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POINTS OF CONTINUITY,
QUASICONTINUITY, CLIQUISHNESS, AND
UPPER AND LOWER QUASICONTINUITY

Abstract

The quadruplet (C(f), Q(f), E(f), A(f)) is characterized, where C(f),
Q(f), E(f) and A(f) are the sets of all continuity, quasicontinuity, up-
per and lower quasicontinuity and cliquishness points of a real function
f of real variable, respectively.

Let X be a topological space. For a subset A of X denote by Cl(A) the
closure of A. The letters R, Q and N stand for the set of all real, rational and
positive integer numbers, respectively. If A is a subset of R and x ∈ R, then
dist(x,A) = inf{|x− a| : a ∈ A} is the distance of x from A.

A real function f : X → R is said to be quasicontinuous (cliquish) at a
point x ∈ R if for each ε > 0 and for each neighbourhood U of x there is
a nonempty open set G ⊂ U such that |f(x) − f(y)| < ε for each y ∈ G
(|f(y)− f(z)| < ε for each y, z ∈ G) [6].

A function f : X → R is said to be upper (lower) quasicontinuous at x ∈ X
if for each ε > 0 and for each neighbourhood U of x there is a nonempty open
set G ⊂ U such that f(y) < f(x) + ε (f(y) > f(x)− ε) for each y ∈ G [3].

Denote by C(f) the set of all continuity points of a function f : X → R,
by Q(f) the set of all quasicontinuity points of f , by A(f) the set of all
cliquishness points of f and by E(f) the set of all points of both upper and
lower quasicontinuity of f . It is well-known that C(f) ⊂ Q(f) ⊂ A(f), C(f)
is Gδ, A(f) is closed [5], Q(f) ⊂ E(f) [3] and A(f) \ C(f) is of first category
[2].

Key Words: continuity, quasicontinuity, cliquishness, upper and lower quasicontinuity
Mathematical Reviews subject classification: Primary: 26A15; Secondary: 54C08,

54C30
Received by the editors February 27, 2007
Communicated by: Brian S. Thomson

∗This research was supported by Grant VEGA 2/6087/26 and APVT-51-006904.

339



340 Ján Borśık

In the paper [2], the triplet (C(f), Q(f), A(f)) is characterized. In this
paper, we will characterize the quadruplet (C(f), Q(f), E(f), A(f)).

In [4] it is shown that if a function f : X → R is upper and lower qua-
sicontinuous at each point x ∈ X, then f is cliquish. However, the inclusion
E(f) ⊂ A(f) does not hold. If f(0) = 0, f(x) = 2 for positive rational x,
f(x) = 1 for positive irrational x, f(x) = −2 for negative rational x and
f(x) = −1 for negative irrational x, then 0 ∈ E(f) \ A(f). However, the set
E(f) \A(f) is small.

Theorem 1. Let f : X → R be a function. Then the set E(f) \ A(f) is
nowhere dense.

Proof. Suppose that the set E(f)\A(f) is not nowhere dense. Then there is
a nonempty open set K such that E(f)\A(f) is dense in K. Let L = K\A(f).
Since A(f) is closed the set L is nonempty open and E(f) is dense in L.

Let x0 ∈ L. Then there is an ε > 0 and a nonempty open set M ⊂ L such
that the following holds.

If ∅ 6= G ⊂M is open, there are y, z ∈ G with |f(y)− f(z)| ≥ 8ε. (*)

Since E(f) is dense in L there is x1 ∈ E(f) ∩ M . Hence, there is a
nonempty open set U1 ⊂ M such that f(y) < f(x1) + ε for each y ∈ U1.
Further there is x2 ∈ E(f) ∩ U1 and hence there is a nonempty open set
U2 ⊂ U1 such that f(y) > f(x2)− ε for each y ∈ U2. Thus for each y ∈ U2 we
have f(x2)− ε < f(y) < f(x1) + ε.

