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Abstract

Our purpose is to study a generalized Stieltjes integral defined on a
class of subsets of a closed number interval. We extend the results of
previous work by the first author. Among other results, we prove that

• If M ⊆ [a, b] and f and g are functions with domain M such that
f is g-integrable over M , and there exist left (right) extensions f∗

and g∗ of f and g to [a, b], respectively, then f∗ is g∗- integrable
on [a, b] and Z b

a

f∗dg∗ =

Z
M

fdg

• Suppose that F and G are functions with domain including [a, b]
such that

(a) F is G-integrable on [a, b],

(b) M ⊆ [a, b], and a, b ∈M
(c) if z belongs to [a, b]−M and ε is a positive number, then there

is an open interval s containing z such that
|F (x) − F (z)||G(v) − G(u)| < ε where each of u, v, and x
is in s ∩ [a, b], u < z < v, and u ≤ x ≤ v.

Then F is G-integrable on M , and
R b

a
FdG =

R
M

FdG.
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1 Introduction.

The Riemann-Stieltjes integral remains a topic of significant interest. See,
for example, D’yachkov [8], Kats [12], Liu and Zhao [13], and Tseytlin [18].
Modifications of the Stieltjes integral abound. One only has to sample some
of the most recent papers. For some interesting results, see B. Bongiorno and
L. Di Piazza [1], A.G. Das and Gokul Sahu [7], Ch. S. Hönig [11], Supriya
Pal, D.K. Ganguly and Lee Peng Yee [15], Š. Schwabik, M. Tvrdỳ, and O.
Vejvoda [16], Swapan Kumar Ray and A.G. Das [17], and Ju Han Yoon and
Byung Moo Kim [22].

In this paper, we investigate a modified Stieltjes integral defined on arbi-
trary number sets. A special case of this integral was first defined by Coppin
[3] and Vance [21] where the integral was defined over dense subsets of an in-
terval containing the end points of that interval. Coppin and Vance [6] showed
necessary and sufficient conditions for f to be g-integrable on a dense subset
of [a, b] where f |M and g|M do not have common points of discontinuity.
Vance [21] gave a characterization of bounded linear functionals. He proved a
representation theorem for bounded linear functionals with domain being the
set of all real-valued, quasi-continuous functions defined on a closed interval.

Let ∆ denote the set of all dense subsets of [a, b] which contain a and b.
Coppin [4] gave conditions where f is g-integrable on M ′ in ∆ provided f is
g-integrable on M in ∆ and M ⊂ M ′. He showed that if f is g-integrable on
some uncountable member of ∆, then f is g-integrable on uncountable many
members of ∆. In addition, he proved that if M is a countable member M of
∆, then there are real-valued functions f and g with domain [a, b] such that
f is g-integrable on M and no other member of ∆. Coppin [5] added to the
results of [6] by showing that f is g-integrable on M in ∆ and f |M and g|M
have no common points of discontinuity if and only if f is g-integrable on each
subset of M which is a member of ∆. Also, in [5], it is proved that if M ∈ ∆,
f and g are functions defined on [a, b] which have no common discontinuities
from the left at z nor common discontinuities from the right at z and f is g-
integrable on M , then f is g-integrable on M ∪{z} and

∫
M∪{z} fdg =

∫
M
fdg.

In [5], it is shown that if f and g are functions with domain [a, b] and f and
g have no common discontinuities from the left nor common discontinuities
from the right, then the set { w : w =

∫
M
fdg for M ∈ ∆} is connected.

In this paper, we study a Stieltjes integral defined over arbitrary number
sets not merely those of [3] and [21]. We compare this integral with the
partition-refinement Stieltjes integral.
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2 Preliminary Definitions.

We give the definitions and conventions used in this paper.
In general, an interval (or an interval of M) is a set [c, d]M = [c, d] ∩M

where c and d belong to M and c < d. Two intervals, A and B, are said
to be nonoverlapping if and only if A ∩ B does not contain an interval. A
nonempty collection of intervals is said to be nonoverlapping if and only if
each two distinct members of the collection are nonoverlapping.

In this paper, all functions are bounded real-valued functions.

Definition 2.1. If M is a number set, then D is said to be a partition of M if
and only if D is a finite collection of non-overlapping subintervals of M . E(D)
denotes the set of end points of members of D.

