Pratulananda Das, Department of Mathematics, Jadavpur University, Kolkata-700032, West Bengal, India. email: pratulananda@yahoo.co.in
Prasanta Malik, Panchpota B. C. I. High School, Panchpota, Kolkata-700152, West Bengal, India. email: pmjupm@yahoo.co.in

ON THE STATISTICAL AND I VARIATION OF DOUBLE SEQUENCES

Abstract

We extend the notion of finite statistical variation of single sequences by Faisant et al (2005) to double sequences using the double natural density of the set $\mathbb{N} \times \mathbb{N}$. Certain consequences of this notion are investigated including its relation with statistical convergence introduced earlier by Mursaleen and Edely (2003). We also introduce the more general concept of I variation of double sequences and investigate it's relation with I and I^{*} convergence.

1 Introduction.

The usual notion of convergence does not always capture in fine detail the properties of the vast class of sequences that are not convergent. One way of including more sequences under preview is to consider those sequences that are convergent when restricted to some 'big' set of natural numbers. By a 'big' set one understands a set $K \subset \mathbb{N}$ having asymptotic density equal to 1. Investigation in this line was initiated by Fast [5] and independently by Schoenberg [17], who introduced the idea of statistical convergence. Since then a lot of work has been done in this area (in particular after the works of Fridy [6] and Šalát [16]). Recently a similar approach was taken by Faisant et al [4] to introduce the idea of finite statistical variation of sequences.

[^0]Statistical convergence was further extended to I as also I^{*}-convergence by Kostyrko et al [7] (also independently by Nuray and Ruckle [13]) in 2001. Detailed investigations on these topics can be found in [7], [8], [9], and [10] where more references can be found.

For double sequences, statistical convergence was introduced by Mursaleen and Edely [12] in 2003 using the double natural density (also by Móricz [11] who studied it for multiple sequences). Double sequences were also studied in [2] and also in [1] and [3]. In particular a thorough investigation of I and I^{*}-convergence of double sequences was very recently done in [2]. It can be observed from [2] and [12] that the pattern of investigation for double sequences is not always analogous to that of single sequences. In this paper we continue in this line by defining finite statistical (also I) variations of double sequences and mainly investigate in the line of [4] where it again appears that the examples and methods of proofs are not always analogous to that for single sequences [4].

2 Basic Definitions and Notation.

Throughout the paper \mathbb{N} denotes the set of all positive integers, \mathbb{R} the set of all real numbers.

Recall that a subset A of \mathbb{N} is said to have asymptotic density $d(A)$ if $d(A)=$ $\lim _{n \rightarrow \infty} \frac{|A|_{n}}{n}$, where $|A|_{n}$ is the cardinality of the set $\{k \in A: k \leq n\}$. By the convergence of a double sequence we mean the convergence in Pringsheim's sense (see [15]). A double sequence $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ of real numbers is said to be convergent to $\xi \in \mathbb{R}$ if for any $\epsilon>0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that $\left|x_{j k}-\xi\right|<\epsilon$ whenever $j, k \geq N_{\epsilon}$. In this case we write $\lim _{j \rightarrow \infty, k \rightarrow \infty} x_{j k}=\xi$.

If $A \subset \mathbb{N} \times \mathbb{N}$ has the property that for any $(m, n) \in \mathbb{N} \times \mathbb{N}$, there is a $(j, k) \in A$ such that $j>m, k>n$ then $\left\{x_{j k}\right\}_{(j, k) \in A}$ is called a subsequence of the double sequence $\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$. Pringsheim convergence of a subsequence is also similarly defined as above.

A double sequence $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ of real numbers is said to be bounded if there exists a positive real number M such that $\left|x_{j k}\right|<M$ for all $j, k \in \mathbb{N}$. That is $\|x\|_{(\infty, 2)}=\sup _{j, k}\left|x_{j k}\right|<\infty$.

Let $K \subset \mathbb{N} \times \mathbb{N}$. Let $K(n, m)$ be the numbers of $(j, k) \in K$ such that $j \leq n, k \leq m$. If the sequence $\left\{\frac{K(n, m)}{n . m}\right\}_{n, m \in \mathbb{N}}$ has a limit in Pringsheim's sense then we say that K has double natural density and is denoted by $d_{2}(K)=$ $\lim _{m \rightarrow \infty, n \rightarrow \infty} \frac{K(n, m)}{n m}$.

Definition 1. [12] A double sequence $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ of real numbers is said to be statistically convergent to $\xi \in \mathbb{R}$ if for any $\epsilon>0$, we have $d_{2}(A(\epsilon))=0$,
where $A(\epsilon)=\left\{(j, k) \in \mathbb{N} \times \mathbb{N} ;\left|x_{j k}-\xi\right| \geq \epsilon\right\}$.
Next we recall the following, where X represents an arbitrary set.
Definition 2. Let $X \neq \phi$. A class I of subsets of X is said to be an ideal in X provided (i) $\phi \in I$, (ii) $A, B \in I$ implies $A \cup B \in I$, and (iii) $A \in I, B \subset A$ implies $B \in I$. I is called a nontrivial ideal if $X \notin I$.

Definition 3. Let $X \neq \phi$. A non empty class F of subsets of X is said to be a filter in X provided (i) $\phi \notin F$, (ii) $A, B \in F$ implies $A \cap B \in F$, and (iii) $A \in F, A \subset B$ implies $B \in F$. If I is a nontrivial ideal in $X, X \neq \phi$, then the class $F(I)=\{M \subset X ; M=X \backslash A$ for some $A \in I\}$ is a filter on X, called the filter associated with I.

Definition 4. A nontrivial ideal I in X is called admissible if $\{x\} \in I$ for each $x \in X$. Throughout the paper we take I as a nontrivial admissible ideal in $\mathbb{N} \times \mathbb{N}$.

