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THE SPACE OF DENJOY–PERRON
INTEGRABLE FUNCTIONS

Abstract

In the linear space DP[a, b] of all Denjoy–Perron integrable functions
on an interval [a, b] one wishes to introduce the most natural topology.
Herein are some considerations that suggest what topology might be the
most natural.

1 Introduction

Let DP[a, b] denote the linear space of all Denjoy–Perron integrable functions
on an interval [a, b]. One frequently studies this space of functions furnished
with the norm

‖f‖A = max
a≤x≤b

|F (x)| (1)

where F (x) =
∫ x
a
f(t) dt denotes the indefinite integral of f in the Denjoy–

Perron sense and, as usual in studies in integration theory, two functions f
and g in the space are identified if they have the same indefinite integral
(or, equivalently, if they are equal almost everywhere in [a, b]). The norm in
equation (1) is sometimes called the Alexiewicz norm because of the initial
study of this space in [1].

Essentially this identifies the space DP[a, b] with a subspace of the Banach
space C[a, b] of continuous functions on [a, b] furnished with the supremum
norm, namely the subspace of all the ACG∗ functions F in C[a, b] for which
F (a) = 0. Thus, in particular, DP[a, b] is seen to be an incomplete normed
linear space that is first category in itself. In fact, in spite of the category
statement, this space is barreled and hence there is a version of the Banach-
Steinhaus theorem that can be used. See [20] and [22].

The continuous linear functionals on this space can be represented by an
integral f →

∫ b
a
f(t)g(t) dt taken in the Denjoy–Perron sense where g is equiv-

alent to a function of bounded variation ([1], [19]). This should be familiar
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since the integral can, in this case, be rewritten as a Riemann Stieltjes integral
using the integration by parts formula.

One might argue that this norm topology is not the most natural for the
space DP[a, b] since convergence of a sequence of functions {fn} is merely
equivalent to uniform convergence of the sequence {Fn} of indefinite integrals.
This convergence pays little attention to the structure of the Denjoy–Perron
integration process.

In contrast consider the usual topology on the space L[a, b] of Lebesgue
integrable functions on an interval [a, b]. The norm used there is

‖f‖1 =
∫ b

a

|f(t)| dt = V ar(F, [a, b]) (2)

where, again, F is the indefinite integral of f (now allowed in the Lebesgue
sense) and V ar(F, [a, b]) is the total variation of F on the interval [a, b]. This
is a Banach space and the norm (as an integral or as a variation) plays a key
role in many investigations of the Lebesgue integral and is an entirely natural
object of study.

In this short article we shall study a similar kind of structure in DP[a, b],
and determine its relation to the Alexiewicz norm.

2 Background Material

We begin by reminding the reader of the properties of the variation that are
needed in a study of the Denjoy–Perron integral. The versions we cite here
are not the most general but are tailored to our needs in this article.

Let F : [a, b]→ R be a continuous function. Let [c, d] be a closed subinter-
val and let E be a subset of [a, b]. We refer to the expression

ωF ([c, d]) = max
x∈[c,d]

F (x)− min
x∈[c,d]

F (x)

as the oscillation of F on the interval [c, d]. The expression

V ar(F,E) = sup
p∑
i=1

ωF ([ai, bi])

is defined by taking the supremum over all nonoverlapping collections of in-
tervals

[a1, b1], [a2, b2], [a3, b3], . . . , [ap, bp]

whose endpoints are in the set E. This is called the variation of F on E.
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A different and closely related notion of variation is as follows. For every
positive function δ on E we define

V (F,E; δ) = sup
p∑
i=1

|F (ai)− F (bi)|

where the supremum is taken over all nonoverlapping collections of subintervals
of [a, b]

{[a1, b1], [a2, b2], [a3, b3], . . . , [ap, bp]}

for which there is a collection of points ξi ∈ E ∩ [ai, bi] (i = 1, 2, 3, . . . p) with
bi − ai < δ(ξi). Then we define V (F,E) = inf V (F,E; δ) where the infimum is
taken over all positive functions δ on E. These three expressions V ar(F,E),
V (F,E; δ) and V (F,E) define the variational concepts that can be used to
express the nature of the Denjoy–Perron integration process.

Most of the following facts are well known and can be found in a variety
of sources (e.g., [2], [3], [9], [13], [16], [17], [23], [24]). We have indicated the
proofs for any statements that may be less well known or are not often used.