Definition 2.2. If M is a number set and D is a partition of M , then D′

is said to be a refinement of D if and only if D′ is a partition of M and
E(D) ⊆ E(D′).

Definition 2.3. If D is a nonempty collection of intervals, then δ is said to
be a choice function on D if and only if δ is a function with domain D such
that δ(d) ∈ d for each d in D.

Definition 2.4. If D is a partition of a number set M , δ is a choice function
on D, and f and g are functions with domain including ∪D, then

Σ(f, g,D, δ) =
∑

[p,q]M∈D

f(δ([p, q]M )) · [g(q)− g(p)].

Definition 2.5. Suppose that M is a number set and f and g are functions
with domain including M . Then f is said to be g-integrable on M if and only
if there exists a number W (called “an integral of f with respect to g” and
denoted by

∫
M
fdg) such that for each ε > 0, there is a partition D of M such

that
|W − Σ(f, g,D′, δ)| < ε

for each refinement D′ of D and each choice function δ on D′.

We follow the style of [2] and call the integral of this paper Definition D.
Definition C will refer to the definition found on page 305 of [2], the usual
partition-refinement version of the Stieltjes integral.
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3 A Joint Cauchy Criterion for Limits.

Definition 3.1. Suppose M is a set of numbers. The statement that D
is a direction in M (or direction D, if ambiguity exists) means that D is a
nonempty collection of intervals of M such that for each two sets S1 and S2

in D there is a member S3 in D such that S3 is a subset of S1 ∩ S2 .

Definition 3.2. Suppose f is a function with domain including a number set
M and D is a direction in M . Then the statement that f has a limit according
to D means that there is a number L (written limD f) such that if ε > 0 ,
there is an S ∈ D such that |L− f(x)| < ε for each x ∈ S.

From McCleod [14], we have the following theorem.

Theorem 3.1. (Cauchy Criterion for Limits). Suppose D is a direction in
M and f is a function with domain including M . Then limD f exists if and
only if for every ε > 0 there is an S ∈ D such that |f(u)− f(v)| < ε for all u
and v in S.

We have our own generalization of Theorem 3.1 which, of course, we will
find useful later.

Theorem 3.2. (Joint Cauchy Criterion for Limits). Suppose D is a direction
in M , and f are g are bounded functions with domain including M . Then
limD f exists or limD g exists if and only if for each ε > 0 there is an S ∈ D
such that |f(u)− f(v)||g(s)− g(r)| < ε for each u, v, r and s in S.

Proof. (⇒). Suppose that limD f or limD g exists. For the sake of argument,
we assume that limD f exists. Because g is bounded, we know there is A > 0
such that

|g(x)| < A (1)

for each x ∈ M . Let ε > 0. Because limD f exists, by Theorem 3.1, for
ε/2A > 0, there is an S in D such that

|f(u)− f(v)| < ε

2A
(2)

for each u and v in S. From (1) above, we have

|g(s)− g(r)| < 2A (3)

for each r and s in M and, therefore, each r and s in S. From (2) and (3),
|f(u)− f(v)||g(s)− g(r)| < ε for each u, v, r, and s in S.
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Proof. (⇐). Suppose that for each ε > 0 there is some S in D such that

|f(u)− f(v)||g(s)− g(r)| < ε (4)

for each u, v, r, and s in S. For the sake of argument, assume that limD f does
not exist. Thus, by Definition 3.2, there is ρ > 0 such that for any S in D and
some u and v in S

|f(u)− f(v)| ≥ ρ.

We will show that this assumption leads to the fact that limD g must exist.
Suppose ε > 0. From (4), for ρε > 0, there is some S in D such that

|f(u)− f(v)||g(s)− g(r)| < ρε (5)

for each u, v, r and s in S. However, there are u, v ∈ S such that

|f(u)− f(v)| ≥ ρ. (6)

Thus from (5) and (6) we obtain ρ|g(s)−g(r)| ≤ |f(u)−f(v)||g(s)−g(r)| < ρε,
or |g(s) − g(r)| < ε for each s, r in S. Therefore by Definition 3.2, we know
that limD g exists.