Definition 5. A nontrivial ideal I of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times\{i\}$ belong to I for each $i \in \mathbb{N}$. Clearly a strongly admissible ideal is also admissible. Let $I_{0}=\{A \subset \mathbb{N} \times \mathbb{N}: \exists m(A) \in \mathbb{N}$ such that $(i, j) \notin$ A whenever $i, j \geq m(A)\}$. Then I_{0} is a nontrivial strongly admissible ideal and clearly an ideal I is strongly admissible if and only if $I_{0} \subset I$.

Definition 6. [3] (see also [2]). A double sequence $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ of real numbers is said to converge to $\xi \in \mathbb{R}$ with respect to the ideal I, if for every $\epsilon>0$ the set $A(\epsilon)=\left\{(j, k) \in \mathbb{N} \times \mathbb{N} ;\left|x_{j k}-\xi\right| \geq \epsilon\right\} \in I$. In this case we say that x is I-convergent and we write $I-\lim _{j \rightarrow \infty, k \rightarrow \infty} x_{j k}=\xi$.

Remark 1. Note that If I is the ideal I_{0} then I-convergence coincides with the usual convergence and if we take $I_{d}=\left\{A \subset \mathbb{N} \times \mathbb{N} ; d_{2}(A)=0\right\}$ then $I_{d^{-}}$ convergence becomes statistical convergence. I-convergent double sequences may be unbounded, for example, let I be the ideal I_{0} of $\mathbb{N} \times \mathbb{N}$. If we define $\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ by

$$
x_{j k}= \begin{cases}k & \text { if } j=1, \\ 2 & \text { if } j \neq 1,\end{cases}
$$

Then $\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ is unbounded but I-convergent.

Definition 7. [2] A double sequence $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ of real numbers is said to be I^{*}-convergent to $\xi \in \mathbb{R}$ if and only if there exists a set $M \in F(I)$, i.e. $\mathbb{N} \times \mathbb{N} \backslash M \in I$, such that $\lim _{j \rightarrow \infty, k \rightarrow \infty,(j, k) \in M} x_{j k}=\xi$, where $\left\{x_{j k}\right\}_{j, k \in M}$ is a subsequence of $\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$, and we write $I^{*}-\lim _{j \rightarrow \infty, k \rightarrow \infty} x_{j k}=\xi$.

We shall denote by $C_{2}(I)\left(C_{2}^{*}(I)\right)$ the set of all I-convergent (I^{*}-convergent) double sequences of real numbers.

3 The set $W_{2}(I)$.

From this stage onwards we assume that the set $\mathbb{N} \times \mathbb{N}$ (or any subset of $\mathbb{N} \times \mathbb{N}$) is ordered with respect to the relation

$$
(i, j) \begin{cases}<\left(i_{1}, j_{1}\right) & \text { if } i+j<i_{1}+j_{1} \text { or } i<i_{1} \text { when } i+j=i_{1}+j_{1} \tag{1}\\ =\left(i_{1}, j_{1}\right) & \text { if } i=i_{1}, j=j_{1}\end{cases}
$$

We now introduce the following definition.
Definition 8. cf. [4]. A double sequence $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ of real numbers is said to be of finite I-variation if there exists a set $K=\left\{\left(j_{1}, k_{1}\right)<\left(j_{2}, k_{2}\right)<\right.$ $\ldots\} \in F(I)$ such that $\left.\operatorname{Var} x\right|_{K}=\sum_{i=1}^{\infty}\left|x_{j_{i+1} k_{i+1}}-x_{j_{i} k_{i}}\right|<+\infty$, where K is ordered by the relation (1).

Note 1. The definition of double sequences of finite statistical variation immediately follows from Definition 8 taking $I=I_{d}$. The set of all double sequences of finite I-variation will be denoted by $W_{2}(I)$. It is easy to verify that if $K \supset L$, then $\left.\operatorname{Var} x\right|_{K} \geq\left.\operatorname{Var} x\right|_{L}$. It should be noted that a double sequence $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ of real numbers having finite I-variation on a set $K \in F(I)$ can have infinite I-variation on a superset of K. Consider the following example.

Example 1. Let us consider a double sequence $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ defined as follows:

$$
x_{j k}= \begin{cases}1 & \text { if } j=m^{2}, k=n^{2} \text { for some } m, n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Since the set $K=\left\{(j, k) \in \mathbb{N} \times \mathbb{N}: j=m^{2}, k=n^{2}\right.$ for some $\left.m, n \in \mathbb{N}\right\} \in I_{d}$, so $\mathbb{N} \times \mathbb{N} \backslash K=\left\{\left(j_{1}, k_{1}\right)<\left(j_{2}, k_{2}\right)<\ldots\right\} \in F\left(I_{d}\right)$ and $\left.\operatorname{Var} x\right|_{\mathbb{N} \times \mathbb{N} \backslash K}=$
$\sum_{i=1}^{\infty}\left|x_{j_{i+1} k_{i+1}}-x_{j_{i} k_{i}}\right|=0<+\infty$. This shows that $x \in W_{2}\left(I_{d}\right)$. Now if we consider the superset $M=(\mathbb{N} \times \mathbb{N} \backslash K) \cup(N \times\{1\})$ of $\mathbb{N} \times \mathbb{N} \backslash K$, then

$$
\left.\operatorname{Var} x\right|_{M} \geq \sum_{k=2}^{\infty}\left|x_{k^{2} 1}-x_{\left(k^{2}-1\right) 2}\right|=\sum_{k=2}^{\infty} 1=+\infty
$$

The following results show that the idea of I-variation is closely related to the concepts of I and I^{*}-convergence.

Theorem 1. (i) For ideals $I \subset J$, we have $W_{2}(I) \subset W_{2}(J), C_{2}^{*}(I) \subset C_{2}^{*}(J)$, and $C_{2}(I) \subset C_{2}(J)$. (ii) For every strongly admissible ideal I, we have $W_{2}(I) \subset C_{2}^{*}(I) \subset C_{2}(I)$.

