Charles Coppin, Department of Mathematics, Lamar University, P.O. Box 10047, Beaumont, TX 77710. email: ccoppin@gt.rr.com Philip Muth, 1607 Nandina Dr, Apt 1328, Arlington, TX 76014. email: philmuth@yahoo.com

A STUDY OF A STIELTJES INTEGRAL DEFINED ON ARBITRARY NUMBER SETS

Abstract

Our purpose is to study a generalized Stieltjes integral defined on a class of subsets of a closed number interval. We extend the results of previous work by the first author. Among other results, we prove that

• If $M \subseteq [a, b]$ and f and g are functions with domain M such that f is g-integrable over M, and there exist left (right) extensions f^* and g^* of f and g to [a, b], respectively, then f^* is g^* - integrable on [a, b] and

$$\int_{a}^{b} f^* dg^* = \int_{M} f dg$$

- Suppose that F and G are functions with domain including [a,b] such that
 - (a) F is G-integrable on [a, b],
 - (b) $\overline{M} \subseteq [a, b]$, and $a, b \in M$
 - (c) if z belongs to [a, b] M and ϵ is a positive number, then there is an open interval s containing z such that $|F(x) - F(z)||G(v) - G(u)| < \epsilon$ where each of u, v, and x is in $s \cap [a, b]$, u < z < v, and $u \le x \le v$.

Then F is G-integrable on M, and $\int_a^b F dG = \int_M F dG$.

Mathematical Reviews subject classification: 26A42

Key Words: Stieltjes integral

Received by the editors March 19, 2007 Communicated by: Stefan Schwabik

^{*}This research was partially supported by the O'Hara Chemical Sciences Institute at the University of Dallas.

⁴¹⁷

1 Introduction.

The Riemann-Stieltjes integral remains a topic of significant interest. See, for example, D'yachkov [8], Kats [12], Liu and Zhao [13], and Tseytlin [18]. Modifications of the Stieltjes integral abound. One only has to sample some of the most recent papers. For some interesting results, see B. Bongiorno and L. Di Piazza [1], A.G. Das and Gokul Sahu [7], Ch. S. Hönig [11], Supriya Pal, D.K. Ganguly and Lee Peng Yee [15], Š. Schwabik, M. Tvrdỳ, and O. Vejvoda [16], Swapan Kumar Ray and A.G. Das [17], and Ju Han Yoon and Byung Moo Kim [22].

In this paper, we investigate a modified Stieltjes integral defined on arbitrary number sets. A special case of this integral was first defined by Coppin [3] and Vance [21] where the integral was defined over dense subsets of an interval containing the end points of that interval. Coppin and Vance [6] showed necessary and sufficient conditions for f to be g-integrable on a dense subset of [a, b] where f|M and g|M do not have common points of discontinuity. Vance [21] gave a characterization of bounded linear functionals. He proved a representation theorem for bounded linear functionals with domain being the set of all real-valued, quasi-continuous functions defined on a closed interval.

Let Δ denote the set of all dense subsets of [a, b] which contain a and b. Coppin [4] gave conditions where f is g-integrable on M' in Δ provided f is g-integrable on M in Δ and $M \subset M'$. He showed that if f is g-integrable on some uncountable member of Δ , then f is q-integrable on uncountable many members of Δ . In addition, he proved that if M is a countable member M of Δ , then there are real-valued functions f and g with domain [a, b] such that f is g-integrable on M and no other member of Δ . Coppin [5] added to the results of [6] by showing that f is g-integrable on M in Δ and f|M and g|Mhave no common points of discontinuity if and only if f is g-integrable on each subset of M which is a member of Δ . Also, in [5], it is proved that if $M \in \Delta$, f and g are functions defined on [a, b] which have no common discontinuities from the left at z nor common discontinuities from the right at z and f is gintegrable on M, then f is g-integrable on $M \cup \{z\}$ and $\int_{M \cup \{z\}} f dg = \int_M f dg$. In [5], it is shown that if f and g are functions with domain [a, b] and f and g have no common discontinuities from the left nor common discontinuities from the right, then the set { $w : w = \int_M f dg$ for $M \in \Delta$ } is connected.