Corollary 3.3. limD f exists or limD g exists if and only if for each ε > 0
there is an S ∈ D such that |f(u)− f(v)||g(s)− g(r)| < ε for each u, v, r and
s in S where r ≤ u ≤ s and r ≤ v ≤ s.

Proof. (⇒). This follows immediately from Theorem 3.2.

Proof. (⇐). Assume the hypothesis and that both limD f and limD g do not
exist.

Then, by Definition 3.2, for some ε1 > 0 and each S ∈ D there are u, v ∈ S
such that |f(u)− f(v)| ≥ ε1. Likewise, for some ε2 > 0 and each S ∈ D there
are r, s ∈ S such that |g(s)− g(r)| ≥ ε2.

For ε1ε2 > 0, by hypothesis, there is some S ∈ D where

|f(u)− f(v)||g(s)− g(r)| < ε1ε2 (7)

for each u, v, r and s in S where r ≤ u ≤ s and r ≤ v ≤ s.
Now, arbitrarily choose r, s ∈ S. We can assume r < s. There are u, v ∈ S

such that r ≤ u, v ≤ s and |f(u)− f(v)| ≥ ε1. From (7), we have

|g(s)− g(r)|ε1 < |f(u)− f(v)||g(s)− g(r)| < ε1ε2
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or

|g(s)− g(r)| < ε2

for each r, s in S. This is in direct contradiction to the third sentence of this
proof.

4 Transformation from Definition D to Definition C.

Definition 4.1. Suppose M ⊆ [a, b]. Then a gap G in M (or gap G if no
ambiguity exists) is a maximal connected subset of (a, b) which contains no
points of M .

Definition 4.2. Suppose M is a set and G is a gap. In this definition, we
follow the style of Hewitt and Stromberg [9], page 54, for the meaning of
interval. We now define the following directions:

DG is the collection of all intervals containing a point of G, right end point
in M and left end point in M .

D+
G is the collection of all intervals with left end point in M and right end

point in the gap G.

D−G is the collection of all intervals with right end point in M and left end
point in the gap G.

Theorem 4.1. If f is a function with domain including a number set M , G
is a gap in M , and limDG

f exists, then limD+
G
f and limD−G

f exist and

lim
DG

f = lim
D+

G

f = lim
D−G

f.

Proof. Suppose f is a function with domain including a number set M , G is
a gap in M , and limDG

f exists, which we denote by L.
Let ε > 0. Then since limDG

f exists, there is an S ∈ DG such that
|L − f(x)| < ε for each x ∈ S. Now, let S+ be a member of D+

G where
S+ ⊆ S. Then |L− f(x)| < ε for each x ∈ S+. Thus by definition of limD+

G
f ,

we know that limD+
G
f = L. Likewise we can prove that limD−G

f exists and
limD−G

f = L.
Therefore limDG

f = limD+
G
f = limD−G

f . �
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Theorem 4.2. If f and g are functions with domain M ⊆ [a, b] such that f
is g-integrable on M and G is a gap in M , then limD−G

f and limD+
G
f exist or

limD−G
g exists and limD+

G
g exist.

Proof. In the following argument, the direction D is DG for some gap G.
Suppose ε > 0. Since f is g-integrable on M , there is a number W and a

partition P of M such that

|W −
∑

P ′∈P

f(x)[g(q)− g(p)]| < ε

2
(8)

for any refinement P ′ of P and for all [p, q]M in P ′ and any x in [p, q]M .
Let [c, d]M be the member of P where G ⊆ [c, d]. Note that S = [c, d]M ∈

D . Let r, s, u, v be arbitrary members of S. For the sake of argument, assume
r ≤ s and r ≤ u, v ≤ s. Let P ′ be the refinement of P such that E(P ′) =
E(P ) ∪ {r, s}.

Let T =
∑
f(x)[g(q) − g(p)] where x = p for each [p, q]M ∈ P ′ except in

the case when [p, q]M = [r, s]M we let x = u. Let U be defined in the same
manner as T except in the case [p, q]M = [r, s]M we let x = v.

From (8), we have

|W − T | < ε

2
and |W − U | < ε

2
.

Adding and applying the triangle inequality for absolute values, we obtain

|U − T | < ε.

It can easily be shown that

U − T = [f(v)− f(u)][g(s)− g(r)].