Proof. (i) The proof is straightforward and so is omitted.
(ii) Let $x \in W_{2}(I)$. Then there exists a set $K=\left\{\left(j_{1}, k_{1}\right)<\left(j_{2}, k_{2}\right)<\right.$ $\ldots\} \in F(I)$ such that $\left.\operatorname{Var} x\right|_{K}=\sum_{i=1}^{\infty}\left|x_{j_{i+1} k_{i+1}}-x_{j_{i} k_{i}}\right|<+\infty$. Consequently $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(x_{j_{i+1} k_{i+1}}-x_{j_{i} k_{i}}\right)=\lim _{n \rightarrow \infty}\left(x_{j_{n+1} k_{n+1}}-x_{j_{1} k_{1}}\right)=l$, i.e. $\lim _{n \rightarrow \infty} x_{j_{n+1} k_{n+1}}=l-x_{j_{1} k_{1}}=l_{0} \in R$.

Let $\epsilon>0$ be given. Then there exists a $n_{0} \in \mathbb{N}$ such that $\left|x_{j_{n+1} k_{n+1}}-l_{0}\right|<\epsilon$, $\forall n \geq n_{0}$. Choose $p=\max \left\{j_{n_{0}+1}, k_{n_{0}+1}\right\}+1$. Then evidently for any $(m, n) \in$ K with $m, n \geq p$ (Since I is strongly admissible, there are infinitely many indices like this in $K)\left|x_{m n}-l_{0}\right|<\epsilon$, i.e. $\lim _{m \rightarrow \infty, n \rightarrow \infty,(m, n) \in K} x_{m n}=l_{0}$. This shows that $x \in C_{2}^{*}(I)$. Hence $W_{2}(I) \subset C_{2}^{*}(I)$.

The proof of $C_{2}^{*}(I) \subset C_{2}(I)$ is given in [2, Th. 1] and so is omitted.
Strong admissibility is essential for Theorem 1 (ii) as shown by the following examples.

Example 2. Let $\Delta=\{(m, n) \in \mathbb{N} \times \mathbb{N}: m=n\}$, the diagonal of $\mathbb{N} \times \mathbb{N}$. Let $I=$ $\{A \cup B: A \subset \mathbb{N} \times \mathbb{N} \backslash(\Delta \cup(\{1\} \times \mathbb{N}))$ and B is a finite suset of $\Delta \cup(\{1\} \times \mathbb{N})\}$. Then I is not strongly admissible. Consider the sequence $\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ defined by $x_{j k}=\left\{\begin{array}{ll}1 & \text { if }(j, k) \in \Delta, \\ \max \{j, k\} & \text { for }(j, k) \in \mathbb{N} \times \mathbb{N} \backslash \Delta\end{array}\right.$. Then for $K=\Delta \cup(\{1\} \times \mathbb{N}) \in$ $F(I), \lim _{j \rightarrow \infty, j \rightarrow \infty,(j, k) \in K} x_{j k}=1$ and so $\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ is I^{*}-convergent to 1 but it is not I-convergent.

Example 3. Let $I=\{A \cup B: A \subset \mathbb{N} \times \mathbb{N} \backslash(\{1\} \times \mathbb{N})$ and B is at most a finite subset of $\{1\} \times \mathbb{N}\}$. Then again I is not strongly admissible. Consider the sequence $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ defined by $x_{j k}=\left\{\begin{array}{ll}1 & \text { if } j=1, \\ \max \{j, k\} & \text { otherwise }\end{array}\right.$. Then
$K=\{1\} \times \mathbb{N} \in F(I)$ and $\left.\operatorname{Var} x\right|_{K}=0<\infty$ but there is no $K \in F(I)$ for which $\left\{x_{j k}\right\}_{j, k \in K}$ is a subsequence of $\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ and $\lim _{j \rightarrow \infty, j \rightarrow \infty,(j, k) \in K} x_{j k}$ finitely exists.

Before we prove the next result we introduce the following as in [4]. Let us denote by $l_{2}^{\infty}(I)$ the set of all double sequences $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ such that there exists $K \in F(I)$ satisfying $\left.x\right|_{K}$ is bounded. Then $l_{2}^{\infty}(I)$ is a real vector subspace of $R^{\mathbb{N} \times \mathbb{N}}$ and $C_{2}(I) \subset l_{2}^{\infty}(I)$.

Now for $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}, y=\left\{y_{j k}\right\}_{j, k \in \mathbb{N}} \in l_{2}^{\infty}(I)$, we define $\|x\|_{\infty}=$ $\inf \left\{\lambda \in R^{+}: \exists K \in F(I)\right.$ such that $\left.\forall(j, k) \in K,\left|x_{j k}\right| \leq \lambda\right\}$, and $\rho(x, y)=$ $\sup _{j, k}\left|x_{j k}-y_{j k}\right|$. The reason behind introducing this topology is same as in [4].

Theorem 2. (i) $x \longmapsto\|x\|_{\infty}$ is a seminorm on $l_{2}^{\infty}(I)$ and $\|x-y\|_{\infty} \leq \rho(x, y)$. (ii) $\overline{W_{2}(I)}=C_{2}(I)$, where $\overline{W_{2}(I)}$ is the closure of $W_{2}(I)$ in $l_{2}^{\infty}(I)$.

The proof is parallel to Proposition 2 in [4] and so is omitted.
Remark 2. The mapping $x \longmapsto\|x\|_{\infty}$ is not a norm. For example let us take $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ defined as $x_{j k}=\left\{\begin{array}{ll}1 & \text { if }(j, k) \in\{1\} \times \mathbb{N}, \\ 0 & \text { otherwise, }\end{array}\right.$ then $\|x\|_{\infty}=0$ but $x \neq 0\left(\right.$ Taking $I=I_{0}$ or $\left.I_{d}\right)$.