2.1. F → V ar(F,E) is a seminorm, i.e.,

V ar(F1 + F2, E) ≤ V ar(F1, E) + V ar(F2, E)

and, for any c ∈ R,
V ar(cF,E) = |c|V (F,E).

2.2. For any subset E of [a, b] and any continuous function F

V ar(F,E) = V ar(F,E).

2.3. For any two subsets E1 and E2 of [a, b]

V ar(F,E1 ∪ E2) ≤ 2 {V ar(F,E1) + V ar(F,E2) + ωF ([a, b])} . (3)

Proof. Let there be given a nonoverlapping collection of intervals

[a1, b1], [a2, b2], [a3, b3], . . . , [ap, bp]

whose endpoints are in the set E1 ∪ E2. We can split the collection into four
subcollections: in the first, place those intervals [ai, bi] for which ai, bi ∈ E1;
in the second, place those remaining for which ai, bi ∈ E2; in the third, place
those remaining for which ai ∈ E1, bi ∈ E2; and in the final collection place
those remaining and it will be the case that each ai ∈ E2, bi ∈ E1.
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We now compute an upper bound for the sums
∑p
i=1 ωF ([ai, bi]) by split-

ting across the four collections. If these are taken just over the first and second
collections, then they are clearly bounded by V ar(F,E1) and V ar(F,E2) re-
spectively. Consider now the sums taken over the third collection. To be
specific let [αi, βi] for i = 1, 2, . . . q denote this collection. We may assume
that α1 < β1 ≤ α2 < β2 ≤ . . . αq < βq by relabeling if necessary. Here
αi ∈ E1 and βi ∈ E2. Note that

q∑
i=1

ωF ([αi, βi]) ≤
q−1∑
i=1

ωF ([αi, αi+1]) + ωF ([αq, βq]).

In particular an upper bound for these sums is then given by

V ar(F,E1) + ωF ([a, b]).

Similarly an upper bound for the sums of the fourth type would be given by

V ar(F,E2) + ωF ([a, b]).

Putting these four upper bounds together then yields the upper bound (3) of
the lemma.

2.4. For any function F , the total variation of F on [a, b] is equal to

V ar(F, [a, b]) = V (F, [a, b]) = V (F, [a, b], δ)

for any δ. (In particular these are finite precisely when F has bounded varia-
tion on [a, b]).

2.5. E → V (F,E) is a metric outer measure, i.e., the function

F ∗(E) = V (F,E)

defined on all subsets of [a, b] is an outer measure for which all Borel sets are
measurable.

2.6. If F is a continuous function on [a, b] and C is countable then

V (F,C) = 0.

2.7. If F is a continuous function on [a, b] and E ⊂ [a, b] is a closed set then

V (F,E) ≤ 2V ar(F,E). (4)



The Space of Denjoy–Perron Integrable Functions 715

Proof. We assume E is nonempty. Let α = inf E and β = supE. Let C
denote the countable collection of all points in E that are isolated on one side
at least and let D = E \ C. Choose any δ so that if x ∈ D then δ(x) < x− α
and δ(x) < β − x.

We now estimate V (F,D, δ). Let [a1, b1], [a2, b2], [a3, b3], . . . [an, bn] be any
nonoverlapping collection of subintervals of [a, b] for which there is a collection
of points ξi ∈ D (i = 1, 2, 3, . . . n) with bi − ai < δ(ξi). (Assume that the
intervals are naturally ordered from left to right.) We use the points

α = ξ0 < ξ1 < ξ2 < · · · < ξn+1 = β

from E and note that each interval [ξi, ξi+1] meets at most two of the in-
tervals {[ai, bi]}. These intervals [ξi, ξi+1] must cover the intervals {[ai, bi]}.
Consequently

n∑
i=1

|F (bi)− F (ai)| ≤ 2
p∑
i=1

ωF ([ξi, ξi+1]) ≤ 2V ar(F,E).

It follows that
V (F,D) ≤ V (F,D, δ) ≤ 2V ar(F,E). (5)

But from 2.5 and 2.6 we see that V (F,C) = 0 and

V (F,E) = V (F,D) + V (F,C). (6)

Thus assertion (4) follows now from assertion (5) and (6).

2.8. A continuous function F on [a, b] is VBG∗ if and only if there ex-
ists an increasing sequence of closed sets {En} covering [a, b] such that each
V ar(F,En) is finite.

