of £(X;) and of £(X3), respectively,
satisfying yp < 25:1 fi om;. Then this inequality leads to the relation

FC({yeXi: fily) > sixX)U(X1x{z € Xa: fa(z) > 1-s}) for 0 <s < 1.

Let z* be a nonnegative element of B*. Then, since * o p; and z* o uy are
real-valued measures, as in Proposition 3.3 of [9],

2 1
> / fid(a o i) = /O (@* o) ({y € X1 : fi(y) > s})dst

/O (2" 0 ) ({z € Xo : fa(2) > 1 - s})ds

z b 2 (m({y € Xi: fily) 2 s}) +pa({z € Xz 1 fo(2) 21— s})).

Therefore, for every nonnegative element z* of B*,

() / fidn) = / fid(z* o 1)
> inf o (u({y € Xo: fi(y) > 8}) + pa({z € Xa: falz) > 1 })

T 0<s<1

>2*( N\ (m({y € X1: fily) = s}) + p2({z € Xa: fa(z) = 1—s})).
0<s<1

Hence, for every f; € L(X;) such that xr < Zle fiom,

2
S [fduiz N Gally e Xis fily) 2 o)) +nal(z € Xas foz) = 1-5)))
=1

0<s<1
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Taking into account that
2 2
I(F) = /\{Z/XB,:dM : B; € B(X;) and xp < ZXBi omi},
i=1 i=1
since for every f; € L(X;), for every ¢t € [0,1], the set {z € X, : fi(z) >t} is
a Borel subset of X, it follows that

2 2
I(F) > /\{Z/fid,ui c fi € L(X;) and xF < Zfi om;}
=1 i=1

> AL A mfze Xy fie) > s}) +pa({z € Xa: fo2) 21— s})) -

0<s<1
2
fi € L(X;) and xp <Y fiom}
i=1
> I(F).

So (*) holds.
2. In this step we prove that, for every closed set C' € B(X; x X3),

2 2
(k) /\{Z/fzd,uz : fi € L(X;) and x¢o < Zfl om;}
i=1 i=1

2 2
Z/\{Z/hidui thi e U(X;) and xo < Zhi o},
i=1

i=1

where U(X;) is the family of all upper semicontinuous elements of £(X;).
Let z* be a nonnegative element of B*. By Proposition 1.31 of [9], for the real
valued tight measures * o p; and a* o ug, the following equality holds

2 2
inf{Z/fid(:c* o) fi € L(X;) and x¢o < ZfZ om;}
i=1 i=1

2

2
:inf{Z/hid(a@* o) h; €U(X;) and xo < Zhi om;}.
i=1

=1
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Hence, for every nonnegative element x* of B* and for every f; € L(X;)
such that Yo < Z?Zl fi om;,

2 2
" ( fidpi) = id(x™ o
> [ fiduo > [ fudta o)
2 2
> inf{Z/hid(a:* opi) : hi € U(X;) and xo < D hjom}
i=1 1=1

2 2
= inf{z* (> / hidp;) : hi € U(X;) and xo <Y hiom}
=1

i=1
2 2
> x*(/\{Z/hidM chy eU(X;) and xeo < Zhi om;}).
i=1

i=1

Therefore, for every f; € £(X;) such that yo < 2?21 fiom,

2 2 2
Z/fidﬂi > /\{Z/hzdﬂz thy € U(X;) and xo < th o}
i=1 i=1

=1

So we obtain that
2 2
N [ fidus £ € £0X) and xe <Y fiom)
i=1 i=1

G 2
> /\{Z/hidui ch; € U(X;) and xo < Zhi om}
=1

i=1

2 2
> /\{Z;/fidui e LX) and xo €3 from).

i=1
3. Now we show that, for every closed set C' € B(X; x X3),

2
(3 % %) /\{Z 1i(C;) = Cy closed set in B(X;) and C C UL, m; 1 (Cy)}
i=1

2

2
:/\{Z/hzdﬂz 1 h; € U(Xz) and xo < Zhl O7T7,'}-
=1

i=1
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We only have to notice that, for every h; € U(X;), for every t € [0,1], the set
{z € X;: h;(x) >t} is a closed subset of X;, and to argue as in step 1.
4. Conclusion. By the previous steps,

1€) = NOX_ [ fuduss i € £06) and xo < 3 from)

i=1
2 2

= /\{Z/hidﬂ:i thy € U(X;) and xo < Zhl om;}
=1 i=1

2
= /\{Z wi(C;) : Gy closed set in B(X;) and C C UZ_,m;~*(Cy)}.
i=1

So the theorem is proved. O
Proposition 3.3. For each F € P(X; x X2), S(F) < I(F).