4 Basic Inclusions with Respect to the Ideal I_{d}.

In this section we shall precisely establish the following:

$$
W_{2}\left(I_{d}\right) \varsubsetneqq C_{2}^{*}\left(I_{d}\right)=C_{2}\left(I_{d}\right) \varsubsetneqq l_{2}^{\infty}\left(I_{d}\right)
$$

We start with the last inclusion $C_{2}\left(I_{d}\right) \varsubsetneqq l_{2}^{\infty}\left(I_{d}\right)$. For this we first recall that an admissible ideal I of $\mathbb{N} \times \mathbb{N}$ is a maximal admissible ideal if and only if for any $A \subset \mathbb{N} \times \mathbb{N}$, either $A \in I$ or $A^{c} \in I$, where c stands for complement (see [2]). We now prove the following result.

Theorem 3. For a strongly admissible ideal $I, C_{2}(I)=l_{2}^{\infty}(I)$ if and only if I is a maximal ideal.

Proof. Let I be a maximal strongly admissible ideal and $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}} \in$ $l_{2}^{\infty}(I)$. Then there exists a set $K \in F(I)$ such that for all $(j, k) \in K,\left|x_{j k}\right| \leq \lambda$, for some $\lambda \in R^{+}$. Therefore we can find $a, b \in \mathbb{R}$ such that $a \leq x_{j k} \leq b$ for all $(j, k) \in K$. Define $K_{1}=\left\{(j, k) \in K: a \leq x_{j k} \leq \frac{a+b}{2}\right\}$ and $L_{1}=\{(j, k) \in K:$
$\left.\frac{a+b}{2} \leq x_{j k} \leq b\right\}$. Then $K=K_{1} \cup L_{1}$. Since I is nontrivial so $K \notin I$. Hence both K_{1} and L_{1} can not belong to I. Without any loss of generality let $K_{1} \notin I$ and we rewrite this set as $A_{1}=\left\{(j, k) \in K: a=a_{1} \leq x_{j k} \leq b_{1}=\frac{a+b}{2}\right\} \notin I$.

Let $K_{2}=\left\{(j, k) \in K: a_{1} \leq x_{j k} \leq \frac{a_{1}+b_{1}}{2}\right\}$ and $L_{2}=\left\{(j, k) \in K: \frac{a_{1}+b_{1}}{2} \leq\right.$ $\left.x_{j k} \leq b_{1}\right\}$. Then again $A_{1}=K_{2} \cup L_{2} \notin I$ and so by similar arguments we obtain a set $A_{2}=\left\{(j, k) \in K: a_{2} \leq x_{j k} \leq b_{2}\right\}$ such that $A_{2} \subset A_{1}, A_{2} \notin I$ and $b_{2}-a_{2}=\frac{b-a}{4}$. Proceeding in this way we obtain $A_{1} \supset A_{2} \supset \ldots \supset A_{n} \supset \ldots$ where $A_{n}=\left\{(j, k) \in K: a_{n} \leq x_{j k} \leq b_{n}\right\} \notin I$ and $b_{n}-a_{n}=\frac{b-a}{2^{n}}$. So there exists $l \in \cap_{n \geq 1}\left[a_{n}, b_{n}\right]$.

Now let $\epsilon>0$ be given. We choose $p \in \mathbb{N}$, such that $\left[a_{n}, b_{n}\right] \subset(l-\epsilon, l+\epsilon)$ for all $n \geq p$. Let $A(\epsilon)=\left\{(j, k) \in \mathbb{N} \times \mathbb{N}:\left|x_{j k}-l\right| \geq \epsilon\right\}$ and $A^{\prime}(\epsilon)=\{(j, k) \in$ $\left.\mathbb{N} \times \mathbb{N}: j \geq p \wedge k \geq p \wedge\left|x_{j k}-l\right| \geq \epsilon\right\}$. If $(j, k) \in A^{\prime}(\epsilon)$ then $x_{j k} \notin\left[a_{p}, b_{p}\right]$ and so $(j, k) \notin A_{p}$. Therefore $A^{\prime}(\epsilon) \subseteq A_{p}^{c}$. Since I is maximal and $A_{p} \notin I$, so $A_{p}^{c} \in I$ and so $A^{\prime}(\epsilon) \in I$. Hence $A(\epsilon) \subset A^{\prime}(\epsilon) \cup(\{1,2, \ldots, p-1\} \times \mathbb{N}) \cup(\mathbb{N} \times\{1,2, \ldots, p-$ $1\}) \cup K^{c} \in I$, since I is strongly admissible. Therefore $I-\lim _{j \rightarrow \infty, k \rightarrow \infty} x_{j k}=l$. This implies $l_{2}^{\infty}(I) \subset C_{2}(I)$ and so $l_{2}^{\infty}(I)=C_{2}(I)$.

Conversely, let I be not maximal. Then there exists $M \subset \mathbb{N} \times \mathbb{N}$ such that $M \notin I$ and $M^{c} \notin I$. We define a double sequence $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ as $x_{j k}=\left\{\begin{array}{ll}2 & \text { if }(j, k) \in M, \\ 0 & \text { otherwise } .\end{array}\right.$ Clearly $x \in l_{2}^{\infty}(I)$ but $x \notin C_{2}(I)$. Indeed for any $l \in R$ there exists an $\epsilon>0$ such that $A(\epsilon)=\left\{(j, k):\left|x_{j k}-l\right| \geq \epsilon\right\}$ is equal to either M or M^{c} or $\mathbb{N} \times \mathbb{N}$ and neither of these sets belongs to I. Therefore $x \notin C_{2}(I)$. This completes the proof.

Remark 3. Since the ideal I_{d} is not maximal so in view of above we can conclude that $C_{2}\left(I_{d}\right) \varsubsetneqq l_{2}^{\infty}\left(I_{d}\right)$.

Theorem 4. $C_{2}^{*}\left(I_{d}\right)=C_{2}\left(I_{d}\right)$.

