
Real Analysis Exchange
Vol. (), , pp. 735–748

Nikolaos Efstathiou Sofronidis∗, 19 Stratigou Makryianni Street, Thessaloniki
54635, Greece. e-mail: sofnik@otenet.gr

ANALYTIC NON-BOREL SETS AND
VERTICES OF DIFFERENTIABLE CURVES

IN THE PLANE

Abstract

The purpose of this paper is to show that given any non-zero cardinal
number n ≤ ℵ0, the set of differentiable paths of class C2 and of unit
length in the plane having their arc length as the parameter in [0, 1]
and tracing curves which have at least n vertices is analytic non-Borel,
while for any r ∈ (N ∪ {∞}) \ {0, 1, 2}, the set of differentiable paths of
class Cr and of unit length in the plane having their arc length as the
parameter in [0, 1] and tracing curves which have at least n vertices is
Fσ if n < ℵ0 and Fσδ if n = ℵ0.

1 Introduction

It is common knowledge in Mathematics that there is no unified definition of
the notion of a curve (see, for example, Paragraph 51.I on page 275 of [19], 4.3
on page 45 of [31], 10.8 on page 200 of [25], and 2.6 on page 7 of [6]), and there
is no unified definition of the notion of a vertex of a curve (see, for example,
Paragraph 10 on page 33 of [2], 111E on page 414 of [12], and page 332 of [23]),
even though it is common ground what is meant by the term vertex theorems
(see http://www.ams.org/msc/51Lxx.html).

The first effort to give an exact definition of the notion of a curve using
analytic methods was made by C. Jordan (see, for example, 93A and 93B on
pages 345–346 of [12] or [17]). For the purpose of this paper, following the
approach in [12] (see 93B on page 346), for any r ∈ N ∪ {∞}, we define a
plane curve of class Cr to be the image of a mapping [0, 1] → E2 of class
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Cr sending the closed unit interval [0, 1] into the Euclidean plane E2, and,
following the approach of K. Kuratowski (see Paragraph 62.XI on page 584 of
[19]), we call the mapping in question the path of class Cr which traces the
curve. Identifying E2 with R2, say by choosing a coordinate system, for any
r ∈ (N ∪ {∞}) \ {0}, we view the Polish space (i.e., the separable completely
metrizable space)

Pr =

{
(x, y) ∈ Cr([0, 1],R2) :

(
dx

ds

)2

+
(
dy

ds

)2

= 1

}
as the space of all differentiable paths of class Cr and of unit length in the plane
which have their arc length as the parameter in [0, 1], where Cr([0, 1],R2) is
equipped with the Whitney topology, (See, for example, 1. on page 35 of [11].)
a complete compatible metric for which is given by the formula

dCr([0,1],R2)((x, y), (u, v)) =
∑

0≤i≤r;i∈N
2−i

‖x(i) − u(i)‖∞
1 + ‖x(i) − u(i)‖∞

+
∑

0≤i≤r;i∈N
2−i

‖y(i) − v(i)‖∞
1 + ‖y(i) − v(i)‖∞

where (x, y), (u, v) are in Cr([0, 1],R2). (See, for example, page 8 of [27] and
Section 5 on pages 148–149 of [24].) We should mention that Pr is a Polish
space since it is a Gδ subspace of the Polish space Cr([0, 1],R2) in the Whitney
topology (See, for example, 3.11 on page 17 of [18]).

What we are concerned with here is the notion of a vertex of a curve, which
presupposes the notion of curvature. Thus, if (x, y) is any path in Pr, where
r ∈ (N ∪ {∞}) \ {0, 1}, then the curvature κ of the curve traced by (x, y) is
given by the formula

κ =
dx

ds
· d

2y

ds2
− dy

ds
· d

2x

ds2

(See, for example, Section 11 on page 26 of [30].) and depends at least contin-
uously on the arc length s ∈ [0, 1]. For the purpose of this paper, following the
approach in [12] (See 111E on page 414), we call a point A on the curve traced
by (x, y) a vertex if

(
dκ
ds

)
A

= 0, in other words, if
(
dκ
ds

)
s=a

= 0, where a is the
value of the parameter for which (x(a), y(a)) constitutes the pair of Cartesian
coordinates of the point A in the Euclidean plane E2. We should mention
though that when considering curves of class C2, a vertex is also defined as
a local maximum or minimum of the curvature, (See, for example, page 332
of [23].) since the derivative of the curvature can not be defined apart from
the case when the curvature is of bounded variation, and hence its derivative
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exists almost everywhere. (See, for example, Section 2 on pages 102–104 of
[24].)