Let v1, v2, . . . , vm ∈ R be such that (f(x2) − ε, f(x1) + ε) ⊂
⋃m
i=1(vi −

ε, vi + ε). Then U2 =
⋃m
i=1 U2 ∩ f−1((vi − ε, vi + ε)) and hence there is j ∈ N

such that U2 ∩ f−1((vj − ε, vj + ε)) is not nowhere dense in U2.
Therefore there is a nonempty open set J ⊂ U2 and v ∈ R such that

f−1((v − ε, v + ε)) is dense in J.
Put A = {y ∈ J : |f(y) − v| < ε}, B = {y ∈ J : f(y) ≥ v + 3ε} and

C = {y ∈ J : f(y) ≤ v − 3ε}. Then A is dense in J and also B ∪ C is dense
in J . If namely B ∪ C is not dense in J , then there is a nonempty open set
P ⊂ J such that P ∩ (B ∪C) = ∅. Then f(y) ∈ (v− 3ε, v+ 3ε) for each y ∈ P
and thus |f(y)− f(z)| < 6ε for each y, z ∈ P , which contradicts to (*).

This yields that B is not nowhere dense in J or C is not nowhere dense
in J . Suppose that B is not nowhere dense in J ; the case C is not nowhere
dense in J is similar. Then there is a nonempty open set T ⊂ J such that B
is dense in T . There is a point z0 ∈ E(f) ∩ T . We have two possibilities:

a) If f(z0) ≤ 2ε+ v, then every nonempty open set U ⊂ T contains a point
z ∈ B and hence f(z) ≥ v + 3ε ≥ f(z0) + ε. This yields z0 /∈ E(f), a
contradiction.
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b) If f(z0) > 2ε + v, then every nonempty open set U ⊂ T contains a
point z ∈ A and hence f(z) < v + ε < f(z0) − ε. Again, z0 /∈ E(f), a
contradiction.

Therefore the set E(f) \A(f) is nowhere dense.

Since A(f) is closed, E(f) = X implies A(f) = X (see [4]).

Lemma 1. ([1],[8]) If f1 : X → R is quasicontinuous (cliquish) [upper and
lower quasicontinuous] at x and f2 : X → R is continuous at x, then f1 + f2
is quasicontinuous (cliquish) [upper and lower quasicontinuous] at x.

Theorem 2. Let C, Q, E and A be subsets of R. Then C = C(f), Q = Q(f),
E = E(f) and A = A(f) for some f : R → R if and only if C ⊂ Q ⊂ A ∩ E,
C is Gδ, A is closed, A \ C is of first category and E \A is nowhere dense.

Proof. The sufficiency for this proof follows from our previous remarks and
Theorem 1. To prove the necessity, first note that the set A \C is a Fσ set of
first category, hence by [7] we can write A \C =

⋃
n∈N Dn, where the sets Dn

are closed nowhere dense and pairwise disjoint. Since every nowhere dense set
S ⊂ R can be written as S = S1∪S2, where S1 is a nowhere dense perfect set,
S2 is countable and S1 and S2 are disjoint, we can write A\C =

⋃
i∈N(Ai∪Bi),

where sets Ai are nowhere dense perfect (maybe empty), Bi are singleton (or
empty) and all Ai and Bj are mutually disjoint.

If Ai is nonempty nowhere dense perfect we can write R \ Ai =
⋃
j∈N I

i
j ,

where Iij = (aij , b
i
j) are pairwise disjoint intervals. We can assume that Ai ⊂

Cl(
⋃
j∈N I

i
2j) ∩ Cl(

⋃
j∈N I

i
2j−1).

If Ai = ∅ put si(x) = 0 for each x ∈ R. If Ai 6= ∅ define si : R→ R by

si(x) =


−4−i, if x ∈ Ii2j for some j ∈ N,
0, if x ∈ Ai ∩ (E \Q),
2−i, if x ∈ Ai ∩ (A \ E),
4−i, otherwise

and put s =
∞∑
i=1

si.

If x /∈ Ai, then x ∈ C(si). Since the series
∞∑
i=1

si(x) converges uniformly

we obtain
R \

⋃
i∈N

Ai ⊂ C(s). (1)
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Now, let x ∈ Ai. Then x /∈
⋃
j 6=iAj and hence x ∈ C(sj) for each j 6= i

and
Ai ⊂ C

(∑
j 6=i

sj

)
. (2)

Let x ∈ Ai ∩ (A \E). Then si(x) = 2−i. Let U be an open neighbourhood
of x. Then there is j ∈ N such that U ∩ Iij 6= ∅. The set G = U ∩ Iij is a
nonempty open subset of U and si(y) = si(z) for each y, z ∈ G, i.e.

