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POLISHABLE SUBSPACES OF
INFINITE-DIMENSIONAL SEPARABLE

BANACH SPACES

Abstract

We show that there exist Polishable subspaces of arbitrarily high
Borel class in every infinite-dimensional separable Banach space.

1 Introduction.

In this paper we study Polishable subspaces of infinite-dimensional separable
Banach spaces, analogous to Polishable subgroups of Polish groups (that is,
topological groups whose topology is separable and completely metrizable).
It is known [1] that there exist Polishable subgroups of arbitrarily high Borel
class in every non-discrete abelian Polish group. A natural question arises
whether the same is true of infinite-dimensional separable Banach spaces. We
answer this question in the positive by constructing a family of Polishable
subspaces in l1, in a manner similar to the one presented in [4]. The general
statement follows from the fact that l1 can be continuously embedded in every
Banach space.

2 Some Background, Notation and Definitions.

All Banach spaces considered in this paper are assumed to be separable. By
a linear subspace of a Banach space X we mean not only closed subspaces
but all subsets of X closed under addition and scalar multiplication. A linear

Key Words: separable Banach spaces, Polishable subspaces
Mathematical Reviews subject classification: 46B99, 03E15, 22A99
Received by the editors January 26, 2007
Communicated by: Udayan B. Darji

317



318 Maciej Malicki

subspace Y of a Banach space X is called Polishable if there exists a Polish
topology on Y making it into a Banach space and whose Borel subsets coin-
cide with all intersections of Borel subsets of X with Y . Equivalently, Y is
Polishable if there exists a one-to-one continuous linear mapping from some
Banach space Y ′ onto Y . This implies, by the Lusin-Souslin theorem [2, p.89],
that Polishable subspaces are always Borel.

An important fact about Polish topology of a Polishable subspace is that
it is unique, which essentially follows from Pettis theorem, [2, p.61]. See [3],
[5], [6] for more information about the notion of Polishability.

Borel subsets of a Polish space X are those obtained from open subsets
of X by the operations of complementation and countable union. We use the
following standard notation (see [2]) for the hierarchy of Borel sets: Σ0

1 =
open, Π0

1 = closed,

Σ0
α =

{ ⋃
n∈N

An : An is in Π0
αn

for αn < α
}
,

and Π0
α = the complements of Σ0

α, where 1 < α < ω1. Even though this
notation does not make it explicit where the Borel sets in question originate,
it will not cause any confusion as X will always be clear from the context.

A mapping f from a Polish space X into a Polish space Y is said to be of
Baire class 1 if f−1(U) is in Σ0

2 for every open U ⊆ Y . Then f is of Baire class
α, α < ω1, if it is the pointwise limit of a sequence of mappings fn, where all
fn are of Baire class smaller than α. We say that f is strictly of Baire class α
if it is of Baire class α and not of Baire class γ for any γ < α.

A classical theorem of Lebesgue, Hausdorff and Banach ([2, p.190]) says
that f is of Baire class α if and only if the pullbacks of all open sets are in
Σ0
α+1.

For a countable family (Am, ‖·‖m) of Banach spaces, let the direct sum of
Am, with norm ‖(xm)‖Σ =

∑
m ‖(xm)‖m, be

∑
Am. Finally, N and Q stand

for the natural and rational numbers, respectively.

3 Main Result.

Lemma 1. Assume that (Am, ‖·‖m) are infinite-dimensional separable Banach
spaces and gm : Am → R are continuous linear functionals, for m ∈ N. Then
the space

B(Am) = {(xm) ∈
∑

Am : lim
m
gm(xm) exists}
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endowed with the norm ‖x‖B = ‖x‖Σ + supm |gm(xm)| is a separable Banach
space. Furthermore, the linear functional

g(x) = lim
m
gm(xm)

is continuous on (B(Am), ‖·‖B).

