
Real Analysis Exchange
Vol. (), , pp. 317–328

F. Azarpanah∗, Department of Mathematics, Chamran University, Ahvaz,
Iran. e-mail: azarpan@www.dci.co.ir

ALGEBRAIC PROPERTIES OF SOME
COMPACT SPACES

Abstract

Almost discrete spaces and in particular, the one-point compactifi-
cations of discrete spaces are algebraically characterized. This algebraic
characterization is then used to show that whenever C(X) ≈ C(Y ) and
X is the one-point compactification of a discrete space, then Y is too.
Some equivalent algebraic properties of almost locally compact spaces
and nowhere compact spaces are studied. Using these properties we
show that every completely regular space can be decomposed into two
disjoint subspaces, where one is an open almost locally compact space
and the other is a nowhere compact space. Finally, we will show that X
is Lindelöf if and only if every strongly divisible ideal in C(X) is fixed.

1 Introduction

A nonzero ideal in a commutative ring R is called essential if it intersects
every nonzero ideal nontrivially. The intersection of all essential ideals in any
commutative ring R, or the sum of all minimal ideals of R is the socle of R,
(see [6]). C(X) denotes the ring of all continuous real valued functions on
a completely regular Hausdorff space X. For any f ∈ C(X), Z(f) denotes
the set of zeros of f and for every ideal I in C(X), if ∩Z[I] = ∩f∈IZ(f) is
nonempty, I is called fixed, else free. For every p ∈ X, the ideal Op is defined
to be the set {f ∈ C(X) : p ∈ intX Z(f)}, where intX denotes interior in X.
Fixed maximal ideals of C(X) are of the form Mp = {f ∈ C(X) : p ∈ Z(f)},
for p ∈ X. More generally, Mp = {f ∈ C(X) : p ∈ clβX Z(f)}, where βX
is the Stone-Čech compactification of X and clβX denotes closure in βX, is a
maximal ideal, fixed or free in C(X), (see [5]). Related to these are the ideals
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Op = {f ∈ C(X) : p ∈ intβX clβX Z(f)}, p ∈ βX. If p ∈ X, then Mp = Mp

and Op = Op. For every subset B of a commutative ring R, Ann(B) = {a ∈
R : aB = (0)}, in particular, for every b ∈ R, Ann(b) = {a ∈ R : ab = 0}.

For every f ∈ C(X), the support of f is the closure of X \ Z(f) and
the ideal CK(X) denotes the family of all functions in C(X) having compact
support. In 7E of [5] it is shown, that CK(X) is actually the intersection of
all free ideals in C(X). A function f ∈ C(X) is said to vanish at infinity if
the set {x ∈ X : |f(x)| ≥ 1

n} is compact for every n ∈ N. The ideal C∞(X)
is the family of all functions in C(X) which vanish at infinity. C∞(X) is the
intersection of all free maximal ideals in C∗(X), the ring of all continuous
bounded real valued functions on X, (see 7E, [5]).

In this paper X denotes a completely regular Hausdorff space and the
reader is referred to [5] for undefined terms and notations.

The following propositions which topologically characterize essential ideals
and the socle of C(X) are proved in [1] and [8] respectively.

Proposition 1.1. A nonzero ideal E in C(X) is essential if and only if ∩Z[E]
is nowhere dense in X.

Proposition 1.2. The socle CF (X) of C(X) is a z-ideal consisting of all
functions vanishing everywhere except on a finite number of points of X.

2 One-Point Compactification and Almost Discrete Spaces

In this section we will prove that X is the one-point compactification of a
discrete space if and only if for some x ∈ X, the ideal Ox and the socle of
C(X) coincide. Using this fact, we will show that the socle of C(X) is never a
prime ideal. More generally, if A ⊆ X is closed, then OA = ∩x∈AOx ⊆ CF (X)
if and only if every open set containing A has a finite complement. We also
prove a similar result for the one-point compactification of any locally compact
space. Almost discrete spaces (The spaces in which the set of isolated points is
dense.) are algebraically characterized and the last result of this section shows
that the topological structure of the one-point compactification of a discrete
space is invariant under ring isomorphisms.