Ai ∩ (A \ E) ⊂ A(si). (3)

Let H be an arbitrary open nonempty subset of U and let c be such that
4−i < c < 2−i. Since Ai is nowhere dense there is z ∈ H \ Ai and si(z) ≤
4−i < c < 2−i = si(x). Therefore si is not lower quasicontinuous at x and

Ai ∩ (A \ E) ⊂ R \ E(si). (4)

Let x ∈ Ai ∩ (E \ Q). Then si(x) = 0. Let U be an open neighbourhood
of x. Then there is j ∈ N such that H = U ∩ Ii2j 6= ∅. For each y, z ∈ H we
have si(y) = si(z) and hence,

Ai ∩ (E \Q) ⊂ Ai. (5)

Moreover, for each y ∈ H we have si(y) = −4−i < 0 = si(x), thus si is
upper quasicontinuous at x. Further, there is k ∈ N such that U ∩ Ii2k−1 6= ∅
and for each y ∈ U ∩ Ii2k−1 we have si(y) = 4−i > 0 = si(x), thus si is lower
quasicontinuous at x. Therefore we have

Ai ∩ (E \Q) ⊂ E(si). (6)

Now, let G be an arbitrary open set. There is z ∈ G\Ai and |si(z)| = 4−i,
hence we have |si(z)− si(x)| = 4−i. This yields

Ai ∩ (E \Q) ⊂ R \Q(si). (7)

Now, let x ∈ Ai∩ (Q\C). Then si(x) = 4−i. Let U be an open neighbour-
hood of x. Then there is j ∈ N such that H = U ∩ Ii2j 6= ∅. For each y ∈ H
we have si(y) = 4−i = si(x) and

Ai ∩ (Q \ C) ⊂ Q(si). (8)

Since lim inf
y→x

si(y) = −4−i and lim sup
y→x

si(y) = 4i we have

Ai ∩ (Q \ C) ⊂ R \ C(si). (9)
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If Bi = ∅ put ti(x) = 0. If Bi = {bi} define a function ti : R→ R by

ti(x) =


4−i, if x > bi or x = bi and bi ∈ Q \ C,
0, if x = bi and bi ∈ E \Q,
2−i, if x = bi and bi ∈ A \ E,
−4−i, if x < bi.

and put t =
∞∑
i=1

ti.

If x 6= bi, then x ∈ C(ti) and since the series
∞∑
i=1

ti converges uniformly we

obtain

R \
⋃
i∈N

Bi ⊂ C(t). (10)

Now, let x = bi. Since Bj are pairwise disjoint we have x ∈ C(tj) for each
j 6= i and

Bi ⊂ C
(∑
j 6=i

tj

)
. (11)

It is easy to see that

Bi ∩ (A \ E) ⊂ A(ti) \ E(ti), (12)
Bi ∩ (E \Q) ⊂ E(ti) ∩A(ti) \Q(ti), (13)
Bi ∩ (Q \ C) ⊂ Q(ti) \ C(ti). (14)

If A = R we put u(x) = 0. Now, let A 6= R. Then A ∪ Cl(E) is a closed
set and hence R \ (A ∪Cl(E)) =

⋃
i∈M (ai, bi), where M ⊂ N and all intervals

(ai, bi) are pairwise disjoint. Since A 6= R and the set E \A is nowhere dense
the set M is nonempty.

For each i ∈ M let cij , d
i
j be such that for each j ∈ N ai < cij+1 < dij <

cij < ci1 = bi and lim
j→∞

cij = ai. Define a function u : R→ R by
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u(x) =



min{1,dist(x,A)}, if x ∈ (di2j , c
i
2j) \Q

for some i ∈M and j ∈ N,
min{2, 2 dist(x,A)}, if x ∈ (di2j , c

i
2j) ∩Q

for some i ∈M and j ∈ N,
min{3, 3 dist(x,A)}, if x ∈ ([cij+1, d

i
j ] ∪ (Cl(E \A) \ E)) ∩Q

for some i ∈M and j ∈ N,
0, if x ∈ A ∪ E,
max{−1,− dist(x,A)}, if x ∈ (di2j−1, c

i
2j−1) \Q

for some i ∈M and j ∈ N,
max{−2,−2 dist(x,A)}, if x ∈ (di2j−1, c

i
2j−1) ∩Q

for some i ∈M and j ∈ N,
max{−3,−3 dist(x,A)}, if x ∈ ([cij+1, d

i
j ] ∪ (Cl(E \A) \ E)) \Q

for some i ∈M and j ∈ N.