Theorem. For any non-zero cardinal number n ≤ ℵ0, the set of paths in P2

tracing curves which have at least n vertices is analytic non-Borel in P2, while
for any r ∈ (N ∪ {∞}) \ {0, 1, 2}, the set of paths in Pr tracing curves which
have at least n vertices is Fσ in Pr if n < ℵ0, and Fσδ in Pr if n = ℵ0.

Thus, for any non-zero cardinal number n ≤ ℵ0, there exist no Borel
measurable necessary and sufficient conditions on a differentiable path of class
C2 and of unit length having its arc length as the parameter in [0, 1] and tracing
a curve in the plane, which can assert the existence of at least n vertices. In
other words, for any non-zero cardinal number n ≤ ℵ0, any necessary and
sufficient conditions for existence of at least n vertices of a differentiable path
of class C2 and of unit length having its arc length as the parameter in [0, 1]
and tracing a curve in the plane can not be expressed analytically through
explicit formulas, simple analytic expressions, and the like.

Geometric properties, though of a topological nature, that give rise to ana-
lytic or co-analytic non-Borel sets were also given by O. Nikodym and W. Sier-
pinski, (See [21], [22], and 27.18 on page 216 of [18].) and relatively recently by
H. Becker (See 33.17 on page 256 of [18] or [3]). Moreover, the subject of vertex
theorems occupied the mind of several generations of mathematicians starting
with the proof in 1909 of the original Four Vertex Theorem, concerning local
extrema of the curvature, by the Indian mathematician S. Mukhopadhaya (see
[20]). The MathSciNet contains several items concerning vertex theorems
from which, according to their reviews, we selectively refer the reader to [1],
[2], [4], [5], [7], [8], [9], [10], [13], [14], [15], [16], [23], [26], [28], [29], [32], and
[33].

2 Elements from Descriptive Set Theory

Descriptive set theory is the study of definable sets in Polish spaces, which
are defined as separable, completely metrizable spaces. In this theory sets are
classified in the Borel and the projective hierarchy according to the complexity
of their definition. Given a Polish space X, the first level of the Borel hierarchy
that corresponds to X consists of the class of its Σ0

1-sets or G-sets, which is
by definition its open sets, and the class of its Π0

1-sets or F -sets, which is by
definition its closed sets; the second level consists of the class of its Σ0

2-sets
or Fσ-sets, which is defined as countable unions of its Π0

1-sets, and the class
of its Π0

2-sets or Gδ-sets, which is defined as countable intersections of its
Σ0

1-sets; the third level consists of the class of its Σ0
3-sets or Gδσ-sets, which



738 Nikolaos Efstathiou Sofronidis

is defined as countable unions of its Π0
2-sets, and the class of its Π0

3-sets or
Fσδ-sets, which is defined as countable intersections of its Σ0

2-sets, etc. On the
other hand, the first level of the projective hierarchy that corresponds to X
consists of the class of its analytic or Σ1

1-sets, which is defined as continuous
images of Polish spaces, and the class of its co-analytic or Π1

1-sets, which is
defined as complements of its Σ1

1-sets; the second level consists of its Σ1
2-sets,

which is defined as continuous images of Π1
1-sets, and the class of its Π1

2-sets,
which is defined as complements of its Σ1

2-sets, etc. (See, for example, the
Introduction, 11.B on pages 68–69, 25.A on pages 196–197, 32.A on pages
242–243, and 37.A on pages 313–315 of [18].)