PRrROOF. For any F € P(X; x X3), 0 < I(F), therefore the case M = 0 is
obvious. Otherwise it is enough to notice that, for every u with marginals
and p and for every (By, Ba) € B(X1) x B(Xs) with F C UZ_ 7, 1(By),

Pt (F) < p(Uioym ™ H(By)) = w(Uimymi ' (By))
2 2
< ZM(Wi_l(Bi)) = ZM(BJ

O

Definition 3.4. [4, Definition 14, page 7] Let F be a field of subsets of a set
X and let p : F — B be a vector measure with values in a Banach space B.
The vector measure i is said to be strongly additive whenever given a sequence
(Fn)nen of pairwise disjoint members of F, the series Y ., u(F,) converges
in norm.

Theorem 3.5. Let F be a field of subsets of a set X. Then every vector
measure pu : F — BT taking values in the positive cone of a Banach lattice
with order continuous norm is strongly additive.

Proor. If (F,)nen is a sequence of pairwise disjoint sets in JF, then the
sequence of partial sums s, = Y ., u(F}) is increasing and it is bounded above
by 1(X), hence it is directed (<) and majorized. Thus, by [11, Theorem 5.10],
the infinite series Y- | u(F,) converges weakly. Therefore, by [11, Corollary,
page 89], it norm converges. O
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Definition 3.6. Let A and B be fields of subsets of a set X1 and a set Xo,
respectively. Henceforward by A x B we denote the field on X1 x X5 generated
by all rectangles Ax B for A€ A and B € B. By A® B we denote the o-field
on X1 x Xs generated by A x B.

Given a non-empty set X and a subset F' of X by F¢ we denote the
complement X — F of F.

Theorem 3.7. Let A and B be fields of subsets of a set X1 and a set Xo,
respectively, and let uy : A — BT and ps : B — BT be vector measures taking
values in the positive cone of an order complete Banach lattice B. We assume
that p1(X1) = pa(X2) = «, for some o € BT. Let F be an arbitrary set in
A x B and let C be the field on X1 x Xao generated by F' and the sets in A x B.
For an element v € B, with 0 < v < «, we consider the following conditions:

(i) There is a vector measure p: C — BT such that p(Ax Xs) = u1(A) and
(X1 x B) = pa(B) for all A€ A and B € B (i.e. p has marginals pq
and ua) and such that w(F) = v.

(i1) Whenever AxB C F for A€ A and B € B, then u1(A)+u2(B) < a+v.

(iii) Whenever A x B C F° for A € A and B € B, then p1(A) + ua(B) <
20 —v.

Then (i) is equivalent to the conjunction of (ii) and (iii).
ProOF. This follows from Theorem 2.1 in [7]. O

Theorem 3.8. Let A and B be o-fields of subsets of a set X1 and a set Xs,
respectively, and let pn : A x B :— BT be a vector measure, where Bt is the
positive cone of a Banach lattice B. Define p; : A — BY and po : B — BT
by the rule p1(A) = p(A x Xa) and pe(B) = u(X1 x B).

If w1 is compact and po is countably additive, then p is countably additive
on A x B.

PRrROOF. This result is proved in the first part of the proof of Theorem 3.1 of
[12]. O

Theorem 3.9. Let A and B be o-fields of subsets of a set X1 and a set X,
respectively, and let py € ca(A,BY) and py € ca(B,BT), with py(X1) =
p2(X2) = «, where B is the positive cone of a Banach lattice B with order
continuous norm. Suppose that 1 is compact and that F € ARQB is a countable
intersection of sets in A x B. For any v € BT, with v < «, the following are
equivalent:
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(i) There is a vector measure u € ca(A® B,BT) with pom ! = and
pomy = po such that u(F) > v.

(i1) For all A € A and B € B, we have u1(A) + p2(B) < 2a — v, whenever
Ax B C Fe.

PROOF. (i) = (i) Since

AXBCF°=F C(A°x X3)U(X; x BY)
= (AXXQ)QFQ(AXXQ)Q((ACXXQ)U(Xl XBC))
= (AxXy)NF CAx B¢

we calculate

(X1 X BY) 4 p((X1 x X2) = F) = pa(B°) + (X1 x X2) — p(F)
200 — pg(B) — v.

(#4) = (i) As in the proof of Theorem 2 in [8], define I = A{2a — pu1(A) —
pa(B): Ax BC F}and ¥ = \/{p(A) + p2(B) —a: Ax BC F}. Itis
straightforward that ¥ < I: suppose that A x B C F and Ag x By C F°.
Note that either AN Ay = 0 or BN By = §. Therefore, p1(A4) + p2(B) +
p1(Ao) + p2(Bo) < 3a, and hence p1(A) + p2(B) — a < 20— p1 (Ao) — p2(Bo),
as desired.