Proposition 2.1. The infinite space X is the one-point compactification of a
discrete space if and only if for some x ∈ X, Ox ⊆ CF (X) (or equivalently,
Ox = CF (X)).

Proof. If Ox ⊆ CF (X), then x can not be an isolated point, for otherwise
there is f ∈ C(X) such that f(x) = 0 and f(X \ {x}) = {1}. Then f ∈
Ox ⊆ CF (X) implies that X \ Z(f) = X \ {x} is finite, a contradiction.
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Now we will show that x is the only nonisolated point of X. Suppose that
y 6= x is another nonisolated point of X. By Theorem 1.15 in [5], there exist
f, g ∈ C(X) such that x ∈ intZ(f), y ∈ intZ(g) and Z(f) ∩ Z(g) = φ.
This implies that f ∈ Ox ⊆ CF (X) and X \ Z(f) contains Z(g). But, since
Z(g) is a neighborhood of the nonisolated point y, it is an infinite set which
implies that f /∈ CF (X), a contradiction. Now let G be an open set which
contains x. Again by Theorem 1.15 in [5], there exists h ∈ C(X) such that
x ∈ intZ(h) ⊆ Z(h) ⊆ G. So h ∈ Ox ⊆ CF (X) and Proposition 1.2 implies
that X \ Z(h) and hence X \G is finite. Therefore every open set containing
x has a compact (finite) complement; i.e., X is the one-point compactification
of a discrete space.

Conversely, let X = Y ∪{x} be the one-point compactification of a discrete
space Y . We will show that Ox = CF (X). If f ∈ Ox, then intZ(f) is an open
set containing x, which must have a compact complement in Y . This implies
that X \ Z(f) is finite; i.e., f ∈ CF (X). If f ∈ CF (X), then X \ Z(f) is
finite and hence x /∈ X \ Z(f), for x is not an isolated point. Therefore
x ∈ Z(f) = intZ(f), implies that f ∈ Ox.

Remark 2.2. For a generalization of Proposition 2.1, if A is a closed set in
X, then OA ⊆ CF (X) if and only if every open set in X containing A has a
finite complement. To see this, let OA ⊆ CF (X) and G be an open set with
A ⊆ G. If x ∈ X \G, then A and x are completely separated and by Theorem
1.15 in [5], they are contained in two disjoint zero-set neighborhoods say Z(f)
and Z(g). If A ⊆ intZ(f) and x ∈ intZ(g), then f ∈ OA ⊆ CF (X). Now if
x is not an isolated point, then the open set X \ Z(f) which contains x must
be infinite which contradicts f ∈ CF (X). Therefore X \ G is an open-closed
set. Now define h ∈ C(X) such that h(G) = {0} and h(X \ G) = {1}. Then
h ∈ OA ⊆ CF (X) implies that X \ Z(h) = X \G is finite.

Conversely, let every open set containing A have a finite complement and
f ∈ OA. Then A ⊆ intZ(f). Hence X \ intZ(f) is finite by our hypothesis
and then X \ Z(f) is also finite or f ∈ CF (X); i.e., OA ⊆ CF (X).