In this paper, we study a Stieltjes integral defined over arbitrary number sets not merely those of [3] and [21]. We compare this integral with the partition-refinement Stieltjes integral.

2 Preliminary Definitions.

We give the definitions and conventions used in this paper.

In general, an interval (or an interval of M) is a set $[c, d]_M = [c, d] \cap M$ where c and d belong to M and c < d. Two intervals, A and B, are said to be nonoverlapping if and only if $A \cap B$ does not contain an interval. A nonempty collection of intervals is said to be nonoverlapping if and only if each two distinct members of the collection are nonoverlapping.

In this paper, all functions are bounded real-valued functions.

Definition 2.1. If M is a number set, then D is said to be a partition of M if and only if D is a finite collection of non-overlapping subintervals of M. E(D) denotes the set of end points of members of D.

Definition 2.2. If M is a number set and D is a partition of M, then D' is said to be a refinement of D if and only if D' is a partition of M and $E(D) \subseteq E(D')$.

Definition 2.3. If *D* is a nonempty collection of intervals, then δ is said to be a choice function on *D* if and only if δ is a function with domain *D* such that $\delta(d) \in d$ for each *d* in *D*.

Definition 2.4. If *D* is a partition of a number set *M*, δ is a choice function on *D*, and *f* and *g* are functions with domain including $\cup D$, then

$$\Sigma(f, g, D, \delta) = \sum_{[p,q]_M \in D} f(\delta([p,q]_M)) \cdot [g(q) - g(p)].$$

Definition 2.5. Suppose that M is a number set and f and g are functions with domain including M. Then f is said to be g-integrable on M if and only if there exists a number W (called "an integral of f with respect to g" and denoted by $\int_M f dg$) such that for each $\varepsilon > 0$, there is a partition D of M such that

$$|W - \Sigma(f, g, D', \delta)| < \varepsilon$$

for each refinement D' of D and each choice function δ on D'.

We follow the style of [2] and call the integral of this paper Definition D. Definition C will refer to the definition found on page 305 of [2], the usual partition-refinement version of the Stieltjes integral.

3 A Joint Cauchy Criterion for Limits.

Definition 3.1. Suppose M is a set of numbers. The statement that D is a direction in M (or direction D, if ambiguity exists) means that D is a nonempty collection of intervals of M such that for each two sets S_1 and S_2 in D there is a member S_3 in D such that S_3 is a subset of $S_1 \cap S_2$.

Definition 3.2. Suppose f is a function with domain including a number set M and D is a direction in M. Then the statement that f has a limit according to D means that there is a number L (written $\lim_{D} f$) such that if $\epsilon > 0$, there is an $S \in D$ such that $|L - f(x)| < \epsilon$ for each $x \in S$.

From McCleod [14], we have the following theorem.

Theorem 3.1. (Cauchy Criterion for Limits). Suppose D is a direction in M and f is a function with domain including M. Then $\lim_D f$ exists if and only if for every $\epsilon > 0$ there is an $S \in D$ such that $|f(u) - f(v)| < \epsilon$ for all u and v in S.

We have our own generalization of Theorem 3.1 which, of course, we will find useful later.

Theorem 3.2. (Joint Cauchy Criterion for Limits). Suppose D is a direction in M, and f are g are bounded functions with domain including M. Then $\lim_D f$ exists or $\lim_D g$ exists if and only if for each $\epsilon > 0$ there is an $S \in D$ such that $|f(u) - f(v)||g(s) - g(r)| < \epsilon$ for each u, v, r and s in S.