Proof. In view of Theorem 1 (ii) it is sufficient to prove that $C_{2}\left(I_{d}\right) \subset$ $C_{2}^{*}\left(I_{d}\right)$. Let $\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ be a double sequence, I_{d}-convergent to $\xi \in \mathbb{R}$. Put $A_{1}=\left\{(j, k):\left|x_{j k}-\xi\right| \geq 1\right\}$ and $A_{n}=\left\{(j, k): \frac{1}{n} \leq\left|x_{j k}-\xi\right|<\frac{1}{n-1}\right\}$. From the assumption it follows that $d_{2}\left(A_{n}\right)=0$ for each $n \in \mathbb{N}$.

Observe that also $d_{2}\left(\cup_{n=1}^{p} A_{n}\right)=0$ for $p \in \mathbb{N}$. For $p \in \mathbb{N}$, let T_{p} be a natural number such that $\frac{1}{j k} \operatorname{card}\left\{(m, n): m \leq j \wedge n \leq k \wedge(m, n) \in \cup_{i=1}^{p} A_{i}\right\}<\frac{1}{p}$ for $j \geq T_{p}$ and $k \geq T_{p}$. We can obviously assume that the sequence $\left\{T_{p}\right\}_{p \in \mathbb{N}}$ is increasing. Let $C_{p}=\left\{(m, n): T_{p} \leq \min \{m, n\}<T_{p+1}\right\}, D_{p}=C_{p} \cap \cup_{i=1}^{p} A_{i}$ for $p \in \mathbb{N}$ and $D=\cup_{p=1}^{\infty} D_{p}$. We shall show that $d_{2}(D)=0$. Indeed, if $\eta>0$ and $p \in \mathbb{N}$ is such that $\frac{1}{p}<\eta$ then for $(j, k) \in C_{p}$ we have $(\{1,2, \ldots, j\} \times$
$\{1,2, \ldots, k\}) \cap D \subset(\{1,2, \ldots, j\} \times\{1,2, \ldots, k\}) \cap \cup_{i=1}^{p} A_{i}$, so $\frac{1}{j k} \operatorname{card}\{(m, n):$ $m \leq j \wedge n \leq k \wedge(m, n) \in D\}<\frac{1}{p}$ for such k and j. Hence $d_{2}(D)=0$.

Simultaneously for $k \geq T_{p}, j \geq T_{p},(j, k) \notin D$ we have $\left|x_{j k}-\xi\right|<\frac{1}{p}$, so $\left\{x_{j k}\right\}_{j, k \in \mathbb{N}} I_{d}^{*}$-converges to ξ. Hence the proof is completed.

Remark 4. In [7] it was proved that I and I^{*}-convergence of ordinary sequences of real numbers are equivalent if and only if the ideal $I \subset 2^{\mathbb{N}}$ satisfies the following condition (AP) (see also [4]):

Definition 9. (AP). An admissible ideal $I \subset 2^{\mathbb{N}}$ satisfies the condition (AP) if for every countable family of mutually disjoint sets $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ belonging to I, there exists a countable family of sets $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ such that $A_{n} \Delta B_{n}$ is a finite set for $n \in \mathbb{N}$ and $B=\cup_{n=1}^{\infty} B_{n} \in I$.

If $I \subset 2^{\mathbb{N} \times \mathbb{N}}$ is an admissible ideal fulfilling the condition (AP) (the definition of (AP) for ideals of subsets of $\mathbb{N} \times \mathbb{N}$ is in practice the same as above) then as in Theorem 3.2 in [7] one can easily prove that for any double sequence $\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ in $R, I-\lim _{j \rightarrow \infty, k \rightarrow \infty} x_{j k}=\xi$ implies $I^{*}-\lim _{j \rightarrow \infty, k \rightarrow \infty} x_{j k}=\xi$. However unlike single sequences, the condition (AP) is not necessary for the equivalence of I and I^{*}-convergence of double sequences. For example consider the ideal I_{0} (which corresponds to the Pringsheim's convergence). Obviously for the ideal I_{0}, I_{0} and I_{0}^{*}-convergence are equivalent. But note that the sets $B_{i}=\{i\} \times \mathbb{N}$ belong to I_{0} and they form a decomposition of $\mathbb{N} \times \mathbb{N}$. If we omit from $\mathbb{N} \times \mathbb{N}$ only finitely many elements of each B_{i} (or some B_{i} 's), the resulting set does not belong to I_{0}. This shows that the ideal I_{0} does not have the property (AP).

The equality of the sets $C_{2}^{*}(I)$ and $C_{2}(I)$ (for double sequences) is governed by the following condition (AP2).

Definition 10. (AP2). We say that an admissible ideal $I \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies the condition (AP2) if for every countable family of mutually disjoint sets $\left\{A_{1}, A_{2}, \ldots\right\}$ belonging to I, there exists a countable family of sets $\left\{B_{1}, B_{2}, \ldots\right\}$ such that $A_{j} \Delta B_{j} \in I_{0}$, i.e. $A_{j} \Delta B_{j}$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B=\cup_{j=1}^{\infty} B_{j} \in I$ (hence $B_{j} \in I$ for each $j \in \mathbb{N}$). The details of the equivalence of I and I^{*}-convergence of double sequences and condition (AP2) can be seen in [2].

Finally we prove the following result.
Theorem 5. Let I be a strongly admissible ideal satisfying $\overline{d_{2}}(K)>\frac{1}{2}$ for every $K \in F(I)$, then $W_{2}(I) \varsubsetneqq C_{2}^{*}(I)$.

Proof. It is known that for any strongly admissible ideal $I, W_{2}(I) \subset C_{2}^{*}(I)$ from Theorem 1, (ii). Now let us write $\mathbb{N} \times \mathbb{N}=\left\{\left(a_{1}, b_{1}\right)<\left(a_{2}, b_{2}\right)<\ldots\right\}$, ordered by the relation (1) and define $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ by $x_{j k}=\frac{(-1)^{i}}{a_{i}}+\frac{(-1)^{i}}{b_{i}}$ if $(j, k)=\left(a_{i}, b_{i}\right)$. Then x is I^{*}-convergent to 0 with $K=\mathbb{N} \times{ }_{\mathbb{N}}^{a_{i}} \in F(I)$. Thus $x \in C_{2}^{*}(I)$.