Remark 2.3. Whenever Y is a locally compact space and X = Y ∪ {x},
then Ox ⊆ CK(X), if and only if X is the one-point compactification of
the space Y . To prove this, let Ox ⊆ CK(X) and G be an open set which
contains x. Then by Theorem 1.15 in [5], there exists f ∈ C(X) such that
x ∈ intZ(f) ⊆ Z(f) ⊆ G. Therefore f ∈ Ox ⊆ CK(X), hence cl(X \ Z(f))
is compact. But X \ G ⊆ cl(X \ Z(f)) implies that X \ G is also compact.
Conversely, if X = Y ∪{x} is the one-point compactification of Y and f ∈ Ox,
then x ∈ intZ(f) implies that X \ intZ(f) = cl(X \ Z(f)) is compact; i.e.,
f ∈ CK(X). Hence Ox ⊆ CK(X).
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It is well-known that if W is the space of countable ordinals, then the lone
free maximal ideal Mw1 in C(W ) is precisely CK(W ), (see [5], 8.19). The
following proposition characterizes topological spaces X for which CK(X) is
a prime ideal.

Proposition 2.4. CK(X) is a prime ideal if and only if X is noncompact
locally compact and for any two disjoint cozero-sets, one has compact closure.

Proof. Let CK(X) be a prime ideal P . Then P is not fixed, for in this case
Ox ⊆ CK(X) for some x ∈ X and by Remark 2.3, X must be compact space.
Hence CK(X) = C(X) by 4D in [5], a contradiction. Then CK(X) = P is
free and again by 4D in [5], X is a noncompact locally compact space. Now if
(X \Z(f))∩ (X \Z(g)) = φ for some f, g ∈ C(X), then fg = 0 ∈ CK(X) = P
implies that f ∈ CK(X) or g ∈ CK(X); i.e., either cl(X \Z(f)) or cl(X \Z(g))
is compact. Conversely, if X is noncompact locally compact, then CK(X) is
free by 4D in [5]. Now if fg = 0, then (X \ Z(f)) ∩ (X \ Z(g)) = φ and
by our hypothesis, either cl(X \ Z(f)) or cl(X \ Z(g)) is compact; i.e., either
f ∈ CK(X) or g ∈ CK(X). Since CK(X) is a z-ideal, by [5], 2.9, CK(X) is a
prime ideal.

This result raises a similar question for CF (X). When is CF (X) a prime
ideal? In the following proposition we will answer this question.

Proposition 2.5. CF (X) is never a prime ideal.

Proof. Let CF (X) be a prime ideal. Suppose that CF (X) is free. Then X
must be a discrete space. If we separate X into two disjoint infinite sets A and
B (A∪B = X) and put Z(f) = A and Z(g) = B, then fg = 0, but f /∈ CF (X),
g /∈ CF (X), a contradiction. Therefore we may suppose that CF (X) is a fixed
prime ideal. Then Ox ⊆ CF (X) for some x ∈ X and by Proposition 2.1, X
is the one-point compactification of a discrete space with additional point x.
Now we consider two disjoint countable infinite subset C = {x1, x2, . . . } and
D = {y1, y2, . . . } of X \ {x}. Define fn ∈ C(X) such that fn(xn) = 1 and

fn(X \ {xn}) = {0}. Since f(x) =
∑∞
n=1

1
2n
fn(x) converges uniformly on

X, f ∈ C(X) and Z(f) = X \ C. Similarly, we define a function g ∈ C(X)
such that Z(g) = X \ D. Clearly fg = 0, but f /∈ CF (X), g /∈ CF (X), a
contradiction. Therefore CF (X) can not be a prime ideal.

To prove the last result of this section, we need the following lemma and
proposition.

Lemma 2.6. (i). If B ⊆ C(X) is a multiplicatively closed (m.c.) set, then∑
f∈B

Ann(f) =
⋃
f∈B

Ann(f).
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(ii). For every p ∈ βX, Op =
∑
f /∈Mp Ann(f) =

⋃
f /∈Mp Ann(f).

Proof. (i). It is clear that
⋃
f∈B Ann(f) ⊆

∑
f∈B Ann(f). Conversely, let

g ∈
∑
f∈B Ann(f). Then g = g1 + g2 + · · ·+ gk, where gi ∈ Ann(fi), fi ∈ B,

i = 1, 2, . . . k. Since B is a m.c. set, f =
∏k
i=1 fi ∈ B and hence fg = 0

implies that g ∈ Ann(f); i.e., g ∈
⋃
f∈B Ann(f). Then

∑
f∈B Ann(f) ⊆⋃

f∈B Ann(f).