PROOF. (\Rightarrow). Suppose that $\lim_D f$ or $\lim_D g$ exists. For the sake of argument, we assume that $\lim_D f$ exists. Because g is bounded, we know there is A > 0 such that

$$|g(x)| < A \tag{1}$$

for each $x \in M$. Let $\epsilon > 0$. Because $\lim_D f$ exists, by Theorem 3.1, for $\epsilon/2A > 0$, there is an S in D such that

$$|f(u) - f(v)| < \frac{\epsilon}{2A} \tag{2}$$

for each u and v in S. From (1) above, we have

$$|g(s) - g(r)| < 2A \tag{3}$$

for each r and s in M and, therefore, each r and s in S. From (2) and (3), $|f(u) - f(v)||g(s) - g(r)| < \epsilon$ for each u, v, r, and s in S. \Box

PROOF. (\Leftarrow). Suppose that for each $\epsilon > 0$ there is some S in D such that

$$|f(u) - f(v)||g(s) - g(r)| < \epsilon \tag{4}$$

421

for each u, v, r, and s in S. For the sake of argument, assume that $\lim_D f$ does not exist. Thus, by Definition 3.2, there is $\rho > 0$ such that for any S in D and some u and v in S

$$|f(u) - f(v)| \ge \rho$$

We will show that this assumption leads to the fact that $\lim_D g$ must exist. Suppose $\epsilon > 0$. From (4), for $\rho \epsilon > 0$, there is some S in D such that

$$|f(u) - f(v)||g(s) - g(r)| < \rho\epsilon \tag{5}$$

for each u, v, r and s in S. However, there are $u, v \in S$ such that

$$|f(u) - f(v)| \ge \rho. \tag{6}$$

Thus from (5) and (6) we obtain $\rho|g(s)-g(r)| \leq |f(u)-f(v)||g(s)-g(r)| < \rho\epsilon$, or $|g(s)-g(r)| < \epsilon$ for each s, r in S. Therefore by Definition 3.2, we know that $\lim_{D} g$ exists. \Box

Corollary 3.3. $\lim_{D} f$ exists or $\lim_{D} g$ exists if and only if for each $\epsilon > 0$ there is an $S \in D$ such that $|f(u) - f(v)||g(s) - g(r)| < \epsilon$ for each u, v, r and s in S where $r \le u \le s$ and $r \le v \le s$.

PROOF. (\Rightarrow) . This follows immediately from Theorem 3.2.

PROOF. (\Leftarrow). Assume the hypothesis and that both $\lim_D f$ and $\lim_D g$ do not exist.

Then, by Definition 3.2, for some $\epsilon_1 > 0$ and each $S \in D$ there are $u, v \in S$ such that $|f(u) - f(v)| \ge \epsilon_1$. Likewise, for some $\epsilon_2 > 0$ and each $S \in D$ there are $r, s \in S$ such that $|g(s) - g(r)| \ge \epsilon_2$.

For $\epsilon_1 \epsilon_2 > 0$, by hypothesis, there is some $S \in D$ where

$$|f(u) - f(v)||g(s) - g(r)| < \epsilon_1 \epsilon_2 \tag{7}$$

for each u, v, r and s in S where $r \leq u \leq s$ and $r \leq v \leq s$.

Now, arbitrarily choose $r, s \in S$. We can assume r < s. There are $u, v \in S$ such that $r \leq u, v \leq s$ and $|f(u) - f(v)| \geq \epsilon_1$. From (7), we have

$$|g(s) - g(r)|\epsilon_1 < |f(u) - f(v)||g(s) - g(r)| < \epsilon_1 \epsilon_2$$

or

$$|g(s) - g(r)| < \epsilon_2$$

for each r, s in S. This is in direct contradiction to the third sentence of this proof. \Box

4 Transformation from Definition D to Definition C.

Definition 4.1. Suppose $\overline{M} \subseteq [a, b]$. Then a gap G in M (or gap G if no ambiguity exists) is a maximal connected subset of (a, b) which contains no points of M.

Definition 4.2. Suppose M is a set and G is a gap. In this definition, we follow the style of Hewitt and Stromberg [9], page 54, for the meaning of interval. We now define the following directions:

- D_G is the collection of all intervals containing a point of G, right end point in M and left end point in M.
- D_G^+ is the collection of all intervals with left end point in M and right end point in the gap G.
- D_G^- is the collection of all intervals with right end point in M and left end point in the gap G.