Now let $K \in F(I)$. Consider $E=\left\{\left(a_{i}, b_{i}\right) \in K:\left(a_{i+1}, b_{i+1}\right) \in K\right\}$. Then $\left(a_{i}, b_{i}\right) \in K \backslash E$ implies $\left(a_{i+1}, b_{i+1}\right) \notin K \backslash E$, so $\overline{d_{2}}(K \backslash E) \leq \frac{1}{2}$. thus $\overline{d_{2}}(K \backslash E) \leq \frac{1}{2}<\overline{d_{2}}(K)$, which implies $\overline{d_{2}}(E)>0$.

Let $E_{1}=\{i \in \mathbb{N}:(i, j) \in E$ for some $j\}$ and $E_{2}=\{j \in \mathbb{N}:(i, j) \in$ E for some $i\}$. Then clearly $E \subset E_{1} \times E_{2}$. Furthermore it is easy to check that for any $(m, n) \in \mathbb{N} \times \mathbb{N}, E(m, n) \leq\left|E_{1}\right|_{m}\left|E_{2}\right|_{n}$. We now claim that $\bar{d}\left(E_{1}\right)$ and $\bar{d}\left(E_{2}\right)$ must be positive. For otherwise let $\bar{d}\left(E_{1}\right)=0$. Let $\epsilon>0$ be given. Then there is a $m_{0} \in \mathbb{N}$ such that $\frac{\left|E_{1}\right|_{m}}{m}<\epsilon \forall m \geq m_{0}$. Then for any $(m, n) \in \mathbb{N} \times \mathbb{N}$ with $m, n \geq m_{0}$

$$
\frac{E(m, n)}{m n} \leq \frac{\left|E_{1}\right|_{m}\left|E_{2}\right|_{n}}{m n} \leq \frac{\left|E_{1}\right|_{m}}{m}<\epsilon
$$

which shows that $\overline{d_{2}}(E)=0$, a contradiction to the fact that $\overline{d_{2}}(E)>0$. Hence

$$
\begin{aligned}
\left.\operatorname{Var} x\right|_{K} \geq\left.\operatorname{Var} x\right|_{E} & \geq \sum_{\left(a_{i}, b_{i}\right) \in E}\left(\frac{1}{a_{i}}+\frac{1}{b_{i}}+\frac{1}{a_{i+1}}+\frac{1}{b_{i+1}}\right) \\
& \geq \sum_{a_{i} \in E_{1}} \frac{1}{a_{i}}+\sum_{b_{i} \in E_{2}} \frac{1}{b_{i}}=\infty
\end{aligned}
$$

The last equality is a consequence of a theorem of Powel-Šalát (see [14]).
Note 2. Since for the ideal $I_{d}, \overline{d_{2}}(K)=1$ for all $K \in F\left(I_{d}\right)$ so from the above theorem it follows that $W_{2}\left(I_{d}\right) \varsubsetneqq C_{2}^{*}\left(I_{d}\right)$.

Remark 5. As $C_{2}^{*}(I)$ is a semi-normed space, so if $W_{2}(I) \varsubsetneqq C_{2}^{*}(I)$ then $W_{2}(I)$ is a proper linear subspace of $C_{2}^{*}(I)$ and consequently $C_{2}^{*}(I) \backslash W_{2}(I)$ is dense in $C_{2}^{*}(I)$. In particular taking $I=I_{d}$ we can conclude that the set of all double sequences of finite statistical variation as also its complement, both are proper dense subsets of the space of all statistically convergent sequences.

5 When $W_{2}(I) \varsubsetneqq C_{2}^{*}(I)$?

In this section we continue to examine the inclusion $W_{2}(I) \subset C_{2}^{*}(I)$ and show that this is a strict inclusion for certain other ideals I also in addition to I_{d} as also the class of ideals given in Theorem 5.

We first start with the ideal I_{0}. Consider the double sequence $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ defined by

$$
x_{j k}=\frac{(-1)^{i}}{a_{i}}+\frac{(-1)^{i}}{b_{i}} \quad \text { if }(j, k)=\left(a_{i}, b_{i}\right)
$$

where $\mathbb{N} \times \mathbb{N}=\left\{\left(a_{1}, b_{1}\right)<\left(a_{2}, b_{2}\right)<\ldots<\left(a_{i}, b_{i}\right)<\left(a_{i+1}, b_{i+1}\right)<\ldots\right\}$ ordered by the relation (1) as before. Since $\mathbb{N} \times \mathbb{N} \in F\left(I_{0}\right)$ and $\lim _{j \rightarrow \infty, k \rightarrow \infty} x_{j k}=0$, so $x \in C_{2}^{*}(I)$. However $x \notin W_{2}\left(I_{0}\right)$ because for any $K \in F\left(I_{0}\right)$ we can choose a positive integer $m \in \mathbb{N}$ such that $K \supset \mathbb{N} \times \mathbb{N} \backslash \cup_{i=1}^{m}[(\{i\} \times \mathbb{N}) \cup(\mathbb{N} \times\{i\})]$. Then $\left.\operatorname{Var} x\right|_{K} \geq\left.\operatorname{Var} x\right|_{M}$ where $M=\left\{\left(a_{i}, b_{i}\right): a_{i}>m \wedge b_{i}>m\right\}$. clearly $\left.\operatorname{Var} x\right|_{M}=\infty$ and so $\left.\operatorname{Var} x\right|_{K}=\infty$.

Another example could be the sequence $x=\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ where $x_{j k}=$ $\frac{(-1)^{j+k}}{j+k}$. It is easy to check that $x \in C_{2}^{*}\left(I_{0}\right)$ but $x \notin W_{2}\left(I_{0}\right)$.