Proof. The usual definition of VBG∗ does not assume this form, but for
continuous functions this version can be easily checked to be equivalent to the
one in Saks [17]. For if F is VBG∗ on [a, b] there is a sequence of sets {Cn}
covering [a, b] and each V ar(F,Cn) is finite. Since F is continuous here we
may take

En = C1 ∪ C2 ∪ · · · ∪ Cn
and use assertions 2.2 and 2.3 to conclude that each V ar(F,En) is finite.

2.9. F → V (F,E) is a seminorm, i.e.,

V (F1 + F2, E) ≤ V (F1, E) + V (F2, E)

and, for all c ∈ R, V (cF,E) = |c|V (Fx,E).
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2.10. A continuous function F is VBG∗ on [a, b] if and only if the outer
measure F ∗ is σ-finite on [a, b].

2.11. A continuous function F is ACG∗ if and only if F ∗ vanishes on all
closed subsets of [a, b] of Lebesgue measure zero.

2.12. The relation F (x) =
∫ b
a
f(t) dt holds in the sense of the Denjoy–Perron

integral if and only if F (a) = 0, F ′(x) = f(x) almost everywhere and F is
ACG∗ on [a, b].

2.13. If F ′ exists on a Borel set E then V (F,E) =
∫
E
|F ′(t)| dt where the

integral is in the Lebesgue sense.

3 The Space DP ({En})

Let f be a function that is Denjoy–Perron integrable on an interval [a, b]. Then,
writing F (x) =

∫ x
a
f(t) dt we know that there exists an increasing sequence of

closed sets {En} covering [a, b] such that

V ar(F,En) <∞ (7)

for each n = 1, 2, 3, . . . . Because of this we are led to define, for each fixed
family {En} forming an increasing sequence of closed sets covering [a, b], the
family DP ({En}) of all functions f in DP[a, b] for which (7) holds. This is
clearly a linear subspace of DP[a, b]. The functions pn defined as

pn(f) = V ar(F,En) (8)

form an increasing sequence of seminorms on DP ({En}) that serve to define
a locally convex topology. This topology is the same as that provided by the
metric

d(f, g) =
∞∑
n=1

1
2n

pn(f − g)
1 + pn(f − g)

.

It is this topology we shall impose on DP ({En}). (Recall that, throughout, we
identify two functions in these spaces if they have the same indefinite integral.)

Note that if f is a member of the space DP ({En}) then, because of 2.7
and 2.13, ∫

En

|f(t)| dt = V (F,En) ≤ 2V ar(F,En) <∞

so that f is also Lebesgue integrable on each set in the sequence {En}. (The
converse is not true: a function f could well be Lebesgue integrable on each
set in the sequence {En} and yet fail to be Denjoy–Perron integrable on [a, b].)
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Theorem 3.1. Let {En} be an increasing sequence of closed sets covering
[a, b]. Then DP ({En}) is a metrizable, complete, locally convex topological
vector space.

Proof. A countable family of seminorms always imposes a topology that is
locally convex and metrizable, thus it is only the completeness assertion that
needs to be proved.

Let {fk} be a sequence of functions in DP ({En}) that is assumed to be
Cauchy relative to each of the seminorms in (8). If F denotes the indefinite
integral of any element f of the space we observe that, for any n sufficiently
large so that a, b ∈ En, ωF ([a, b]) ≤ V ar(F,En) = pn(f). Consequently, if
{Fk} denotes the corresponding sequence of indefinite integrals for the given
sequence {fk} we see that {Fk} is uniformly Cauchy on [a, b] and so convergent
to a continuous function F on [a, b]. Let ε > 0 and, fixing n, choose an integer
K so large that V ar(Fk − Fj , En) = pn(fk − fj) < ε if j, k ≥ K.

Fix n and consider the sum
p∑
i=1

ωFk−Fj ([ai, bi]) ≤ V ar(Fk − Fj , En) < ε (9)

where
[a1, b1], [a2, b2], [a3, b3], . . . , [ap, bp]

is any nonoverlapping collection of subintervals of [a, b] whose endpoints are
in the set En. By holding k ≥ K fixed and letting j →∞ in the inequality (9)
we obtain that

∑p
i=1 ωFk−F ([ai, bi]) ≤ ε. It follows that V ar(Fk − F ,En) ≤ ε

for all k ≥ K. In particular we conclude for each n that

lim
k→∞

V ar(Fk − F ,En) = 0. (10)

Note, too, that each V ar(F,En) <∞.
We now show that F is ACG∗. Fix n, ε > 0 as above, and fix a closed set

Z ⊂ [a, b] of Lebesgue measure zero. We know from 2.11 that V (FK , Z) = 0.
But from 2.7 we have

V (F,Z∩En) ≤ V (FK , Z∩En)+V (FK−F,Z∩En) ≤ 2V ar(Fk − F ,En) ≤ ε.