Theorem 4.1. If f is a function with domain including a number set M, G is a gap in M, and $\lim_{D_G} f$ exists, then $\lim_{D_G^+} f$ and $\lim_{D_G^-} f$ exist and

$$\lim_{D_G} f = \lim_{D_G^+} f = \lim_{D_G^-} f.$$

Proof. Suppose f is a function with domain including a number set M, G is a gap in M, and $\lim_{D_G} f$ exists, which we denote by L.

Let $\epsilon > 0$. Then since $\lim_{D_G} f$ exists, there is an $S \in D_G$ such that $|L - f(x)| < \epsilon$ for each $x \in S$. Now, let S^+ be a member of D_G^+ where $S^+ \subseteq S$. Then $|L - f(x)| < \epsilon$ for each $x \in S^+$. Thus by definition of $\lim_{D_G^+} f$, we know that $\lim_{D_G^+} f = L$. Likewise we can prove that $\lim_{D_G^-} f$ exists and $\lim_{D_G^-} f = L$.

Therefore $\lim_{D_G} f = \lim_{D_G^+} f = \lim_{D_G^-} f$. \Box

422

Theorem 4.2. If f and g are functions with domain $M \subseteq [a, b]$ such that f is g-integrable on M and G is a gap in M, then $\lim_{D_G^-} f$ and $\lim_{D_G^+} f$ exist or $\lim_{D_G^-} g$ exists and $\lim_{D_G^+} g$ exist.

Proof. In the following argument, the direction D is D_G for some gap G.

Suppose $\epsilon > 0$. Since f is g-integrable on M, there is a number W and a partition P of M such that

$$|W - \sum_{P' \in P} f(x)[g(q) - g(p)]| < \frac{\epsilon}{2}$$
(8)

423

for any refinement P' of P and for all $[p,q]_M$ in P' and any x in $[p,q]_M$.

Let $[c, d]_M$ be the member of P where $G \subseteq [c, d]$. Note that $S = [c, d]_M \in D$. Let r, s, u, v be arbitrary members of S. For the sake of argument, assume $r \leq s$ and $r \leq u, v \leq s$. Let P' be the refinement of P such that $E(P') = E(P) \cup \{r, s\}$.

Let $T = \sum f(x)[g(q) - g(p)]$ where x = p for each $[p, q]_M \in P'$ except in the case when $[p, q]_M = [r, s]_M$ we let x = u. Let U be defined in the same manner as T except in the case $[p, q]_M = [r, s]_M$ we let x = v.

From (8), we have

$$|W-T| < \frac{\epsilon}{2}$$
 and $|W-U| < \frac{\epsilon}{2}$

Adding and applying the triangle inequality for absolute values, we obtain

$$|U - T| < \epsilon$$

It can easily be shown that

$$U - T = [f(v) - f(u)][g(s) - g(r)].$$

 So

$$|[f(v) - f(u)][g(s) - g(r)]| < \epsilon.$$

In summary, for any $\epsilon > 0$ there is $S \in D$ containing G such that for any r and s in M where $[r, s] \subseteq D$ and any u and v in M where $r \leq u \leq s$ and $r \leq v \leq s$ we have that

$$|[f(u) - f(v)][g(s) - g(r)]| < \epsilon.$$

Thus by Corollary 3.3, $\lim_{D_{G}} f$ exists or $\lim_{D_{G}} g$ exists. By Theorem 4.1, $\lim_{D_{G}^{-}} f$ and $\lim_{D_{G}^{+}} f$ exist or $\lim_{D_{G}^{-}} g$ exists and $\lim_{D_{G}^{+}} g$ exist. \Box

Theorem 4.3. If f is a function with domain $M \subseteq [a, b]$, z is a member of [a, b] - M which is a limit point of the domain of f|[a, z], then there is a number c such that (z, c) is a limit point of the graph of f|[a, z]. Similarly, if z is a limit point of the domain of f|[z, b], then there is a number c such that (z, c) is a limit point of f|[z, b].

PROOF. The proof is a straight forward application of the Heine-Borel Theorem applied to the vertical interval $\{(z,t) : -B \leq t \leq B\}$ where B is a common positive bound for |f| and |g|. \Box

Definition 4.3. In Theorem 4.3 *c* is said to be a quasi-end value.