Proof. Checking that ‖·‖B is a norm is straightforward.
First we show that B(Am) is separable. Fix countable dense sets Dm ⊆

Am, and, for every p ∈ Q, n ∈ N, let (dp,nm ) be an element of B(Am) such that

| sup
m
gm(dp,nm )− p |< 1/n

and
‖(dp,nm )‖Σ < 1/n,

provided that one exists. Otherwise, set (dp,nm ) = 0.
We show that the countable set E consisting of the elements of B(Am) of

the form (ep,n,Mm ) is dense in B(Am), where

ep,n,Mm =

{
d for some d ∈ Dm if m < M

dp,nm otherwise,

n,M range over N, and p ranges over Q.
Fix (xm) ∈ B(Am) and n > 0. Then there exists p ∈ Q and a natural M

such that, for all m ≥M , we have the following:

(i)
∑∞
m=M ‖xm‖m < 1/n;

(ii) |gm(xm)− p| < 1/n.

By continuity of the mappings gm, we can pick dm ∈ Dm such that, for
every m < M ,

M∑
m=1

‖xm − dm‖m < 1/n,

and |gm(xm)− gm(dm)| < 1/n.
Then it is easy to check that

∥∥(xm)− (ep,n,Mm )
∥∥
B
< 3/n.

Now we show that B(Am) is complete with respect to ‖·‖B . Let {xn} be
a ‖·‖B-Cauchy sequence. Then {fn} defined by fn = limm gm(xnm) is also
Cauchy, so it converges to some f . Since {xn} is Cauchy in the norm ‖·‖Σ, it
converges in this norm to some x = (xm) (possibly not in B(Am)). We show
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that actually limm gm(xm) = f , that is x ∈ B(Am), and (xn) converges to x
in ‖·‖B . Suppose that this does not hold. Then there exist ε > 0 and infinitely
many m ∈ N such that

|gm(xm)− f | > ε. (1)

Now, fix a natural N such that for all n, m > N we have that |gm(xnm)− f | <
ε/2. It is possible to find such an N by the definition of ‖·‖B and convergence
of {fn}. Because xn converge to x in ‖·‖Σ, for any fixed m0 there is N0 such
that for any n > N0 ∣∣gm0(xnm0

)− gm0(xm0)
∣∣ < ε/2.

But this means that |gm(xm)− f | ≤ ε for all m > M , which contradicts
(1).

Remark. If Am are linear subspaces of l1, then B(Am) can be identified with
a linear subspace of l1 via a bijection between N × N and N. Note that in
this case ‖·‖B is stronger than the l1-norm, provided that the norms ‖·‖m
are stronger than the l1-norm. Thus id : (B(Am), ‖·‖B) → l1 is a continuous
mapping.

Now we are ready to prove the following:

Theorem 2. For every α < ω1 there exist a subspace Bα of l1, a norm
‖·‖α on Bα and a mapping gα, with the following properties holding for every
1 ≤ α ≤ ω1:

1. ‖·‖α is stronger than the l1-norm and makes (Bα, ‖·‖α) into a separable
Banach space;

2. gα : (Bα, ‖·‖α)→ R is linear and continuous;

3. Denote by idα the continuous identity embedding of (Bα, ‖·‖α) into l1.
For every mapping φ : X → [0, 1] of Baire class α, where X is a Polish
space, there exists a continuous ψ : X → l1 such that ψ(X) ⊆ Bα and
φ = gα ◦ id−1

α ◦ ψ;

4. Bα ∈ Σ0
α+1 \Π0

α−1 for all ordinals 2 < α < ω1 of the form α = α′ + 3.

Proof. We proceed by induction on α. For α = 0 let B0 = R, g0(x) = x,
‖x‖0 = |x|.

At each successor step apply Lemma 1 to Am = Bα, gm = 2mgα, to get
Bα+1 = B(Am), ‖·‖α+1 = ‖·‖B , and gα+1 = g. By the above Remark we can
assume that Bα+1 is a subspace of l1 and ‖·‖α+1 is stronger than the l1-norm.
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We need to verify Points (3) and (4) of the theorem. Let φ : X → [0, 1]
be a mapping of Baire class α + 1. Then there are φm : X → [0, 1] of Baire
class α and continuous ψ′m : X → Bα such that φ(x) = limm φm(x), where
φm = gα ◦ id−1

α ◦ ψ′m.
Let ψ = (2−mψ′m). Clearly, ψ is continuous and we have the following:

gα+1 ◦ ψ(x) = lim
m
gm ◦ ψm(x) = lim

m
2mgα ◦ 2−mψ′m(x)

= lim
m
gα ◦ ψ′m(x) = lim

m
φm(x) = φ(x),

which proves (3).
The fact that Bα+1 ∈ Σ0

α+2 is a consequence of id−1
α+1 being of Baire class

α + 1. This is clear if we write id−1
α+1 in the form id−1

α+1(x) = limm im(x),
where im(x) = (x0, . . . , xm, 0, 0, 0, . . .) and all im are of Baire class α by the
induction hypothesis.