Now let I be an ideal and $A \subset \mathbb{N} \times \mathbb{N}$. As in [4] we define $\mathcal{I}=<I, A>$, the ideal generated by I and A as $\mathcal{I}=\{M \cup B: M \in I$ and $B \subset A\}$. Clearly $\mathcal{I} \neq \mathcal{P}(\mathbb{N} \times \mathbb{N})$ if and only if $A^{c} \notin I$.

Theorem 6. Let $A \subset \mathbb{N} \times \mathbb{N}$ be such that (i) A^{c} is not contained in finite union of rows and columns of $\mathbb{N} \times \mathbb{N}$, and (ii) A^{c} contains at most finite numbers of elements from each row and column of $\mathbb{N} \times \mathbb{N}$, then for the strongly admissible ideal $\mathcal{I}=<I_{0}, A>$, we have $W_{2}(\mathcal{I}) \varsubsetneqq C_{2}^{*}(\mathcal{I})$.

Proof. Let $K=A^{c}=\left\{\left(p_{1}, q_{1}\right)<\left(p_{2}, q_{2}\right)<\ldots\right\} \in F(\mathcal{I})$. We define $x=$ $\left\{x_{j k}\right\}_{j, k \in \mathbb{N}}$ as :

$$
x_{j k}= \begin{cases}0 & \text { if }(j, k) \notin K \\ \frac{(-1)^{i}}{i} & \text { if }(j, k)=\left(p_{i}, q_{i}\right) \in K\end{cases}
$$

Then $\lim _{j \rightarrow \infty, k \rightarrow \infty,(j, k) \in K} x_{j k}=0$ and so $x \in C_{2}^{*}(\mathcal{I})$.
Now if $L \in F(\mathcal{I})$, then $L^{c}=J \cup C$ where $J \in I_{0}$ and $C \subset A$. So $L=J^{c} \cap C^{c} \supset J^{c} \cap A^{c}=K \backslash J$. Since $J \in I_{0}$, so there exists $m(J) \in \mathbb{N}$ such that $\left(p_{j}, q_{j}\right) \notin J$ whenever both $p_{j}, q_{j} \geq m(J)$. Therefore

$$
\begin{aligned}
L \supset K \backslash J & \supset K \backslash\left\{\left(p_{j}, q_{j}\right): \text { either } p_{j} \text { or } q_{j}<m(J)\right\} \\
& \supset\left\{\left(p_{j}, q_{j}\right) \in K: p_{j} \geq m(J) \wedge q_{j} \geq m(J)\right\}=M
\end{aligned}
$$

Then $\left.\operatorname{Var} x\right|_{L} \geq\left.\operatorname{Var} x\right|_{M}$. Since by the condition (ii), K contains only finite number of terms $\left(p_{j}, q_{j}\right)$ where either p_{j} or $q_{j}<m(J)$ so clearly $\left.\operatorname{Var} x\right|_{M}=\infty$, which gives $\left.\operatorname{Var} x\right|_{L}=\infty$. So $x \notin W_{2}(\mathcal{I})$.

Remark 6. It is not clear whether the result remains true when I_{0} is replaced by any strongly admissible ideal I and it remains open.

Let $\sigma: \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})$ be an injective map such that $\cup_{n=1}^{\infty} \sigma(n)$ is a partition of \mathbb{N}. Let $\Delta_{n}=\{(j, k): \min \{j, k\} \in \sigma(n)\}$. Then $\left\{\Delta_{n}\right\}_{n \in N}$ is a decomposition of $\mathbb{N} \times \mathbb{N}$. Note that for each $n \in \mathbb{N}$, both Δ_{n} and Δ_{n}^{c} are infinite. Now we define $I_{\sigma}=\left\{A \subset \mathbb{N} \times \mathbb{N}\right.$: there exists a finite set F such that $\left.A \subset \cup_{n \in F} \Delta_{n}\right\}$. Then I_{σ} is a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$.

Theorem 7. $W_{2}\left(I_{\sigma}\right) \varsubsetneqq C_{2}^{*}\left(I_{\sigma}\right)$.

Proof. Let us write $\Delta_{n}=\left\{\left(a_{1}^{n}, b_{1}^{n}\right)<\left(a_{2}^{n}, b_{2}^{n}\right)<\ldots\right\}$ which is ordered by the relation (1). We define $x=\left\{x_{m n}\right\}_{m, n \in N}$ as $x_{m n}=\frac{(-1)^{i}}{k+i}$ if $(m, n)=\left(a_{i}^{k}, b_{i}^{k}\right)$.

Now let us choose $K=\mathbb{N} \times \mathbb{N} \in F\left(I_{\sigma}\right)$. Then for any $\epsilon>0$, choose $M \in \mathbb{N}$ so that $M>\frac{1}{\epsilon}$. Now let $m_{0}=\max \left\{a_{i}^{k}: k \leq M \wedge i \leq M\right\}, n_{0}=\max \left\{b_{i}^{k}: i \leq\right.$ $M \wedge k \leq M\}$ and $k_{0}=\max \left\{m_{0}, n_{0}\right\}$. Now let $m \geq k_{0}, n \geq k_{0}$. Then writing $(m, n)=\left(a_{i}^{k}, b_{i}^{k}\right)$ we must have either $k>M$ or $i>M$. But in both the cases $\left|x_{m n}\right|=\frac{1}{k+i} \leq \frac{1}{M}<\epsilon$. Thus we have $\left|x_{m n}\right|<\epsilon$ whenever $m \geq k_{0}, n \geq k_{0}$. This gives $I^{*}-\lim _{m \rightarrow \infty, n \rightarrow \infty} x_{m n}=0$, and so $x \in C_{2}^{*}\left(I_{\sigma}\right)$.

Now let $K \in F\left(I_{\sigma}\right)$. Then $K \supset \cup_{n \geq P} \Delta_{n}$ for some $P \geq 1$. Hence

$$
\left.\operatorname{Var} x\right|_{K} \geq\left.\operatorname{Var} x\right|_{\Delta_{P}}=\sum_{i=1}^{\infty}\left|\frac{(-1)^{i+1}}{P+(i+1)}-\frac{(-1)^{i}}{P+i}\right| \geq \sum_{j=P+1}^{\infty} \frac{1}{j}=\infty
$$

Therefore $x \notin W_{2}\left(I_{\sigma}\right)$.