Definition 4.4. Suppose f is a function with domain $M \subseteq [a, b]$. By f^* we mean a function such that

- (a) $f^*(x) = f(x)$ for each $x \in M$, and
- (b) if $x \in [a, b] M$ and G is a gap containing x, then $f^*(x)$ is equal to a quasi-end value of f with respect to G. It is understood that when there is more than one choice for $f^*(x)$ then only one choice is made and is the same for each value in G.

 f^* will be known as an extension of f to [a, b]. If quasi-left end values are used consistently for each gap, then f^* is known as a left extension of f on [a, b]. Right extensions are defined in a similar fashion.

Theorem 4.4. If f and g are functions with domain $M \subseteq [a, b]$, $a \leq r^* \leq x^* \leq s^* \leq b$ where r^*, x^*, s^* are in M, and $\epsilon > 0$, then

- (a) if $a \in M$, there are left extensions f^* and g^* of f and g to [a, b], respectively, and there are numbers r, s and x in M such that $a \le r \le r^*$, $r \le x \le x^*$, $x \le s \le s^*$ and $|f^*(x^*)[g^*(s^*) g^*(r^*)] f(x)[g(s) g(r)]| < \epsilon$ and
- (b) if $b \in M$, there are right extensions f^* and g^* of f and g to [a, b], respectively, and there are numbers r, s and x in M such that $r^* \leq r \leq x$, $x^* \leq x \leq s, s^* \leq s \leq b$ and $|f^*(x^*)[g^*(s^*) g^*(r^*)] f(x)[g(s) g(r)]| < \epsilon$.

PROOF. For (a) suppose $a \leq r^* \leq x^* \leq s^* \leq b$ where r^*, x^*, s^* are in M. Suppose $\epsilon > 0$ and B is a positive common bound of |f| and |g|. Let $\epsilon' = \min\{\epsilon/6B, \sqrt{\epsilon/6}\}$. Since $a \leq r^*$, let $z = \inf(M \cap [a, r^*])$. If $z \in M$, let r = z. If not, z is a limit point of M. In the latter case, by Theorem 4.3, there is a point with abscissa z which is a limit point of the graph of g|[a, z].

425

Thus, there is a member r of M such that $a \leq r \leq r^*$ and $g(r) = g^*(r^*) + \delta_1$ where $|\delta_1| < \epsilon'$. Similarly, there is a member $x \in M$ such that $r \leq x \leq x^*$ and $f(x) = f^*(x^*) + \delta_2$ where $|\delta_2| < \epsilon'$. In like manner, there is a member $s \in M$ such that $r \leq x \leq x^*$ and $g(s) = g^*(s^*) + \delta_3$ where $|\delta_3| < \epsilon'$. Then

$$\begin{split} |f^*(x^*)[g^*(s^*) - g^*(r^*)] - f(x)[g(s) - g(r)]| \\ &= |[f(x) + \delta_2][g(s) + \delta_3 - g(r) - \delta_1] - f(x)[g(s) - g(r)]| \\ &= |f(x)[g(s) - g(r)] + f(x)[\delta_3 - \delta_1] + \delta_2[g(s) - g(r)] + \delta_2[\delta_3 - \delta_1] - f(x)[g(s) - g(r)]| \le |f(x)[\delta_3 - \delta_1]| + \delta_2[g(s) - g(r)]| + \delta_2[\delta_3 - \delta_1]| \\ &< B\frac{2\epsilon}{6B} + \frac{\epsilon}{6B}2B + \frac{2\epsilon}{6} = \frac{e}{3} + \frac{e}{3} + \frac{e}{3} = \epsilon. \end{split}$$

Thus, $|f^*(x^*)[g^*(s^*) - g^*(r^*)] - f(x)[g(s) - g(r)]| < \epsilon$. The proof of (b) is similar to (a). \Box

Theorem 4.5. If $M \subseteq [a, b]$, f and g are functions with domain M such that f is g-integrable over M, and there are left (right) extensions f^* and g^* of f and g to [a, b], respectively, then f^* is g^* - integrable on [a, b] and

$$\int_{a}^{b} f^* dg^* = \int_{M} f dg$$

PROOF. Suppose $M \subseteq [a, b]$ and f and g are functions with domain M such that f is g-integrable on M. Let $W = \int_M f dg$ and f^* , g^* be left (right) extensions of f and g, respectively. For the sake of argument we assume left extensions of f and g. There is no loss of generality if $a, b \in M$. Suppose $\rho > 0$. Thus, there is a partition D of M such that

$$|W - \sum f(x)[g(q) - g(p)]| < \frac{\rho}{2}$$
 (9)

for any refinement D' of D and for all $[p,q]_M$ in D' and any $x \in [p,q]_M$.

