F. S. Cater, Department of Mathematics and Statistics, Portland State University, Portland, Oregon 97207.

SOME LATTICES OF CONTINUOUS FUNCTIONS ON LOCALLY COMPACT SPACES

Abstract

Let U be a locally compact Hausdorff space that is not compact. Let L(U) denote the family of continuous real valued functions on U such that for each $f \in L(U)$ there is a nonzero number p (depending on f) for which f-p vanishes at infinity. Then L(U) is obviously a lattice under the usual ordering of functions.

In this paper we prove that L(U), as a lattice alone, characterizes the locally compact space U.

Let S be a locally compact Hausdorff space. Define T(S) to be L(S) if S is not compact, and T(S) to be C(S) if S is compact. We prove that any locally compact Hausdorff spaces S_1 and S_2 are homeomorphic if and only if their associated lattices $T(S_1)$ and $T(S_2)$ are isomorphic.

In [1] it was proved that for the compact Hausdorff spaces X, the lattice C(X) of continuous real valued functions on X, as a lattice alone, characterizes the space X. The details are in [1], so we will not repeat them here.

So now let U be a locally compact Hausdorff space that is not compact. Let L(U) denote the family of continuous real valued functions on U such that for each $f \in L(U)$, there is a nonzero number p (depending on f) for which f-p vanishes at infinity. Then L(U) is obviously a lattice under the usual ordering of functions.

In this paper we prove that L(U), as a lattice alone, characterizes the locally compact space U.

Communicated by: Brian S. Thomson

Key Words: continuous function, compact space, locally compact space, lattice Mathematical Reviews subject classification: Primary: 26A15; Secondary: 54D30, 54D45

Received by the editors March 23, 2006

Thus L(U) does for locally compact spaces U what C(X) does for compact spaces X. On the other hand, C(U) will not suffice for locally compact U. We begin with the following theorem.

Theorem 1. Let X and Y be compact Hausdorff spaces. Fix $x_{\infty} \in X$ and $y_{\infty} \in Y$. Let

$$L(X, x_{\infty}) = \left\{ g \in C(X) : g(x_{\infty}) \neq 0 \right\},$$
$$L(Y, y_{\infty}) = \left\{ g \in C(Y) : g(y_{\infty}) \neq 0 \right\}.$$

Let $f \mapsto f^*$ be a lattice isomorphism of $L(X, x_{\infty})$ onto $L(Y, y_{\infty})$. Then there is a homeomorphism $y \mapsto y'$ of Y onto X that maps y_{∞} to x_{∞} . Moreover,

$$f(x_{\infty})f^*(y_{\infty}) > 0$$
 for all $f \in L(X, x_{\infty})$.

PROOF. Let $y \mapsto y'$ be the homeomorphism of Y onto X as in [1]. The arguments in [1] for C(X) and C(Y) go through verbatim for $L(X, x_{\infty})$ and $L(Y, y_{\infty})$. This homeomorphism also enjoys the property

for each
$$y \in Y$$
, the set

$$\left\{ f(y') : f \in L(X, x_{\infty}), f^*(y) < 0 \right\}$$
(*)
is bounded above.

(To prove (*), observe that the set $\{f^* \in L(Y, y_{\infty}) : f^*(y) < 0\}$ is a prime ideal in $L(Y, y_{\infty})$ associated with the point y, and the corresponding prime ideal in $L(X, x_{\infty})$ is associated with the point y'.)

It remains to prove that $y'_{\infty} = x_{\infty}$. So assume to the contrary, that $y'_{\infty} = x_0 \neq x_{\infty}$. Choose $g \in L(X, x_{\infty})$ so that $g^*(y_{\infty}) < 0$. Choose $g_0 \in L(X, x_{\infty})$ so that $g_0(x_{\infty})$ and $g(x_{\infty})$ have the same sign, but $g_0(x_0)$ is so large that $g_0^*(y_{\infty}) > 0$ by (*). Then $g(x_{\infty})$ and $g_0(x_{\infty})$ have the same sign, but $g^*(y_{\infty})$ and $g_0^*(y_{\infty})$ have opposite sign. Put $F_1 = g \cup g_0$ and $f_1 = g \cap g_0$. Then $F_1(x_{\infty})$ and $f_1(x_{\infty})$ have the same sign, but $F_1^*(y_{\infty})$ and $f_1^*(y_{\infty})$ have opposite sign. Moreover $F_1 \ge f_1$.