Let x ∈ A and let ε > 0. Then u(x) = 0. Since dist(x,A) is contin-
uous there is a neighbourhood U of x such that |dist(y,A)| = |dist(x,A) −
dist(y,A)| < ε/3 for each y ∈ U . Hence for each y ∈ U we have |u(x)−u(y)| =
|u(y)| ≤ 3 dist(x,A) < ε. Therefore we get

A ⊂ C(u). (15)

Now, let x /∈ A. Let a = dist(x,A) if A 6= ∅ and a = 2 if A = ∅. Then
U = (x − a/4, x + a/4) is a neighbourhood of x. Let G ⊂ U be an arbitrary
nonempty open set and let b = min{1, 1

8a} > 0.
Let z ∈ G and A 6= ∅. Then |x−z| < a

4 . Let w ∈ A. Then a = dist(x,A) ≤
|x − w| ≤ |x − z| + |z − w| < a

4 + |z − w|. Therefore for each w ∈ A we have
|z−w| > 3

4a and hence dist(z,A) ≥ 3
4a. On the other hand, there is v ∈ A such

that |v−x| < 9
8a and hence dist(z,A) ≤ |v−z| ≤ |z−x|+|x−v| < a

4 + 9
8a = 11

8 a.
Therefore, if G ⊂ U is a nonempty open set and A 6= ∅ we have

3
4
a < dist(z,A) <

11
8
a. (16)

There are three possibilities:

a) P = (G \ Cl(E \ A)) ∩ (di2j , c
i
2j) 6= ∅ for some i ∈ M and j ∈ N.

Then there are points z1 ∈ P ∩ Q and z2 ∈ P \ Q. According to
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(16) we have u(z1) = min{2, 2 dist(z1, A)} ≥ min{2, 3
2a} and u(z2) =

min{1,dist(z2, A) ≤ min{1, 11
8 a}. We obtain

|u(z1)− u(z2)| ≥ min{2, 3
2
a} −min{1, 11

8
a} ≥ min{1, 1

8
a} = b.

b) P = (G \ Cl(E \ A)) ∩ (di2j−1, c
i
2j−1) 6= ∅ for some i ∈ M and j ∈ N.

Then for z1 ∈ P ∩Q and z2 ∈ P \Q we have

|u(z1)− u(z2)| ≥ max{−1,−11
8
a} −max{−2,−3

2
a} ≥ min{1, 1

8
a} = b.

c) (G \ Cl(E \ A)) ∩ (
⋃
i∈M

⋃
j∈N(dij , c

i
j)) = ∅. Since E \ A is nowhere

dense there are z1 ∈ (G \ Cl(E \ A)) ∩ Q and z2 ∈ (G \ Cl(E \ A)) \
Q. We have u(z1) = min{3, 3 dist(z1, A)} ≥ min{3, 9

4a} and u(z2) =
max{−3,−3 dist(z2, A)} ≤ −min{3, 9

4a} and hence

|u(z1)− u(z2)| ≥ 2 min{3, 9
4
a} > b.

Therefore u is not cliquish in x and

R \A ⊂ R \A(u). (17)

Now, let x ∈ E \ A and let U = (x− δ, x+ δ), δ > 0, be a neighbourhood
of x. Then u(x) = 0 and there is 0 < δ1 < δ such that (x− δ1, x+ δ1)∩A = ∅.
Since E \ A is nowhere dense there is an interval (c, d) ⊂ (x, x + δ1) such
that (c, d) ∩Cl(E \A) = ∅. This yields (c, d) ⊂