Now, we construct D' and δ . Let P be a partition of [a, b] such that E(P) = E(D) and let P' be an arbitrary refinement of P. Now, we will construct a refinement D' of D such that

$$|\sum(f,g,D',\delta)-\sum(f^*,g^*,P',\delta')|<\frac{\rho}{2}$$

where δ' is any choice function on P' and δ is a specific choice function on D' yet to be described.

Let N be the number of elements in P'. Denote $P' = \{[u_{k-1}^*, u_k^*]\}_{k=1}^N$. We start by choosing ϵ in the preceding theorem to be $\rho/2N$. Consider $[u_0^*, u_1^*]$ of P' and $x^* = \delta'([u_0^*, u_1^*])$. Then, by Theorem 4.4, we obtain numbers u_0, u_1 , and x_0 in M such that $a \leq u_0 \leq u_0^* \leq x \leq x^* \leq u_1 \leq u_1^* \leq b$ and

$$|f^*(x_0^*)[g^*(u_1^*) - g^*(u_0^*)] - f(x_0)[g(u_1) - g(u_0)]| < \frac{\rho}{2N}.$$

Now, consider numbers u_1, u_2^* , and x_1^* . There are numbers x_1 and u_2 such that $u_1 \leq x_1 \leq x_1^* \leq u_2 \leq u_2^*$ and

$$|f^*(x_1^*)[g^*(u_2^*) - g^*(u_1^*)] - f(x_1)[g(u_2) - g(u_1)]| < \frac{\rho}{2N}.$$

Then, we continue to apply the process for k = 2 to k = N to generate the following inequalities:

$$|f^*(x_{k-1}^*)[g^*(u_k^*) - g^*(u_{k-1}^*)] - f(x_1)[g(u_k) - g(u_{k-1})]| < \frac{\rho}{2N}.$$

for k = 1 to N.

Adding the above N inequalities and with application of the triangle inequality, we obtain the following:

$$|\sum(f, g, D', \delta) - \sum(f^*, g^*, P', \delta')| < \frac{\rho}{2}$$
(10)

where $D' = \{[u_{k-1}, u_k]\}_{k=1}^N$ and $\delta([u_{k-1}, u_k]) = x_k$ for k = 1 to N. Now, we have D' and δ .

Adding (9) and (10), we obtain

$$|W - \sum (f^*, g^*, P', \delta')| < \rho.$$

where P' is any refinement of P and δ' is any choice function on P'.

Therefore f^* is g^* -integrable on [a, b] and $\int_a^b f^* dg^* = \int_M f dg$. \Box

Theorem 4.6. Suppose that F and G are functions with domain including [a, b] such that

- (a) F is G-integrable on [a, b],
- (b) $\overline{M} = [a, b], a, b \in M$,
- (c) if z belongs to [a,b] M and ϵ is a positive number, then there is an open interval s containing z such that $|F(x) F(z)||G(v) G(u)| < \epsilon$ where each of u, v, and x is in $s \cap [a,b]$, u < z < v, and $u \le x \le v$.

A STIELTJES INTEGRAL DEFINED ON ARBITRARY NUMBER SETS

Then F is G-integrable on M and $\int_a^b F dG = \int_M F dG$.

PROOF. Suppose $\epsilon > 0$. Since F is G-integrable on [a, b], there is a partition D of [a, b] such that, if D' is a refinement of D, then

$$\Big|\int\limits_{a}^{b}FdG-\sum(F,G,D',\delta)\Big|<\frac{\epsilon}{2}$$

for each choice function δ on D'.