Remark 7. In general for any strongly admissible ideal $C_{2}^{*}(I) \subset C_{2}(I)$. But we shall show that for the strongly admissible ideal $I_{\sigma}, C_{2}^{*}\left(I_{\sigma}\right) \varsubsetneqq C_{2}\left(I_{\sigma}\right)$ if in adition $\sigma(n)$ is infinite for each n. We consider the double sequence $x=\left\{x_{m n}\right\}_{m, n \in \mathbb{N}}$ defined as $x_{m n}=\frac{1}{j}$ if and only if $(m, n) \in \Delta_{j}$. Put $\epsilon_{n}=\frac{1}{n}$ for $n \in \mathbb{N}$. Let $\eta>0$ be given. Choose $p \in \mathbb{N}$ such that $\frac{1}{p}<\eta$. Then $A(\eta)=\left\{(m, n):\left|x_{m n}-0\right| \geq \eta\right\} \subset \Delta_{1} \cup \Delta_{2} \cup \ldots \cup \Delta_{p}$. Hence $A(\eta) \in I_{\sigma}$ and $I_{\sigma}-\lim _{m \rightarrow \infty, n \rightarrow \infty} x_{m n}=0$.

Now suppose that $I_{\sigma}^{*}-\lim _{m \rightarrow \infty, n \rightarrow \infty} x_{m n}=0$. Then there exists $H \in I_{\sigma}$ such that for $M=\mathbb{N} \times \mathbb{N} \backslash H$ we have $\lim _{m \rightarrow \infty, n \rightarrow \infty,(m, n) \in M} x_{m n}=0$. Then from the construction of the ideal I_{σ}, there exists $q \in \mathbb{N}$, such that $H \subset$ $\Delta_{1} \cup \Delta_{2} \cup \ldots \cup \Delta_{q}$. But then $\Delta_{q+1} \subset \mathbb{N} \times \mathbb{N} \backslash H=M$. Since $\sigma(q+1)$ is infinite so it follows that for any $n_{0} \in \mathbb{N},\left|x_{m n}-0\right|=\epsilon_{q+1}>0$ hold for infinitely many (m, n) 's with $(m, n) \in \Delta_{q+1} \subset M$ and $m, n \geq n_{0}$. This contradicts the fact
that $\lim _{m \rightarrow \infty, n \rightarrow \infty,(m, n) \in M} x_{m n}=0$. We can also conclude from above that the ideal I_{σ} does not satisfy the condition (AP2).

In another direction, Theorem 5 can be further generalized as follows

Theorem 8. Let I be a strongly admissible ideal such that every $K=\left\{\left(a_{1}, b_{1}\right)<\right.$ $\left.\left(a_{2}, b_{2}\right)<\ldots\right\} \in F(I)$ contains a set $E(K)=\left\{\left(a_{i_{1}}, b_{i_{1}}\right)<\left(a_{i_{2}}, b_{\underline{i_{2}}}\right)<\ldots\right\}$ with $i_{k}-i_{k-1}$ odd for all $k \in \mathbb{N}$ and such that either $\bar{d}\left(E_{1}(K)\right)>0$ or $\bar{d}\left(E_{2}(K)\right)>0$ where $E_{1}(K)=\{i:(i, j) \in E(K)$ for some $j\}$ and $E_{2}(K)=\{j:(i, j) \in E(K)$ for some $i\}$ (note that $\overline{d_{2}}\left(E(K)\right.$) may be zero). Then for this $I, W_{2}(I) \varsubsetneqq$ $C_{2}^{*}(I)$.

6 Open Problem.

Like ordinary sequences [4], here also it remains open whether there exists a strongly admissible ideal I for which $W_{2}(I)=C_{2}^{*}(I)$.

References

[1] M. Balcerzak and K. Dems, Some types of convergence and related Baire systems, Real Anal. Exchange, 30(1) (2004), 267-276.
[2] Pratulananda Das, P. Kostyrko, W. Wilczyński, and P. Malik, I and I^{*}-convergence of double sequences, Math. Slovaca (to appear).
[3] K. Dems, On I-Cauchy sequences, Real Anal. Exchange, 30(1) (2004), 123-128.
[4] A. Faisant, G. Grekos, and V. Toma, On the statistical variation of sequences, J. Math. Anal. Appl., 306 (2005), 432-439.
[5] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
[6] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
[7] P. Kostyrko, T. Šalát, and W.Wilczyński, I-convergence, Real Anal. Exchange, 26(2) (2000/2001), 669-686.
[8] P. Kostyrko, M. Mačaj, T. Šalát, and M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55 (2005), No.4, 443-464.
[9] B. K. Lahiri and Pratulananda Das, Further remarks on I-limit superior and I-limit inferior, Mathematical Communications, 8 (2003), 151-156.
[10] B. K. Lahiri and Pratulananda Das, I and I^{*}-convergence in topological spaces, Math. Bohemica, 130(2) (2005), 153-160.
[11] F. Móricz, Statistical convergence of multiple sequences, Arch. Math., $\mathbf{8 1}$ (2003), 82-89.
[12] M. Murasaleen and Osama H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223-231.
[13] F. Nuray and W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 245 (2000), 513-527.
[14] B. J. Powell and T. Šalát, Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers, Publ. Inst. Math. (Beograd), 50 (1991), 60-70.
[15] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900) 289-321.
[16] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
[17] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.

[^0]: Key Words: double sequences, statistical convergence, statistical variation, I-variation, I and I^{*}-convergence

 Mathematical Reviews subject classification: Primary: 40A05; Secondary: 40C99
 Received by the editors June 14, 2007
 Communicated by: Clifford E. Weil
 *This work is funded by Council of Scientific and Industrial Research, HRDG, India.