Since ε > 0 is an arbitrary positive number it follows that V (F,Z ∩ En) = 0.
Now using the measure property 2.5 of the variation we have

V (F,Z) ≤
∞∑
n=1

V (F,En ∩ Z) = 0.
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Since Z can be any closed set of measure zero we conclude, again using 2.11,
that F is ACG∗.

Since F is ACG∗ it is differentiable almost everywhere and is the indefinite
integral in the Denjoy–Perron sense of its derivative. Let f = F ′ and we see
that f belongs to DP[a, b]. Indeed since we have seen that V ar(F,En) < ∞
for each n we know that f belongs to DP ({En}). ¿From the assertion (10) we
conclude that the Cauchy sequence {fk} converges in the space DP ({En}) to
the function f . This establishes that this space is complete and the proof is
done.

Example 1. L[a, b] is precisely the space DP ({En}) for an appropriate choice
of {En} (namely each En = [a, b]).

Example 2. Consider the sequence of sets En = {a} ∪ [a + 1/n, b]. The
space DP ({En}) forms a subspace of the space of Denjoy–Perron integrable
functions on the interval [a, b]. This can be described in another way. A
function f belongs to this space if and only if f is Denjoy-Perron integrable
on [a, b] and Lebesgue integrable on every interval [a + ε, b] for ε > 0. Or,
equivalently, if and only if f is Lebesgue integrable on every interval [a+ ε, b]
for ε > 0 and limt→a+

∫ b
t
f(x) dx exists.

We now discuss the continuous linear functionals on the spaces DP ({En}).
Note that the theorem here does not offer a characterization. For different
choices of {En} there will be different restrictions on the function g in the the-
orem. For Example 1 the function g can be any bounded measurable function
on [a, b] while for Example 2 there would be restrictions on g.

Theorem 3.2. Let {En} be an increasing sequence of closed sets covering
[a, b]. Then if Γ is a continuous linear functional on the space DP ({En})
there exists a bounded, measurable function g on [a, b] so that

Γ(f) =
∫ b

a

f(t)g(t) dt (f ∈ DP ({En}))

where the integral exists in the Denjoy–Perron sense.

Proof. It suffices to show the existence of a measurable function g on [a, b]
with this property since, in order for this integral to exist for all Lebesgue
integrable functions f it is clear that g must be bounded. Let S denote
the collection of all intervals (c, d) ⊂ (a, b) so that there exists a measurable
function g on [c, d] with the property that

Γ(f∗) =
∫ d

c

f(t)g(t) dt (f ∈ DP ({En}))
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where the integral exists in the Denjoy–Perron sense and where f∗ is the
function defined on [a, b] so as to agree with f on [c, d] and to vanish elsewhere.
Note that if f ∈ DP ({En}) then necessarily f∗ ∈ DP ({En}) so that Γ(f∗) is
always defined.

We claim that the interval (a, b) belongs to S and, hence, that the theorem
is proved. In order to obtain a contradiction let us suppose that this is not
the case.

If it is not true that (a, b) ∈ S then let E = [a, b]\
⋃

(c,d)∈S(c, d). If (a, b) ∈ S
is false then E is a nonempty closed subset of [a, b]. By the Baire category
theorem, there is an integer M and an interval (c, d) so that

E ∩ (c, d) = EM ∩ (c, d) 6= ∅.

We will show that it then follows that (c, d) ∈ S which is the desired contra-
diction since E cannot contain any point of an interval belonging to S.

Step 1. We first observe that S has an hereditary property: if any interval
(c′, d′) belongs to S then so too does every subinterval (c′′, d′′) ⊂ (c′, d′). This
is easily checked.

Step 2. Now let us show that every subinterval (c′, d′) that is a component
of (a, b) \ E belongs to S.

Step 2(a). Consider first any interval [c′′, d′′] ⊂ (c′, d′). By a compactness
argument [c′′, d′′] is covered by finitely many intervals from S. We argue that
this will require that (c′′, d′′) ∈ S.