For the sake of argument let us take the case that an element of D has an end point not belonging to M.

Suppose $A = E(D) \cap M^c$ which can be written as $A = \{x_1, x_2, x_3, \ldots, x_N\}$. By parts (b) and (c) of the hypothesis, there is a collection $G = \{(r_i, s_i) : i = 1, 2, \ldots, N\}$ of disjoint open subintervals of [a, b] with end points in M, each of which contains exactly one element of A, contains no point of $E(D) \cap M$, and, if x_i belongs to A, then

$$|F(x) - F(x_i)||G(v) - G(u)| < \frac{\epsilon}{2N}$$
(11)

for each u, v and x in $(r_i, s_i) \cap [a, b]$ where $u < x_i < v, u \leq x \leq v$ for $i = 1, 2, \ldots, N$.

Let D' denote the refinement of D where $E(D') = E(D) \cup \{r_1, s_1, r_2, s_2, \ldots, r_N, s_N\}$. Let P denote a partition of M such that $E(P) = E(D') \cap M$. Suppose that P' is any refinement of P. For $i = 1, 2, \ldots, N$, let $[c_i, d_i]_M$ denote the element of P' such that $c_i < x_i < d_i$.

From (11), since c_i, d_i and x_i are in $(r_i, s_i) \cap [a, b]$, we have

$$|F(x)[G(d_i) - G(c_i)] - F(x_i)[G(x_i) - G(c_i)] - F(x_i)[G(d_i) - G(x_i)]| < \frac{\epsilon}{2N}$$
(12)

where x is any number in $[c_i, d_i]_M$, i = 1, 2, ..., N. Since there are N elements in A, from (12) we have

$$\left|\sum_{i=1}^{N} F(x)[G(d_i) - G(c_i)] - \sum_{i=1}^{N} F(x_i)[G(x_i) - G(c_i)] - \sum_{i=1}^{N} F(x_i)[G(d_i) - G(x_i)]\right| < \frac{\epsilon}{2}.$$
 (13)

Let D'' denote a refinement of D such that $E(D'') = E(P') \cup E(D)$. Let $Q_{P'} = \{[c_i, d_i]_M\}_{i=1}^N$ and $Q_{D''} = \{[c_i, x_i]\}_{i=1}^N \cup \{[x_i, d_i]\}_{i=1}^N$. Let ρ be any choice function on P' and let δ' be the choice function on P' and let δ' be the choice function on

Let ρ be any choice function on P' and let δ' be the choice function on D'' defined as $\delta'([p,q]) = \rho([p,q]_M)$ for each $[p,q]_M$ in $P' - Q_{P'}$, each [p,q] in $D'' - Q_{D''}$ and $\delta'([c_i, x_i]) = \delta'([x_i, d_i]) = x_i, i = 1, 2, ..., N$. Thus, (13) becomes

$$\left|\sum(F, G, Q_{P'}, \rho) - \sum(F, G, Q_{D''}, \delta')\right| < \frac{\epsilon}{2}.$$
(14)

We also have

$$\sum(F, G, D'' - Q_{D''}, \delta') = \sum(F, G, P' - Q_{P'}, \rho)$$
(15)

and

$$\sum(F, G, D'', \delta') = \sum(F, G, Q_{D''}, \delta') + \sum(F, G, D'' - Q_{D''}, \delta')$$
(16)

and

$$\sum(F, G, P', \rho) = \sum(F, G, Q_{P'}, \rho) + \sum(F, G, P' - Q_{P'}, \rho).$$
(17)

Substituting (15) into (16), we obtain

$$\sum(F, G, D'', \delta') = \sum(F, G, Q_{D''}, \delta') + \sum(F, G, P' - Q_{P'}, \rho).$$
(18)

Computing the difference between the left sides of (17) and (18) and substituting into (14) yields

$$\left|\sum(F,G,P',\rho) - \sum(F,G,D'',\delta')\right| < \frac{\epsilon}{2}.$$
(19)

Then, we have from (4)

$$\left| \int_{a}^{b} F dG - \sum (F, G, D'', \delta') \right| < \frac{\epsilon}{2}.$$
 (20)

Combining (19) and (20), we have

$$\left|\int_{a}^{b} FdG - \sum(F, G, P', \rho)\right| < \epsilon$$

for each choice function ρ on P'.