Given a class Γ of sets in either the Borel or the projective hierarchy, if
X and Y are any Polish spaces, then we call a Γ-set B ⊆ Y Wadge reducible
to a set A ⊆ X, in symbols B≤WA, if there exists a continuous mapping
f : Y → X such that B = f−1[A]; moreover, we call A Γ-hard, if for any
Polish space Y and for any Γ-set B ⊆ Y , we have B≤WA, and, in particular,
we call A Γ-complete, if it also constitutes a Γ-set. A powerful technique to
find a lower bound for the complexity of a given set is to show that it is Γ-hard
for some class Γ of sets in either the Borel or the projective hierarchy, usually
by proving that another set which is known to be Γ-hard is Wadge reducible
to it, and by showing that it is Γ-complete we compute its exact complexity.
(See, for example, 21.13 on page 156, 22.B on pages 169–170, and 26.C on
pages 206–207 of [18].)

3 Trees and Functions in L1

Trees are basic combinatorial tools in descriptive set theory. A tree on N
is a subset T of the set N<N =

⋃
n∈NNn of all finite sequences of natural

numbers, which is closed under initial segments, and its body is [T ] = {α ∈
NN : (∀n ∈ N)(α|n ∈ T )}, where α|n = (α(0), . . . , α(n− 1)). A tree is usually
viewed as an element of 2N<N

by identifying it with its characteristic function,
where 2N<N

is equipped with the product topology with 2 = {0, 1} discrete,
making it homeomorphic to the Cantor space, a closed subset of which is the
set Tr of all trees on N. Thus, Tr acquires the structure of a Polish space
(i.e., a separable completely metrizable space), and it is partitioned into two
characteristic subsets, the set IF = {T ∈ Tr : [T ] 6= ∅} of ill-founded trees
on N, which is Σ1

1-complete, and the set WF = {T ∈ Tr : [T ] = ∅} of well-
founded trees on N, which is Π1

1-complete. (See, for example, 2.A on pages
5–6, 4.32 on pages 27–28, 2.E on page 10, 27.1 on page 209, and 32.B on page
243 of [18].)
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Let 1 ≤ n ≤ ℵ0 and let −∞ < α < β <∞. For any i < n, we set

I
(i)
n;∅ =



[
α+ iβ−αn , α+ (i+ 1)β−αn

]
if n < ℵ0[

α+
i∑

j=1

β−α
2j , α+

i+1∑
j=1

β−α
2j

]
if n = ℵ0

and if s ∈ N<N is such that the intervals I(i)
n;s are already defined, then we define

the intervals I(i)
n;s_k, where s_k = (s(0), . . . , s(length(s)− 1), k), as follows. If

I
(i)
n;s = [a, b], then for any k ∈ N, we set I(i)

n;s_k =

[
a+

2k+1∑
j=1

b−a
2j , a+

2k+2∑
j=1

b−a
2j

]
.

Moreover, if for any tree T on N, we set

φn;T =
∏
i<n

1−
∑

s∈T\{∅}

2−length(s)χ
I
(i)
n;s


and κn;T =

∫ x
α
φn;T (t) dt for every x ∈ [α, β], then the following result holds.

Theorem 3.1. Given any non-zero cardinal number n ≤ ℵ0 and any tree T
on N, the following are true.

• If (κn;T )′−(β) exists, then (κn;T )′−(β) ≥ 1
6

.

• T ∈ IF ⇒ (∀i < n)
(
∃αi ∈ Int(I(i)

n;∅)
)

(κ′n;T (αi) = 0).

• T ∈WF ⇒ (∀x ∈ [α, β))((κn;T )′+(x) > 0).
Moreover, both mappings Tr 3 T 7→ φn;T ∈ L1([α, β],m), where m stands

for the Lebesgue measure on R, and Tr 3 T 7→ κn;T ∈ C([α, β],R) are well-
defined and continuous.