Let vg = vV X. Since, by (ii), whenever A x B C F°, we have v <
200 — p1(A) — pa(B), it is clear that ¥ < vy < I. Hence, (i) and (iii) of
Theorem 3.7 hold with vy in place of v. Let C be the field generated by A x B
and the set F'. By Theorem 3.7, there exists a vector measure po : C — BT
with marginals 1 and ps and such that pug(F) = vg. By Theorem 3.8 pyg is
countably additive on A x B, because it has countably additive marginals, one
of which is compact. Using Theorem 3.5 and Kluvanek’s Theorem [4, page
27], we find a countably additive vector measure p : A ® B — BT such that
w = o on A x B. Choose a decreasing sequence of sets (£, )nen in A X B
such that N,en F,, = F. Then

p(F) = lim p(Fy) = lim o (Fa) > po(F) = vo 2 v,

establishing the theorem. O
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Theorem 3.10. Let A and B be o-fields of subsets of a set X7 and a set X,
respectively, and let py € ca(A,BY) and py € ca(B,BT), with pui(X1) =
p2(X2) = «, where BV is the positive cone of a Banach lattice B with order
continuous norm. Suppose that 1 is perfect and that F € AQB is a countable
intersection of sets in A x B. For any v € BT, with v < «, the following are
equivalent:

(i) There is a vector measure p € ca(A® B,BY) with pom ! = uy and
pomyt = po such that u(F) > v.

(ii) For all A € A and B € B, we have pi(A) + p2(B) < 2a — v, whenever
Ax B C Fe.

PROOF. The proof is the same as the one of Theorem 3.9. The only difference
is the fact that instead of applying Theorem 3.8 we apply Theorem 3.1 of
[12]. O

Proposition 3.11. [2, Proposition 8.1.5] Let X;...X,, ... be a (finite or in-
finite) sequence of separable metrizable spaces. Then B(II; X;) = ®;B(X;).

Theorem 3.12. Let X; and X5 be Polish spaces and let 11 and ps be elements
of ca(B(X1),B1) and of ca(B(X2),B™), respectively, with 1 (X1) = p2(X2) =
o, where BT is the positive cone of a Banach lattice B with order continuous
norm. Let F € B(X; x X3) be a countable intersection of sets in B(X1) X
B(X3). For any v € B*, v < a, the following are equivalent:

(1) There is a vector measure pi in ca(B(X1 x Xo),B%) with pom ™! = uy

and p o wo ! = gy such that u(F) > v.
(2) I(F) > v.

PROOF. It is enough to observe that u; and po are tight [10, Theorem 3.2]
and that hypothesis (2) is equivalent to (i) of Theorem 3.9. O

Corollary 3.13. Let X1 and Xo be Polish spaces and let uqy and po be elements
of ca(B(X1),B") and of ca(B(Xs3),B™), respectively, with pq(X1) = p2(Xz2) =
a, where BT is the positive cone of a Banach lattice B with order continuous
norm. Then there exists pu in ca(B(X1 x X2),BT) with pom = = puy and
pom ™l = o (ie., under these hypotheses, the set M of Definition 3.1 is
non-empty).

PROOF. We only have to notice that I(X; X X5) = « and to apply Theorem
3.12 with X; x X5 in place of F' and with v = a. O
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Theorem 3.14. Duality Theorem. Let X1 and X5 be Polish spaces and let
p € ca(B(X1),BY) and p2 € ca(B(X2),BT), with p1(X1) = p2(X2) = a,
where BT is the positive cone of a Banach lattice B with order continuous
norm. Let F € B(X; X Xa) be a countable intersection of sets in B(X7) x
B(X3). Then

PROOF. Let v = I(F). By Theorem 3.12, there exists p in ca(B(X; x X3), BT)

with pom ™! = uy, pom™ = pp and u(F) > v. Thus, S(F) > I(F). This

inequality and Proposition 3.3 lead to the desired equality. O
The next result extends Proposition 3.8 of [9] to the vector case.

Theorem 3.15. Let X7 and X5 be Polish spaces and let u1 and pso be elements
of ca(B(X1),B") and of ca(B(Xs3),B™), respectively, with pq(X1) = p2(Xz) =
a, where BT is the positive cone of a Banach lattice B with order continuous
norm. Let C be a closed subset of X1 x Xo. Then, for any v € BT, v < a,
there exists a vector measure p € ca(B(X1 % Xa), BT) such that pom;~t = uy
and p o mo ! = pg, with u(C) > v if and only if

2
> wi(Ci) = v, for all C; closed sets in B(X;) with C C UL m ' (Cy).
1=1

PROOF. Since C' = Njey(A41,; X Az )¢, with A; ; open subset of X;, J finite
or countable, ¢ = 1,2, this follows at once from Theorem 3.2 and Theorem
3.12. O
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