Let $g_1 = (F_1 + f_1)/2$. Let F_2 and f_2 be two of the functions F_1 , g_1 , f_1 such that

$$F_2^*(y_\infty) > 0 > f_2^*(y_\infty)$$

and one of the functions F_2 or f_2 is g_1 . Then

$$F_1 \ge F_2 \ge f_2 \ge f_1$$

286

and

$$F_1^*(y_{\infty}) \ge F_2^*(y_{\infty}) > 0 > f_2^*(y_{\infty}) \ge f_1^*(y_{\infty})$$

Furthermore

$$F_2 - f_2 = \frac{F_1 - f_1}{2} \,.$$

If $2F_2^*(y_\infty) + f_2^*(y_\infty) \neq 0$, choose $g_2 \in L(X, x_\infty)$ such that

$$g_2^* = \frac{2F_2^* + f_2^*}{3};$$

otherwise choose $g_2 \in L(X, x_\infty)$ such that

$$g_2^* = \frac{F_2^* + 2f_2^*}{3} \,.$$

Let F_3 and f_3 be two of the functions F_2 , g_2 , f_2 such that

$$F_3^*(y_\infty) > 0 > f_3^*(y_\infty)$$

and one of the functions F_3 or f_3 is g_2 . Then

$$F_2 \ge F_3 \ge f_3 \ge f_2$$

and

$$F_2^*(y_\infty) \ge F_3^*(y_\infty) > 0 > f_3^*(y_\infty) \ge f_2^*(y_\infty)$$
.

Furthermore

$$F_3^*(y_\infty) - f_3^*(y_\infty) \le \frac{2(F_2^*(y_\infty) - f_2^*(y_\infty))}{3}.$$

We use the technique of the preceding two paragraphs and inductive construction to construct sequences of functions $(f_n) \subset L(X, x_\infty)$ and $(F_n) \subset L(X, x_\infty)$ such that

$$F_{n-1} \ge F_n \ge f_n \ge f_{n-1} \,, \tag{1}$$

$$F_{n-1}^*(y_\infty) \ge F_n^*(y_\infty) > 0 > f_n^*(y_\infty) \ge f_{n-1}^*(y_\infty)$$
, for $n > 1$, and (2)

$$F_n - f_n = \frac{F_{n-1} - f_{n-1}}{2}$$
, for *n* even, and (3)

$$F_n^*(y_\infty) - f_n^*(y_\infty) \le \frac{2\left(F_{n-1}^*(y_\infty) - f_{n-1}^*(y_\infty)\right)}{3}, \text{ for } n \text{ odd}.$$
 (4)

It follows from (1) and (3) that the sequences of functions (F_n) and (f_n) each converges uniformly to a continuous function H on X, and furthermore $F_n \geq H \geq f_n$ for each n. Plainly $H(x_{\infty})$ has the same sign as $F_1(x_{\infty})$ and $f_1(x_{\infty})$, and it follows that $H \in L(X, x_{\infty})$.

On the other hand, it follows from (2) and (4) that the sequences of numbers $(F_n^*(y_\infty))$ and $(f_n^*(y_\infty))$ each converges to 0. We deduce from (1) that

 $F_n^* \geq H^* \geq f_n^* \quad \text{and} \quad F_n^*(y_\infty) \geq H^*(y_\infty) \geq f_n^*(y_\infty)$

for each index n. Necessarily, then, $H^*(y_{\infty}) = 0$ and consequently $H^* \notin L(Y, y_{\infty})$, contrary to hypothesis. This proves that $y'_{\infty} = x_{\infty}$.