(ii). By part (i),
∑
f /∈Mp Ann(f) =

⋃
f /∈Mp Ann(f), for C(X) \Mp is a

m.c. set. The proof that Op =
⋃
f /∈Mp Ann(f) is immediate by 7.12(b) in

[5].

Proposition 2.7. Ann(CF (X)) is generated by an idempotent if and only if
X is the union of two disjoint open subspaces A and N , where A is almost
discrete and N is dense in itself. In particular, Ann(CF (X)) = (0) if and only
if X is almost discrete.

Proof. First suppose that Ann(CF (X)) = (e), where e is an idempotent
in C(X). Let H be the set of isolated points of X. Since eCF (X) = (0),
H ⊆ Z(e) implies that clH ⊆ Z(e). Now consider x ∈ Z(e) but x /∈ clH.
Then by complete regularity of X, there exists g ∈ C(X) such that g(clH) =
{0} and g(x) = 1. Clearly, g ∈ Ann(CF (X)), but g /∈ (e), a contradiction.
Hence clH = Z(e) and since e is an idempotent, clH is open. Now X =
clH ∪ (X \ clH), clH and (X \ clH) are disjoint open subspaces of X, clH
is almost discrete and (X \ clH) is dense in itself.

Conversely, let X = A∪N , where A and N are two disjoint open subspaces,
A almost discrete and N dense in itself. If we define e ∈ C(X) such that
e(A) = {0} and e(N) = {1}, then e is an idempotent in C(X). We will
show that Ann(CF (X)) = (e). Clearly e ∈ Ann(CF (X)), for if f ∈ CF (X),
then X \ Z(f) is a finite open set and hence its members are isolated points;
i.e., X \ Z(f) ⊆ A = Z(e), or fe = 0. Then (e) ⊆ Ann(CF (X)). Now if f ∈
Ann(CF (X)), then Z(e) = A ⊆ Z(f). Since Z(e) is open, Z(e) ⊆ intZ(f) and
by 1D in [5], f is a multiple of e; i.e., f ∈ (e) and hence Ann(CF (X)) ⊆ (e).

Corollary 2.8. (i). If X is an almost discrete space and C(X) is isomorphic
to C(Y ), then Y is also an almost discrete space.

(ii). Let X be the one-point compactification of a discrete space and C(X)
be isomorphic with C(Y ). Then Y is also the one-point compactification of a
discrete space.

Proof. (i). If X is an almost discrete space, then by Proposition 2.7,
Ann(CF (X)) = (0). Since the socle and its annihilator are stable under any
isomorphism, Y is also almost discrete by Proposition 2.7.
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(ii). Let σ : C(X) → C(Y ) be an isomorphism and X be the one-point
compactification of a discrete space with the nonisolated point x◦. Clearly for
every x◦ 6= x ∈ X, Ox is generated by an idempotent. By Lemma 2.6, for
every x ∈ X, σ(Ox) = Oy for some y ∈ βY . Then for x 6= x◦, σ(Ox) = Oy

is also generated by an idempotent; i.e., y is an isolated point in Y . Now we
suppose that σ(Ox◦) = Oy◦ , where y◦ ∈ βY . If y◦ /∈ Y , then by Theorem
9.2 in [5], we have |Y | = |βY | = 22|Y | , a contradiction. Therefore y◦ ∈ Y .
But y◦ is not an isolated point of Y , for otherwise Oy◦ = Oy◦ is generated by
an idempotent, for C(X) ≈ C(Y ). This implies that x◦ is an isolated point,
a contradiction. Therefore y◦ is the only nonisolated point of Y . Since the
socle of C(X) is invariant under σ and since CF (X) = Ox◦ , it follows that
σ(CF (X)) = Oy◦ ; i.e., the socle of C(Y ) and Oy◦ coincide. Hence by Theorem
2.1, Y is the one-point compactification of a discrete space.