So
|[f(v)− f(u)][g(s)− g(r)]| < ε.

In summary, for any ε > 0 there is S ∈ D containing G such that for any r
and s in M where [r, s] ⊆ D and any u and v in M where r ≤ u ≤ s and
r ≤ v ≤ s we have that

|[f(u)− f(v)][g(s)− g(r)]| < ε.

Thus by Corollary 3.3, limD f exists or limD g exists. By Theorem 4.1,
limD−G

f and limD+
G
f exist or limD−G

g exists and limD+
G
g exist. �
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Theorem 4.3. If f is a function with domain M ⊆ [a, b], z is a member
of [a, b] −M which is a limit point of the domain of f |[a, z], then there is a
number c such that (z, c) is a limit point of the graph of f |[a, z]. Similarly, if
z is a limit point of the domain of f |[z, b], then there is a number c such that
(z, c) is a limit point of the graph of f |[z, b].

Proof. The proof is a straight forward application of the Heine-Borel The-
orem applied to the vertical interval {(z, t) : −B ≤ t ≤ B} where B is a
common positive bound for |f | and |g|.

Definition 4.3. In Theorem 4.3 c is said to be a quasi-end value.

Definition 4.4. Suppose f is a function with domain M ⊆ [a, b]. By f∗ we
mean a function such that

(a) f∗(x) = f(x) for each x ∈M , and

(b) if x ∈ [a, b] −M and G is a gap containing x, then f∗(x) is equal to a
quasi-end value of f with respect to G. It is understood that when there
is more than one choice for f∗(x) then only one choice is made and is
the same for each value in G.

f∗ will be known as an extension of f to [a, b]. If quasi-left end values are used
consistently for each gap, then f∗ is known as a left extension of f on [a, b].
Right extensions are defined in a similar fashion.

Theorem 4.4. If f and g are functions with domain M ⊆ [a, b], a ≤ r∗ ≤
x∗ ≤ s∗ ≤ b where r∗, x∗, s∗ are in M , and ε > 0, then

(a) if a ∈ M , there are left extensions f∗ and g∗ of f and g to [a, b], respec-
tively, and there are numbers r, s and x in M such that a ≤ r ≤ r∗, r ≤
x ≤ x∗, x ≤ s ≤ s∗ and |f∗(x∗)[g∗(s∗)− g∗(r∗)]− f(x)[g(s)− g(r)]| < ε
and

(b) if b ∈M , there are right extensions f∗ and g∗ of f and g to [a, b], respec-
tively, and there are numbers r, s and x in M such that r∗ ≤ r ≤ x,
x∗ ≤ x ≤ s, s∗ ≤ s ≤ b and |f∗(x∗)[g∗(s∗)−g∗(r∗)]−f(x)[g(s)−g(r)]| <
ε.

Proof. For (a) suppose a ≤ r∗ ≤ x∗ ≤ s∗ ≤ b where r∗, x∗, s∗ are in
M . Suppose ε > 0 and B is a positive common bound of |f | and |g|. Let
ε′ = min{ε/6B,

√
ε/6}. Since a ≤ r∗, let z = inf(M ∩ [a, r∗]). If z ∈ M , let

r = z. If not, z is a limit point of M . In the latter case, by Theorem 4.3,
there is a point with abscissa z which is a limit point of the graph of g|[a, z].
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Thus, there is a member r of M such that a ≤ r ≤ r∗ and g(r) = g∗(r∗) + δ1
where |δ1| < ε′. Similarly, there is a member x ∈M such that r ≤ x ≤ x∗ and
f(x) = f∗(x∗) + δ2 where |δ2| < ε′. In like manner, there is a member s ∈M
such that r ≤ x ≤ x∗ and g(s) = g∗(s∗) + δ3 where |δ3| < ε′. Then

|f∗(x∗)[g∗(s∗)− g∗(r∗)]− f(x)[g(s)− g(r)]|
= |[f(x) + δ2][g(s) + δ3 − g(r)− δ1]− f(x)[g(s)− g(r)]|
= |f(x)[g(s)− g(r)] + f(x)[δ3 − δ1] + δ2[g(s)− g(r)] + δ2[δ3 − δ1]−
f(x)[g(s)− g(r)]| ≤ |f(x)[δ3 − δ1]|+ δ2[g(s)− g(r)]|+ δ2[δ3 − δ1]|

< B
2ε
6B

+
ε

6B
2B +

2ε
6

=
e

3
+
e

3
+
e

3
= ε.