Let $s \in L(X, x_{\infty})$ such that $s(x_{\infty}) > 0$. Choose $r \in L(X, x_{\infty})$ such that $r(x_{\infty}) > 0$ and $r(x_{\infty})$ is so large that $r^*(y_{\infty}) > 0$ by (*). Then $s^*(y_{\infty})$ is necessarily positive; for otherwise we could repeat our argument with r and s in place of g_0 and g. It follows that for $s \in L(X, x_{\infty})$, the inequality $s(x_{\infty}) > 0$ implies $s^*(y_{\infty}) > 0$. For the converse implication, reverse the roles of the spaces X and Y.

Before we turn to locally compact Hausdorff spaces that are not compact, we offer one corollary.

Corollary 1. Let X and Y be compact Hausdorff spaces, let $x_0 \in X$ and $y_0 \in Y$. Then a necessary and sufficient condition that there exists a homeomorphism $y \mapsto y'$ of Y onto X that maps y_0 to x_0 is that there exists a lattice isomorphism $f \mapsto f^*$ of $L(X, x_0)$ onto $L(Y, y_0)$.

PROOF. Sufficiency. Theorem 1.

Necessity. For each $f \in L(X, x_0)$, put $f^*(y) = f(y')$. We leave the rest. \Box

We now come to the result we stated in our introductory comments.

Corollary 2. Let U and V be locally compact Hausdorff spaces, not compact. Then a necessary and sufficient condition that U and V be homeomorphic is that the lattices L(U) and L(V) be isomorphic.

PROOF. Let $X = U \cup \{x_{\infty}\}$ and $Y = V \cup \{y_{\infty}\}$ be the one point compactifications of U and V respectively where x_{∞} and y_{∞} are the points at infinity. Sufficiency. Theorem 1.

Necessity. Let $y \mapsto y'$ be the homeomorphism. For $f \in L(U)$ put $f^*(y) = f(y')$. We leave the rest.

Next we see how C(X) and L(V) compare when X is compact Hausdorff and V is only locally compact Hausdorff. **Corollary 3.** Let X be compact Hausdorff and V be locally compact Hausdorff but not compact. Then C(X) and L(V) are not isomorphic lattices.

PROOF. Let $Y = V \cup \{y_{\infty}\}$ be the one point compactification of V. Use the construction in the proof of Theorem 1 to show that C(X) and L(V) can not be isomorphic lattices. (Just delete any references to x_{∞} .)

Say that a compact space X is homogeneous if for any $a, b \in X$, there is a homeomorphism of X onto X that maps a to b. For example, a circle is homogeneous but the compact interval [0, 1] is not.

Corollary 4. Let X be a compact Hausdorff space. Then X is homogeneous if and only if L(X, a) and L(X, b) are isomorphic lattices for any $a \in X$, $b \in X$.

PROOF. Theorem 1.

We conclude with an example.

Example 1. Let U be the linearly ordered space consisting of the real line followed by all the countable ordinal numbers in their usual order. Let Vbe the linearly ordered space U with one final point p adjoined. In V every neighborhood of p contains an uncountable totally disconnected neighborhood of p. But U contains no such point, so U and V are not homeomorphic spaces. However both U and V are locally compact Hausdorff spaces that are not compact. From Theorem 1 we deduce that L(U) and L(V) are not isomorphic. On the other hand, the lattices C(U) and C(V) are essentially identical, and likewise $C^*(U)$ and $C^*(V)$ are essentially identical lattices.

Finally, let S be a locally compact Hausdorff space. Define T(S) to be L(S) if S is not compact, and T(S) to be C(S) if S is compact. From reference [1] and Corollaries 2 and 3 we deduce that any locally compact Hausdorff spaces S_1 and S_2 are homeomorphic if and only if their associated lattices $T(S_1)$ and $T(S_2)$ are isomorphic.

References

 I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 53 (1947), 617–623.

F. S. CATER

290