3 Nowhere Compact and Almost Locally Compact Spaces

The space X is said to be nowhere compact, if every compact subset of X has
empty interior, and is said to be almost locally compact, if it has a dense locally
compact subspace. For example, the space of rationals is a nowhere compact
space. Clearly every locally compact space is almost locally compact, but not
conversely. For example, a noncompact almost discrete space with only one
nonisolated point is an almost locally compact but not locally compact. For
another example, make the real numbers into a topological space by taking
a base for the open sets consisting of the family of all open intervals and
{{r} : r ∈ Q}. For some topological properties of these spaces, see [9] and for
an algebraic characterization of these spaces, see [2].

Clearly, every open subspace of an almost locally (nowhere) compact space
is an almost locally (nowhere) compact space. In the preceding example, since
R\Q is not almost locally compact, we conclude that the closed subspaces of an
almost locally compact space need not be almost locally compact. Similarly, a
singleton as a subspace of a nowhere compact space, evidently is not nowhere
compact.

The proofs of the following propositions are trivial.

Proposition 3.1. X is an almost locally compact space if and only if every
nonempty open subset of X contains an open set with compact closure.

Proposition 3.2. (i). The free union
◦
∪s∈SXs is an almost locally (nowhere)

compact space if and only if each Xs is.
(ii). The cartesian product

∏
s∈S Xs is a nowhere compact space if and

only if each Xs is.
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(iii). The cartesian product
∏
s∈S Xs, where Xs 6= φ, ∀s ∈ S, is an almost

locally compact space if and only if all spaces Xs are almost locally compact and
there exists a finite set S0 ⊆ S such that Xs is compact for every s ∈ S \ S0.

The following Theorem shows that C∞(Q) = CK(Q) = (0), (see also 4D
of [5]).

Theorem 3.3. The following statements are equivalent:

(i) X is nowhere compact.

(ii) C∞(X) = (0).

(iii) CK(X) = (0).

Proof. (i) ⇒ (ii). Let X be a nowhere compact space and f ∈ C∞(X).
Then the set {x : |f(x)| ≥ 1

n} is compact for every n and by our hypothesis,
int{x : |f(x)| ≥ 1

n} = φ. But for every n > 1,

{x : |f(x)| > 1
n− 1

} ⊆ int{x : |f(x)| ≥ 1
n
} = φ

implies that f = 0; i.e., C∞(X) = (0).

(ii)⇒ (iii). The proof is clear, for CK(X) ⊆ C∞(X).

(iii) ⇒ (i). Suppose that CK(X) = (0) and A is a compact subset of X.
If intA 6= φ, we consider x ∈ intA and define f ∈ C(X) such that f(x) = 1
and f(X \ intA) = {0}. Since cl(X \ Z(f)) ⊆ A, it follows that cl(X \ Z(f))
is also compact; so f ∈ CK(X) = (0) implies that f = 0, a contradiction.

Corollary 3.4. X is a nowhere compact space if and only if βX \X is dense
in βX.

Proof. By our Theorem 3.3 and 7F in [5], the proof is evident.

It is well known that ∩Z[CK(X)] = φ if and only if X is locally compact
but not compact (see 4D in [5]). It is also proved in [2], Theorem 3.2, that X
is almost locally compact if and only if int∩Z[CK(X)] = φ; i.e., if and only
if CK(X) is an essential ideal. The following Theorem generalizes and unifies
these results.