Therefore, by definition, F is G-integrable on M and, by the uniqueness of the integral, $\int_{a}^{b} FdG = \int_{M} FdG$. \Box

Acknowledgment. The authors wish to thank the referees for their constructive critique of the first draft. It is indeed appreciated.

References

- B. Bongiorno & L. Di Piazza, Convergence theorems for generalized Riemann-Stieltjes integrals, Real Anal. Exchange, 17(1) (1991/2), 339– 361.
- [2] Claude W. Burril & John R. Knudsen, *Real Variables*, Holt, Rinehart and Winston, New York, 1969.
- [3] Charles A. Coppin, Concerning an Integral and Number Sets Dense in an Interval, Ph.D. Thesis, Univ. of Texas Library, Austin, Texas, 1968.
- [4] Charles A. Coppin, Properties of a generalized Stieltjes integral defined on dense subsets of an interval, Real Anal. Exchange, 18(2) (1992/3), 427–436.
- [5] Charles A. Coppin, Concerning a Stieltjes integral defined on dense subsets of an interval, Analysis, 20 (2000), 91-97.
- [6] Charles A. Coppin & Joseph Vance, On a generalized Riemann-Stieltjes integral, Rivista Di Matematica Della Universita Di Parma, 3(1) (1972), 73–78.
- [7] A.G. Das & Gokul Sahu, An equivalent Denjoy type definition of the generalized Henstock-Stieltjes integral, Bull. Inst. Math. Acad. Sinica, 30(1) (2002), 27–49.
- [8] A. M. D'yachkov, On the existence of the Stieltjes integral, Dokl. Akad. Nauk., 350(2) (1996), 158–161.
- [9] Edwin Hewitt & Karl Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, 1975.
- [10] T. H. Hildebrandt, Introduction to the Theory of Integration, Academic Press, New York, 1963.

- [11] Ch. S. Hönig, North Holland and American Elsevier, Mathematics Studies 16, Amsterdam and New York, 1975.
- [12] B.A. Kats, The Stieltjes integral along a fractal contour and some of its applications, Izv. Vyssh. Uchebn. Zaved. Mat., 10 (2000) 21–32.
- [13] Tie Fu Liu and Lin Sheng Zhao, Relations between Stieltjes integrals, Comment. Math. Prace Mat., 33 (1993) 81–98.
- [14] Robert M. McCleod, *The generalized Riemann integral*, Carus Mathematical Monographs, no. 20, The Mathematical Association of America, 1980.
- [15] Supriya Pal, D.K. Ganguly and Lee Peng Yee, *Henstock-Stieltjes integrals not induced by measure*, Real Anal. Exchange, **26(2)** (2000/01), 853–860.
- [16] Š. Schwabik, M. Tvrdỳ, O. Vejvoda, Differential and Integral Equations: Boundary Value Problems and Adjoints, Academia and D. Reidel, Praha and Dordrecht, (1979).
- [17] Swapan Kumar Ray & A.G. Das, A new definition of generalized Riemann Stieltjes integral, Bull. Inst. Math. Acad. Sinica, 18(3) (1990), 273–282.
- [18] Leonid Tseytlin, The limit set of Riemann sums of a vector valued Stieltjes integral, Quaestiones Math., 21(1-2) (1998), 61–74.
- [19] M. Tvrdý, Regulated functions and the Perron-Stieltjes integral, Casopis Pest. Mat., 114 (1989), 187–209.
- [20] M. Tvrdỳ, Differential and integral equations in the space of regulated functions, Mem. Differential Equations Math. Phys., 25 (2002), 1–104.
- [21] Joseph F. Vance, A Representation Theorem for Bounded Linear Functionals, Ph.D. Thesis, Univ. of Texas Library, Austin, Texas, 1967.
- [22] Ju Han Yoon & Byung Moo Kim, The convergence theorems for the McShane-Stieltjes integral, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math., 7(2) (2000), 137–143.