Thus, |f∗(x∗)[g∗(s∗)− g∗(r∗)]− f(x)[g(s)− g(r)]| < ε.
The proof of (b) is similar to (a).

Theorem 4.5. If M ⊆ [a, b], f and g are functions with domain M such that
f is g-integrable over M , and there are left (right) extensions f∗ and g∗ of f
and g to [a, b], respectively, then f∗ is g∗- integrable on [a, b] and∫ b

a

f∗dg∗ =
∫

M

fdg

Proof. Suppose M ⊆ [a, b] and f and g are functions with domain M such
that f is g-integrable on M . Let W =

∫
M
fdg and f∗, g∗ be left (right)

extensions of f and g, respectively. For the sake of argument we assume left
extensions of f and g. There is no loss of generality if a, b ∈ M . Suppose
ρ > 0. Thus, there is a partition D of M such that

|W −
∑

f(x)[g(q)− g(p)]| < ρ

2
(9)

for any refinement D′ of D and for all [p, q]M in D′ and any x ∈ [p, q]M .
Now, we construct D′ and δ. Let P be a partition of [a, b] such that

E(P ) = E(D) and let P ′ be an arbitrary refinement of P . Now, we will
construct a refinement D′ of D such that

|
∑

(f, g,D′, δ)−
∑

(f∗, g∗, P ′, δ′)| < ρ

2
where δ′ is any choice function on P ′ and δ is a specific choice function on D′

yet to be described.
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Let N be the number of elements in P ′. Denote P ′ = {[u∗k−1, u
∗
k]}Nk=1. We

start by choosing ε in the preceding theorem to be ρ/2N . Consider [u∗0, u
∗
1] of

P ′ and x∗ = δ′([u∗0, u
∗
1]). Then, by Theorem 4.4, we obtain numbers u0, u1,

and x0 in M such that a ≤ u0 ≤ u∗0 ≤ x ≤ x∗ ≤ u1 ≤ u∗1 ≤ b and

|f∗(x∗0)[g∗(u∗1)− g∗(u∗0)]− f(x0)[g(u1)− g(u0)]| < ρ

2N
.

Now, consider numbers u1, u
∗
2, and x∗1. There are numbers x1 and u2 such

that u1 ≤ x1 ≤ x∗1 ≤ u2 ≤ u∗2 and

|f∗(x∗1)[g∗(u∗2)− g∗(u∗1)]− f(x1)[g(u2)− g(u1)]| < ρ

2N
.

Then, we continue to apply the process for k = 2 to k = N to generate the
following inequalities:

|f∗(x∗k−1)[g∗(u∗k)− g∗(u∗k−1)]− f(x1)[g(uk)− g(uk−1)]| < ρ

2N
.

for k = 1 to N .
Adding the above N inequalities and with application of the triangle in-

equality, we obtain the following:

|
∑

(f, g,D′, δ)−
∑

(f∗, g∗, P ′, δ′)| < ρ

2
(10)

where D′ = {[uk−1, uk]}Nk=1 and δ([uk−1, uk]) = xk for k = 1 to N . Now, we
have D′ and δ.

Adding (9) and (10), we obtain

|W −
∑

(f∗, g∗, P ′, δ′)| < ρ.

where P ′ is any refinement of P and δ′ is any choice function on P ′.
Therefore f∗ is g∗-integrable on [a, b] and

∫ b

a
f∗dg∗ =

∫
M
fdg.

Theorem 4.6. Suppose that F and G are functions with domain including
[a, b] such that

(a) F is G-integrable on [a, b],

(b) M = [a, b], a, b ∈M ,

(c) if z belongs to [a, b] −M and ε is a positive number, then there is an
open interval s containing z such that |F (x) − F (z)||G(v) − G(u)| < ε
where each of u, v, and x is in s ∩ [a, b], u < z < v, and u ≤ x ≤ v.
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Then F is G-integrable on M and
∫ b

a
FdG =

∫
M

FdG.