Theorem 3.5. If ∩Z[CK(X)] = Y , then X \ Y is an open locally compact
subspace of X and intX Y is a nowhere compact subspace of X. Conversely, if
Y ⊆ X and X\Y is an open locally compact subspace of X, then ∩Z[CK(X)] ⊆
Y .
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Proof. Let ∩Z[CK(X)] = Y and x ∈ X \ Y . Then there exists f ∈ CK(X)
such that x ∈ X \ Z(f). Since G = (X \ Z(f)) ∩ (X \ Y ) is an open set in
X containing x, by the regularity of X, there exists an open set V in X such
that x ∈ V ⊆ clV ⊆ G ⊆ cl(X \ Z(f)). But f ∈ CK(X); i.e., cl(X \ Z(f)) is
compact and hence clV is a compact neighborhood of x in X. Since X \ Y
is an open subspace of X and clV ⊆ X \ Y , it follows that clV is also a
compact neighborhood of x in X \ Y ; i.e., X \ Y is locally compact. To prove
the nowhere compactness of intY , let x ∈ intY and G 6= φ be a compact
neighborhood of x in intY . Since intY is an open subspace of X, G is also a
compact neighborhood of x in X. By the regularity of X and Theorem 1.15 in
[5], there exists f ∈ C(X) such that x ∈ X \Z(f) ⊆ cl(X \Z(f)) ⊆ G. But G
is compact in X; so cl(X \Z(f)) is also compact in X; i.e., f ∈ CK(X) implies
that x /∈ ∩Z[CK(X)], a contradiction. Therefore intY is nowhere compact.

Conversely, let X \ Y be an open locally compact subspace of X. If x ∈
∩Z[CK(X)] and x /∈ Y , then x has a compact neighborhood G in X \ Y , for
X \ Y is locally compact. Since X \ Y is open in X, G is also a compact
neighborhood in X. Again by Theorem 1.15 in [5], there exists f ∈ C(X)
such that x ∈ X \ Z(f) ⊆ cl(X \ Z(f)) ⊆ G. The compactness of G implies
that cl(X \ Z(f)) is also compact in X; i.e., f ∈ CK(X), which contradicts
x ∈ ∩Z[CK(X)]. Hence x ∈ Y ; i.e., ∩Z[CK(X)] ⊆ Y .

Corollary 3.6. Every completely regular space X is the union of two disjoint
subspaces A and N , where A is closed almost locally compact and N is open
nowhere compact.

Proof. By Theorem 3.5, we can consider A = X \intY and N = intY , where
Y = ∩Z[CK(X)]. Since X \ Y is locally compact and cl(X \ Y ) = X \ intY ,
it follows that A is a closed almost locally compact subspace of X. Clearly
intY is an open nowhere compact subspace of X by Theorem 3.5. Moreover
X = A ∪N .

Corollary 3.7. X is almost locally compact if and only if CK(X) is essential.
(See also [2], Theorem 3.2).

Proof. If X is almost locally compact, then by Theorem 3.5, intY = φ,
where ∩Z[CK(X)] = Y . Therefore CK(X) is essential by Proposition 1.1

Conversely, whenever CK(X) is essential, then by Proposition 1.1, intY =
φ, where Y = ∩Z[CK(X)]. Therefore X is almost locally compact by Theorem
3.5.

Corollary 3.8. CK(X) is free if and only if X is locally compact but not
compact. (See also [5], 4D.3).
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Corollary 3.9. CK(X) is generated by an idempotent if and only if X is the
union of two disjoint open subspaces C and N , where C is compact and N is
nowhere compact.

Proof. Let CK(X) = (e), where e is an idempotent. Then Y = ∩Z[CK(X)] =
Z(e) is an open set and hence intY = Y . By Theorem 3.5, if we consider
C = X \Z(e) and N = Z(e), then N is open nowhere compact and e ∈ CK(X)
implies that cl(X \ Z(e)) = X \ Z(e) = C is an open compact subspace of
X. Conversely, suppose that X = C ∪ N , where C and N are two disjoint
open subspaces of X, C is compact and N is nowhere compact. Define the
idempotent e ∈ CK(X) such that e(N) = {0} and e(C) = {1}, we will show
that CK(X) = (e). Since X \ Z(e) = C is compact, e ∈ CK(X). Now
if f ∈ CK(X), then cl(X \ Z(f) is compact and clearly cl(X \ Z(f)) ∩ N
is also a compact subset of N ; hence it must have empty interior. But
(X \ Z(f)) ∩ N ⊆ int(cl(X \ Z(f)) ∩ N) implies that (X \ Z(f)) ∩ N = φ.
Therefore (X \ Z(f)) ⊆ C = X \ Z(e); i.e., Z(e) ⊆ intZ(f) implies that f is
a multiple of e by 1D in [5]; i.e., CK(X) = (e).