To illustrate the argument suppose that (c′′, d′′) is covered by two inter-
vals belonging to S, say (x, y′), (y′′, z) and x ≤ c′′ < y′′ < y′ < d′′ ≤ z.
Then, for any choice of y′′ < y < y′, by the hereditary property of S both
intervals (c′′, y) and (y, d′′) belong to S. Thus there are functions g1 and g2
corresponding to the two adjacent intervals (c′′, y) and (y, d′′) (respectively)
and which verify that (c′′, y) ∈ S and (y, d′′) ∈ S. Then the function g defined
on (c′′, d′′) by setting g(t) = g1(t) for t ∈ (c′′, y) and g(t) = g2(t) for t ∈ (y, d′′)
supplies a verification that (c′′, d′′) ∈ S. This requires only the additivity of
the functional Γ. A similar argument will handle any other situations in which
a finite collection of intervals from S covers (c′′, d′′).

Step 2(b). We proceed now to show that every subinterval (c′, d′) comple-
mentary to E in (a, b) belongs to S. Fix (c′, d′) as a component interval of the
set (a, b) \E. Take any sequence of positive numbers εn → 0 and consider the
subintervals (c′ + εn, d

′ − εn). Since each belongs to S (by the step 2(a) just
proved) there is a measurable function gn defined on each [c′ + εn, d

′ − εn] so
that

Γ(fn) =
∫ d−εn

c+εn

f(t)gn(t) dt (f ∈ DP ({En})) (11)
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where the integral exists in the Denjoy–Perron sense and where fn is the
function defined on [a, b] so as to agree with f on (c′ + εn, d

′ − εn) and to
vanish elsewhere. Since, up to equivalence, there is only one such function
and these intervals expand to cover all of (c′, d′), we may take it that there
is a single measurable function g defined on [c′, d′] so that this equation (11)
holds for all n with g replacing gn.

We notice now that if f∗ is the function defined on [a, b] so as to agree with
f on [c′, d′] and to vanish elsewhere, then pm(fn − f∗) → 0 for every m as
n→∞. Let us check this. To compute pm(fn−f∗) we note that the function
f∗− fn is identical to f on [c′, c′+ εn] and [d′− εn, d′] and vanishes elsewhere.
In particular then, for any m,

pm(fn − f∗) ≤ V ar(F,Em ∩ [c′, c′ + εn]) + V ar(F,Em ∩ [d′ − εn, d′]). (12)

Since f is a member of the space DP ({En}) it follows that V ar(F,Em) <∞.
Since F is also continuous it must be true that

V ar(F,Em ∩ [c′, c′ + εn])→ 0

and
V ar(F,Em ∩ [d′ − εn, d′])→ 0

as n→∞. It follows from these two assertions and (12) that pm(fn−f∗)→ 0
as n→∞.

Thus fn → f∗ in the space DP ({En}) and so, since Γ is continuous,

Γ(fn)→ Γ(f).

This means, because of (11), that the limit limn→∞
∫ d′−εn
c′+εn

f(t)g(t) dt exists.
As this is true for all such sequences {εn} it follows, from the Cauchy property
of the Denjoy–Perron integral, that fg is Denjoy–Perron integrable on (c′, d′).
It also follows that

Γ(f∗) = lim
n→∞

Γ(fn) =
∫ d′

c′
f(t)g(t) dt.

But this identity verifies that (c′, d′) ∈ S as we wished to prove.
Step 3. We now check that there exists a measurable function k on E∩[c, d]

so that
Γ(fE) =

∫
E

f(t)k(t) dt (f ∈ DP ({En})) (13)

where the integral exists in the Lebesgue sense and where fE denotes the
function defined on [a, b] so as to agree with f on E and to vanish on [a, b]\E.
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To obtain the function k in (13) we construct a continuous linear functional
on the space L(E∩ [c, d]) of Lebesgue integrable functions on the set E∩ [c, d].
Let h be any function that is Lebesgue integrable on E ∩ [c, d] and use h∗ to
denote the function defined on [a, b] that agrees with h on E∩[c, d] and vanishes
elsewhere. Clearly h∗ must be Lebesgue integrable on [a, b]. Moreover if H∗

is its indefinite integral then H∗ is constant on each interval complementary
to E ∩ [c, d] in [a, b]. Thus we can compute, using 2.4 and 2.13, that

V ar(H∗, E ∩ [c, d]) = V ar(H∗, [a, b]) =
∫ b

a

|h∗(t)| dt =
∫
E∩[c,d]

|h(t)| dt.