⋃
i∈M (ai, bi) and since (ai, bi)

are disjoint there is i ∈ M such that (c, d) ⊂ (ai, bi). Since x /∈ (ai, bi) we
have x ≤ ai ≤ c < x + δ1. Since lim

j→∞
cij = ai there is j ∈ N such that

ai < cij < x+ δ1.
For each y ∈ (di2j , c

i
2j) ⊂ U we have y(y) > 0 = u(x), i.e. u is lower

quasicontinuous at x. Similarly, for each y ∈ (di2j−1, c
i
2j−1) ⊂ U we have

u(y) < 0 = u(x), i.e. u is upper quasicontinuous at x. Thus

E \A ⊂ E(u). (18)

Finally, let x /∈ (E ∪ A). Let a = dist(x,A) if A 6= ∅ and a = 3 if A = ∅.
We have three possibilities:
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a) x ∈ (di2j , c
i
2j) for some i ∈M and j ∈ N. Then U = (x− a/4, x+ a/4)∩

(di2j , c
i
2j) is a neighbourhood of x. Let G be an open nonempty open

subset of U .

If x ∈ Q, then u(x) = min{2, 2 dist(x,A)} and b = min{1, 11
8 a} < u(x).

There is a point z ∈ G \ Q and according to (16) we have 3
4a <

dist(z,A) < 11
8 a for A 6= ∅. Therefore u(z) = min{1,dist(z,A)} ≤

min{1, 11
8 a} = b < u(x), i.e. u is not lower quasicontinuous at x.

If x /∈ Q, then u(x) = min{1,dist(x,A)} and b = {2, 3
2a} > u(x). There

is a point z ∈ G∩Q and u(z) = min{2, 2 dist(x,A)} ≥ min{2, 3
2a} = b >

u(x), i.e. u is not upper quasicontinuous at x.

b) x ∈ (di2j−1, c
i
2j−1) for some i ∈M and j ∈ N. Then similarly as in a) we

can show that x /∈ E(u).

c) x /∈
⋃
i∈M

⋃
j∈N(dij , c

i
j). Let G be an open nonempty subset of (x −

a/4, x+ a/4).

If x ∈ Q, then u(x) = min{3, 3 dist(x,A)}. For each y ∈ G \Q we have
u(y) ≤ min{2, 2 dist(y,A)} ≤ min{2, 11

4 a} = b < u(x) and u is not lower
quasicontinuous at x.

If x /∈ Q, then u(x) = max{−3,−3 dist(x,A)} and for each y ∈ G ∩ Q
we have u(y) ≤ max{−2,−2 dist(y,A)} ≥ max{−2,− 11

4 a} > u(x), i.e.
u is not upper quasicontinuous at x.

Therefore we have
R \ (E ∪A) ⊂ R \ E(u). (19)

Define f : R → R by f = s + t + u. We will show that f is the desired
function.

1. Let x ∈ C. Then according to (1), (10) and (15) we have x ∈ C(s) ∩
C(t) ∩ C(u) and hence x ∈ C(f),

C ⊂ C(f). (20)

2. Let x ∈ Q \ C. If x ∈ Ai for some i ∈ M , then according to (10), (15)
and (2) we obtain x ∈ C(t) ∩ C(u) ∩ C(

∑
j 6=i sj), according to (8) we

have x ∈ Q(si) and by (9) x /∈ C(si). Therefore by Lemma 1 we have
x ∈ Q(f) \ C(f).
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If x = bi for some i ∈ M , then by (1), (15) and (11) we have x ∈
C(s) ∩ C(u) ∩ C(

∑
j 6=i tj) and by (14) x ∈ Q(ti) \ C(ti). Hence, by

Lemma 1 again x ∈ Q(f) \ C(f) and

Q \ C ⊂ Q(f) \ C(f). (21)

3. Let x ∈ A ∩ E \ Q. If x ∈ Ai, then by (10), (15) and (2) we have
x ∈ C(t) ∩ C(u) ∩ C(

∑
j 6=i sj). Further, x ∈ A(si) by (5), x ∈ E(si) by

(6) and x /∈ Q(si) by (7), therefore x ∈ A(f) ∩ E(f) \Q(f).