4 Pseudocompact and Lindelöf Spaces

An ideal I in a commutative ring R is said to be divisible if for every two
members a and b in I there exists c ∈ I such that a and b are multiples of c.
For example, every principal ideal is a divisible ideal. It is also shown in [7]
that any ideal in C(X) which is an intersection of prime ideals is a divisible
ideal. This fact and Theorem 4.11 in [5] imply that X is compact if and only
if every divisible ideal in C(X) is fixed.

A strongly divisible ideal in a commutative ring R is an ideal I which sat-
isfies the following condition: a1, a2, . . . in I implies the existence of elements
e ∈ I and b1, b2, . . . in R such that ai = ebi, for i = 1, 2, . . . . Clearly every
strongly divisible ideal is a divisible ideal but not conversely. It is shown in
Corollary 4.3 that every real maximal ideal (see [5], for definition) is a strongly
divisible ideal. Clearly a countably generated ideal is strongly divisible if and
only if it is a principal ideal. In this section we will show that X is Lindelöf if
and only if every strongly divisible ideal of C(X) is fixed.

To prove the main results of this section we need the following lemma.

Lemma 4.1. If I is a z-ideal and Z[I] is closed under countable intersection,
then I is a strongly divisible ideal.
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Proof. Let fn ∈ I. Since I is a z-ideal, then f
2/3
n ∈ I, ∀n ∈ N. Put

g =
∞∑
n=1

1
2n

f
2/3
n

1 + f
2/3
n

.

Because of uniform convergence, g ∈ C(X). But Z(g) = ∩∞n=1Z(fn) and Z[I]
is closed under countable intersection. Hence Z(g) ∈ Z[I] implies that g ∈ I,

for I is a z-ideal. By definition of g, we have
|fn|

(1 + f
2
3
n )

3
2

≤ 2n|g|3/2 and 1D

in [5] implies that fn is a multiple of g, ∀n ∈ N; i.e., I is a strongly divisible
ideal.

Corollary 4.2. Every real maximal ideal is a strongly divisible ideal.

Proof. Using 5.14 in [5] and Lemma 4.1, the proof is evident.

Corollary 4.3. X is pseudocompact if and only if every ideal is contained in
a strongly divisible z-ideal.

Proof. By 5H in [5] and Lemma 4.1, the proof is evident.

Theorem 4.4. X is Lindelöf if and only if every strongly divisible ideal in
C(X) is fixed.

Proof. First suppose that X is Lindelöf and I is a strongly divisible ideal in
C(X). Then Z[I] has the countable intersection property and hence Z[I] is
fixed; i.e., I is fixed.

Conversely, let every strongly divisible ideal be fixed and A be a collection
of closed sets in X which is closed under countable intersection. If we denote
by Az the collection of all zero-sets containing a member of A, then clearly the
collection F◦ containing Az and all countable intersections of members of Az
is a z-filter base for a z-filter F. Therefore Z−1(F) = {f ∈ C(X) : Z(f) ∈ F}
is a z-ideal and F is closed under countable intersection. By Lemma 4.1,
Z−1(F) is strongly divisible and hence it is fixed by our hypothesis. Then
∩B∈AB ⊇ ∩Z∈Az

Z ⊇ ∩Z∈FZ 6= φ implies that X is Lindelöf.
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