We also note that

pm(h∗) =
∫
E∩[c,d]

|h(t)| dt (14)

for all m ≥M , since Em contains E ∩ [c, d].
Now we consider the functional Γ′ defined on the space L(E∩[c, d]) equipped

with the usual norm (see equation (2)) where Γ′ is defined by the identity by

Γ′(h) = Γ(h∗) (h ∈ L(E ∩ [c, d])). (15)

Clearly Γ′(h) is defined for every h ∈ L(E∩ [c, d]) and is linear. We now check
that Γ′ is continuous on that space. If hn → h in the sense of the norm then∫

E∩[c,d]

|hn(t)− h(t)| dt→ 0.

But from (14) this means that h∗n → h∗ in the space DP ({En}). Since Γ is
continuous on the space DP ({En}) this then requires that Γ(h∗n) → Γ(h∗).
From (15) it follows that Γ′(hn)→ Γ′(h) as we needed to show to prove that
Γ′ is continuous.

But any continuous linear functional on L(E ∩ [c, d]) has a representation
as an integral Γ′(h) =

∫
E∩[c,d]

h(t)k(t) dt where the integral is in the Lebesgue
sense and where k is some measurable function on E∩ [c, d]. (See, for example,
[7, p. 588].)

If f ∈ DP ({En}) then f is Lebesgue integrable on each En and so, in
particular, also Lebesgue integrable on E ∩ [c, d]. Thus using h = fE we have

Γ(fE) =
∫
E∩(c,d)

f(t)k(t) dt (f ∈ DP ({En}))

exactly as needed for the representation in (13).
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Step 4. Now let {(ai, bi)} denote the sequence of intervals complementary
to E in (c, d). Since each interval (ai, bi) belongs to S by Step 2, there is a
function gi which can be used to verify that (ai, bi) ∈ S. We will show that,
for every f ∈ DP ({En}),

Γ(f∗) =
∫
E

f(t)k(t) dt+
∞∑
i=1

∫ bi

ai

f(t)gi(t) dt

where f∗ is the function defined on [a, b] so as to agree with f on [c, d] and to
vanish elsewhere.

Define fn to be equal to f on E and on each of the intervals (ai, bi) for
i ≤ n and to vanish elsewhere. Note, from the additivity of Γ, that

Γ(fn) =
∫
E

f(t)k(t) dt+
n∑
i=1

∫ bi

ai

f(t)gi(t) dt (16)

We shall show that pm(fn − f∗) → 0 for every m ≥ M as n → ∞. Fix m
and consider pm(fn − f∗) The function fn − f∗ vanishes on [c, d] everywhere
except on the intervals (ai, bi) for i > n where it has the same values as −f .
Consequently

pm(fn − f∗) ≤
∑
i>n

V ar(F,Em ∩ (ai, bi)).

But V ar(F,Em) <∞ and this requires

∞∑
i=1

V ar(F,Em ∩ (ai, bi)) <∞

and consequently

lim
n→∞

pm(fn − f∗) ≤ lim
n→∞

∑
i>n

V ar(F,Em ∩ (ai, bi)) = 0.

Thus fn → f∗ in the space DP ({En}) and so, since Γ is continuous,

Γ(fn)→ Γ(f). (17)

From (17) and the identity (16) we obtain

lim
n→∞

Γ(fn) =
∫
E

f(t)h(t) dt+
∞∑
i=1

∫ bi

ai

f(t)gi(t) dt (18)

where the sum must exist. This completes step 4.
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In particular note that, since the order of the components is immaterial
the series converges in any rearrangement and so

∞∑
i=1

∣∣∣∣∣
∫ bi

ai

f(t)gi(t) dt

∣∣∣∣∣ <∞.
We actually need more. We need that

∞∑
i=1

∣∣∣∣∣
∫ βi

αi

f(t)gi(t) dt

∣∣∣∣∣ <∞ (19)

for any choices of (αi, βi) ⊂ (ai, bi). But, in fact, this must be true since the
same argument can apply by replacing the function f under consideration by a
new function f1 that agrees with f everywhere except on the intervals (ai, αi)
and (βi, bi) where it vanishes. The new function f1 is also in the space and,
if the same arguments are repeated applied to f1 it will be obtained that the
series (19) converges absolutely for any choices of (αi, βi) ⊂ (ai, bi).