If x = bi, then (1), (15) and (11) imply x ∈ C(s) ∩ C(u) ∩ C(
∑
j 6=i tj)

and (13) yields x ∈ A(ti)∩E(ti) \Q(ti). Hence x ∈ A(f)∩E(f) \Q(f).
Therefore

A ∩ E \Q ⊂ A(f) ∩ E(f) \Q(f). (22)

4. Let x ∈ A \ E. If x ∈ Ai, then by (10), (15) and (2) we have x ∈
C(t) ∩ C(u) ∩ C(

∑
j 6=i sj), by (3) x ∈ A(si) and by (4) x /∈ E(si),

therefore x ∈ A(f) \ E(f).

If x = bi, then by (1), (15) and (11) we have x ∈ C(s)∩C(u)∩C(
∑
j 6=i tj)

and by (12) x ∈ A(ti) \ E(ti) and hence x ∈ A(f) \ E(f) and

A \ E ⊂ A(f) \ E(f). (23)

5. Let x ∈ E \A. Then according to (1) and (10) we have x ∈ C(s)∩C(t),
by (18) we have x ∈ E(u) and by (16) x /∈ A(u). Lemma 1 implies
x ∈ E(f) \A(f) and

E \A ⊂ E(f) \A(f). (24)

6. Let x ∈ R \ (A ∪ E). Then (1) and (10) imply x ∈ C(s) ∩ C(t), (19)
yields x /∈ E(u) and (17) implies x /∈ A(u). From Lemma 1 we deduce

R \ (A ∪ E) ⊂ R \ (A(f) ∪ E(f)). (25)

Finally, from (20), (21), (22), (23), (24) and (25) we conclude that C =
C(f), Q = Q(f), E = E(f) and A = A(f).
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Remark 1. Theorem 2 is not true for functions f : R2 → R. If C = Q =
R2 \ {(0, 0)} and A = E = R2, then all the assumptions of Theorem 1 are
satisfied, however there is no function f : R2 → R with C = C(f), Q = Q(f),
E = E(f) and A = A(f).

Proof. Assume that there is a function f : R2 → R such that C = C(f),R2 =
A(f) = E(f). We will show that under this assumption, (0, 0) ∈ Q(f), which
is a contradiction.

Let U be a neighbourhood of (0, 0) and let ε > 0. Let δ > 0 be such
that T = {(x, y) ∈ R2 :

√
x2 + y2 < δ} ⊂ U and let W = T \ {(0, 0)} and

a = f(0, 0). Since (0, 0) ∈ E(f) there are nonempty open sets G1, G2 ⊂ T
such that f(G1) ⊂ (a− ε/2,∞) and f(G2) ⊂ (−∞, a+ ε/2). Therefore there
are (y1, z1), (y2, z2) ∈W such that f(y1, z1) > a− ε/2 and f(y2, z2) < a+ ε/2.

If f(y1, z1) ≤ a, then |f(y1, z1) − a| < ε/2 and there is an open neigh-
bourhood G ⊂ W ⊂ U of (y1, z1) such that |f(y, z) − f(y1, z1)| < ε/2 for
each (y, z) ∈ G. Therefore for each (y, z) ∈ G we obtain |f(y, z) − f(0, 0)| ≤
|f(y, z) − f(y1, z1)| + |f(y1, z1) − a| < ε/2 + ε/2 = ε, i.e (0, 0) ∈ Q(f). If
f(y2, z2) ≥ a, then similarly we can show (0, 0) ∈ Q(f).

Finally, let f(y2, z2) < a < f(y1, z1). The set W is connected and the
function f � W is continuous, hence the set f � W (W ) = f(W ) is connected.
Since f(y2, z2), f(y1, z1) ∈ f(W ) there is (y3, z3) ∈W such that f(y3, z3) = a.
Since (y3, z3) ∈ C(f) there is an open neighbourhood G ⊂ U of (y3, z3) such
that |f(y3, z3)− f(y, z)| < ε for each (y, z) ∈ G. Therefore for each (y, z) ∈ G
we have |f(y, z) − f(0, 0)| ≤ |f(y, z) − f(y3, z3)| + |f(y3, z3) − a| < ε and
(0, 0) ∈ Q(f).

Problem 1. Characterize the quadruplet (C(f), Q(f), E(f), A(f)) for real
functions defined on a metric space, or at least for R2.
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