Proof. Suppose ε > 0. Since F is G-integrable on [a, b], there is a partition
D of [a, b] such that, if D′ is a refinement of D, then

∣∣∣ b∫
a

FdG−
∑

(F,G,D′, δ)
∣∣∣ < ε

2

for each choice function δ on D′.
For the sake of argument let us take the case that an element of D has an

end point not belonging to M .
Suppose A = E(D)∩M c which can be written as A = {x1, x2, x3, . . . , xN}.

By parts (b) and (c) of the hypothesis, there is a collection G = {(ri, si) : i =
1, 2, . . . , N} of disjoint open subintervals of [a, b] with end points in M , each
of which contains exactly one element of A, contains no point of E(D) ∩M ,
and, if xi belongs to A, then

|F (x)− F (xi)||G(v)−G(u)| < ε

2N
(11)

for each u, v and x in (ri, si) ∩ [a, b] where u < xi < v, u ≤ x ≤ v for
i = 1, 2, . . . , N .

Let D′ denote the refinement of D where E(D′) = E(D) ∪
{r1, s1, r2, s2, . . . , rN , sN}. Let P denote a partition of M such that E(P ) =
E(D′) ∩M . Suppose that P ′ is any refinement of P . For i = 1, 2, . . . , N , let
[ci, di]M denote the element of P ′ such that ci < xi < di.

From (11), since ci,di and xi are in (ri, si) ∩ [a, b], we have∣∣F (x)[G(di)−G(ci)]− F (xi)[G(xi)−G(ci)]

− F (xi)[G(di)−G(xi)]
∣∣ < ε

2N
(12)

where x is any number in [ci, di]M , i = 1, 2, . . . , N . Since there are N elements
in A, from (12) we have

∣∣∣ N∑
i=1

F (x)[G(di)−G(ci)]−
N∑

i=1

F (xi)[G(xi)−G(ci)]

−
N∑

i=1

F (xi)[G(di)−G(xi)]
∣∣∣ < ε

2
. (13)
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Let D′′ denote a refinement of D such that E(D′′) = E(P ′) ∪ E(D). Let
QP ′ = {[ci, di]M}Ni=1 and QD′′ = {[ci, xi]}Ni=1 ∪ {[xi, di]}Ni=1.

Let ρ be any choice function on P ′ and let δ′ be the choice function on
D′′ defined as δ′([p, q]) = ρ([p, q]M ) for each [p, q]M in P ′ − QP ′ , each [p, q]
in D′′ − QD′′ and δ′([ci, xi]) = δ′([xi, di]) = xi, i = 1, 2, . . . , N . Thus, (13)
becomes ∣∣∣∑(F,G,QP ′ , ρ)−

∑
(F,G,QD′′ , δ

′)
∣∣∣ < ε

2
. (14)

We also have ∑
(F,G,D′′ −QD′′ , δ

′) =
∑

(F,G, P ′ −QP ′ , ρ) (15)

and ∑
(F,G,D′′, δ′) =

∑
(F,G,QD′′ , δ

′) +
∑

(F,G,D′′ −QD′′ , δ
′) (16)

and ∑
(F,G, P ′, ρ) =

∑
(F,G,QP ′ , ρ) +

∑
(F,G, P ′ −QP ′ , ρ). (17)

Substituting (15) into (16), we obtain

∑
(F,G,D′′, δ′) =

∑
(F,G,QD′′ , δ

′) +
∑

(F,G, P ′ −QP ′ , ρ). (18)

Computing the difference between the left sides of (17) and (18) and sub-
stituting into (14) yields∣∣∣∑(F,G, P ′, ρ)−

∑
(F,G,D′′, δ′)

∣∣∣ < ε

2
. (19)

Then, we have from (4)∣∣∣∣∣∣
b∫

a

FdG−
∑

(F,G,D′′, δ′)

∣∣∣∣∣∣ < ε

2
. (20)

Combining (19) and (20), we have∣∣∣∣∣∣
b∫

a

FdG−
∑

(F,G, P ′, ρ)

∣∣∣∣∣∣ < ε

for each choice function ρ on P ′.
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Therefore, by definition, F is G-integrable on M and, by the uniqueness

of the integral,
b∫

a

FdG =
∫
M

FdG.
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