Step 6. Define g on (c, d) so that g(t) = k(t) for t ∈ E and g(t) = gi(t) for
t ∈ (ai, bi). Clearly g is measurable. Recall that k has been defined in Step 3.
It now follows, from (19) and the Harnack property of the Denjoy–Perron
integral, that fg is Denjoy–Perron integrable on (c, d). From (17) and (18) we
obtain that

Γ(f) =
∫
E

f(t)h(t) dt+
∞∑
i=1

∫ bi

ai

f(t)gi(t) dt =
∫ d

c

f(t)g(t) dt.

This identity verifies that (c, d) ∈ S. Since this is the desired contraction the
proof is complete.

4 The Space DP [a, b]

The most natural topology on the space DP[a, b], it may perhaps now be
argued, is to take the finest locally convex topology such that each of the
canonical injections from the spaces DP ({En}) into DP[a, b] is continuous.
Such a topology is sometimes called an inductive limit topology although in
most applications the directed set of subspaces is countable.

We show that this topology is in fact equivalent to that given by the Alex-
iewicz norm.

Theorem 4.1. The finest convex topology on DP[a, b] such that each of the
canonical injections from the spaces DP ({En}) into DP[a, b] is continuous is
the norm topology given by the Alexiewicz norm.
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Proof. Let τ denote the inductive limit topology, i.e., the finest convex topol-
ogy on DP[a, b] such that each of the canonical injections from the spaces
DP ({En}) into DP[a, b] is continuous. Let τA denote the topology generated
by the Alexiewicz norm.

Let us note one simple fact. The topology τ is finer than the topology
τA. For if G is the identity mapping from (DP[a, b], τ) → (DP[a, b], τA) then
we know, from properties of inductive limits, that G is continuous if and only
if the restricted mapping from each space DP ({En}) into (DP[a, b], τA) is
continuous. (This is a general property of inductive limits; cf. [12, p. 159].)

Let {fk} be a sequence convergent to a function f in the space DP ({En}).
This means that pn(Fk − F ) → 0 for any fixed n as k → ∞. For some n the
set En contains both a and b. But then

ωF−Fk
([a, b]) ≤ V ar(Fk − F,En) = pn(Fk − F )→ 0

so that Fk converges uniformly to F . But that is convergence in the space
(DP[a, b], τA) and so G(fk) → G(f) verifying that G is continuous. Since G
is continuous the topology τ is finer than the topology τA.

We now prove the following statement:

A linear functional Γ on the space (DP[a, b], τ) is continuous if
and only if there is a function g on [a, b] that is equivalent to a
function of bounded variation so that Γ(f) =

∫ b
a
f(t)g(t) dt where

the integral is in the Denjoy–Perron sense.

Suppose first that Γ is a continuous linear functional on the space DP[a, b]
furnished with the topology τ . Being continuous its restriction to the spaces
DP ({En}) is also continuous. Thus we know from Theorem 3.2 that the
equation

Γ(f) =
∫ b

a

f(t)g(t) dt (20)

must hold for some g, but that g may vary since that theorem applies to the
separate subspaces. It is clear however that such a g if it exists is unique up
to a set of measure zero and so we know there is some bounded, measurable
function g for which the identity (20) holds for all f ∈ DP[a, b]. But the
existence of the integral for all Denjoy–Perron integrable functions f requires
that g be equivalent to a function of bounded variation.

Conversely suppose that Γ(f) =
∫ b
a
f(t)g(t) dt does hold for all f ∈ DP[a, b]

where g is equivalent to a function of bounded variation. Then this is a con-
tinuous linear functional on the space DP[a, b] furnished with the Alexiewicz
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norm topology τA. Since the topology here on DP[a, b] is finer than the topol-
ogy generated by the Alexiewicz norm this function is also a continuous linear
functional on this space.

Now we see that the space DP[a, b] furnished with the Alexiewicz norm
or furnished with the τ topology has the same family of continuous linear
functionals. It is then a consequence of the Mackey-Arens theorem (see, for
example, [21, pp. 131-132] or [12, p. 205]) that this requires that the Alexiewicz
norm generates a finer topology than the τ topology (indeed τA must generate
the finest topology having this class of continuous linear functionals). But we
already noted that τ is finer than τA. This proves the equivalence of the two
topologies.

As a final remark we recall our worry that the Alexiewicz norm may not
supply the most natural topology for this space. In light of this theorem it
seems that it does.
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