If in addition α = α′ + 1, we also have that Bα+1 /∈ Π0
α. This results from

Theorem 3.1(i) of [6], along with some of the claims from its proof. We will
state them and leave to the reader easy computations that lead to the desired
result. The main point is that 3) implies that id−1

α+1 is strictly of Baire class
α+ 1, since there exist mappings ψ : X → [0, 1] that are strictly of Baire class
α+ 1. Thus there is a set U ⊆ Bα+1 which is open in the Polish topology on
Bα+1 defined by ‖·‖α+1 and U /∈ Σ0

α+1, so in particular U /∈ Π0
α.

Below, for a Polish group G and a Polishable subgroup H ≤ G, bor(H,G)
is defined by letting bor(H,G) = min{γ < ω1 : H is a Π0

γ subset of G} while
pol(H,G) is a rank value of H as a Polishable group. Its precise definition is
not necessary for the present purposes and actually would only obscure our
point (see [6] for details).

Theorem 3. Let G be a Polish group and H be a Polishable subgroup of G.
(i) If pol(H,G) is a successor, then bor(H,G) = 1 + pol(H,G) + 1;

(ii) If pol(H,G) is 0 or limit, then bor(H,G) = 1 + pol(H,G).

In the proof of Theorem 3 the authors show that if ξ = pol(H,G) is a
successor, then τ ⊆ Σ0

1+ξ | H, where τ denotes the unique Polish topology on
H and Σ0

1+ξ | H stands for the family of intersections of Σ0
1+ξ subsets of G

with H.
Since Bα+1 can be viewed as a Polishable subgroup of l1 regarded as a

Polish group, the above mentioned results can be applied in the present situ-
ation. Assume that bor(Bα+1, l1) = ξ′ is finite, the other cases being similar.
If ξ′ ≤ α ξ′ = ξ + 2, then by Theorem 3, pol(Bα+1, l1) is a successor and
pol(Bα+1, l1) = ξ. It follows that τ ⊆ (Σ0

ξ+1 | Bα+1) ⊆ Π0
ξ+2 = Π0

ξ′ , which
cannot be true since U 6∈ Π0

α.
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To deal with a limit step, we fix (αm), a strictly increasing sequence of
ordinals converging to α and apply Lemma 1 to Am = B(lαm), gm = 2mgαm .
Since every mapping φ : X → [0, 1] of Baire class α is a limit of functions
φm of Baire class αm, we are done by the same argument as in the case of a
successor step.

Fix now an arbitrary infinite-dimensional separable Banach space X. It is
well known that there exists a continuous linear embedding of l1 into X, say
γ, so that γ ◦ idα witness that γ(Bα) are Polishable subspaces of X for each
α < ω1. By a standard observation the family of all γ(Bα) is unbounded in
the hierarchy of Borel subsets of X Therefore we get the following Corollary.

Corollary 4. Let X be an infinite-dimensional separable Banach space. For
every α < ω1 there exists a Polishable subspace Y of X such that Y /∈ Π0

α.

We would like to finish with two questions. First of all, for a given Banach
space X, does there exist a single Banach space X ′ whose images in X under
linear embeddings are unbounded in terms of the Borel hierarchy? Another
problem that we find interesting concerns a lower bound of Borel classes of
Polishable subspaces of Banach spaces: for a given α < ω1, is there a Banach
space X all of whose nontrivial Polishable subspaces have Borel class higher
than α? Note that our construction does not yield such a bound since we do
not know in general what the possible Borel classes of copies of l1 in Banach
spaces are.
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