Proof. Fix a tree T on N. For simplicity set φ(i)
n;T = 1−

∑
s∈T\{∅}

2−length(s)χ
I
(i)
n;s

for every i < n. We remark that if i < n, j < n and i 6= j, then φ
(i)
n;T = 1 on

I
(j)
n;∅, which implies that φn;T = φ

(i)
n;T on I

(i)
n;∅, while our construction implies

that for any x ∈ I(i)
n;∅ and any s ∈ N<N, there exists at most one k ∈ N for

which x ∈ I(i)
n;s_k, which implies in its turn that φ(i)

n;T (x) ≥ 1 −
∞∑
k=1

2−k = 0,

and φ
(i)
n;T (x) = 0 if and only if there exists α ∈ [T ] such that x ∈

⋂
k∈NI

(i)
n;α|k.
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In addition, for any positive integer i, we have

κn;T (β)− κn;T

(
α+

2i∑
j=1

β−α
2j

)

β −

(
α+

2i∑
j=1

β−α
2j

) =
1

β −

(
α+

2i∑
j=1

β−α
2j

) · ∫ β

α+
2iP
j=1

β−α
2j

φn;T (t) dt

≥ 1

β −

(
α+

2i∑
j=1

β−α
2j

) · ∞∑
k=1

β − α
22i+2k+1

=
1
6
,

which implies that if (κn;T )′−(β) exists, then (κn;T )′−(β) ≥ 1
6 . So let T ∈WF

and let i < n, while x ∈ I(i)
n;∅. Then there exists s ∈ T of maximum length such

that x ∈ I(i)
n;s and maximality implies that x ∈ I(i)

n;s \
⋃
ν∈N;s_ν∈T I

(i)
n;s_ν . If x

is either the left endpoint or lies in the interior of I(i)
n;s, then there exists ε > 0

such that for x < y < x+ ε, we have φ(i)
n;T (y) = 1−

length(s)∑
k=1

2−k, which implies

that (κn;T )′+(x) = 1 −
length(s)∑
k=1

2−k. So let x be the right endpoint of I(i)
n;s. If

s 6= ∅, then there is ε > 0 such that for x < y < x + ε, we have φ(i)
n;T (y) =

1 −
length(s)−1∑

k=1

2−k, which implies that (κn;T )′+(x) = 1 −
length(s)−1∑

k=1

2−k, while

if s = ∅ and i+ 1 < n, then there exists ε > 0 such that for x < y < x+ ε, we
have φ(i)

n;T (y) = 1, which implies that (κn;T )′+(x) = 1. We have thus proved
that T ∈WF ⇒ (∀x ∈ [α, β))

(
(κn;T )′+(x) > 0

)
.

So let T ∈ IF and let α ∈ [T ]. If i < n and αi is the unique point contained
in
⋂
k∈NI

(i)
n;α|k, then we claim that κ′n;T (αi) = 0. Indeed, if k ∈ N and x, y are

in I
(i)
n;α|k, then

|φn;T (x)− φn;T (y)| =
∣∣∣φ(i)
n;T (x)− φ(i)

n;T (y)
∣∣∣

≤
∑

s∈T\{∅}

2−length(s) ·
∣∣∣χI(i)n;s

(x)− χ
I
(i)
n;s

(y)
∣∣∣

≤ 2 ·
∑
j>k

2−j = 2−k+1,

and hence if x 6= αi lies in the interior of I(i)
n;α|k, while I stands for the interval
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defined by x and αi, then, as φ(i)
n;T (αi) = 0⇒ φn;T (αi) = 0, we obtain that

|κn;T (x)− κn;T (αi)| =
∫
I

φn;T (t) dt =
∫
I

(φn;T (t)− φn;T (αi)) dt

≤ 2−k+1 · |x− αi| ⇒
∣∣∣∣κn;T (x)− κn;T (αi)

x− αi

∣∣∣∣ ≤ 2−k+1,

and the claim follows. We have thus proved that

T ∈ IF ⇒ (∀i < n)
(
∃αi ∈ Int(I(i)

n;∅)
) (
κ′n;T (αi) = 0

)
.

What is left to show is that the mapping Tr 3 T 7→ φn;T ∈ L1([α, β],m)
is continuous, as the continuity of the mapping Tr 3 T 7→ κn;T ∈ C([α, β],R)
will then follow. Indeed, it suffices to note that for functions f , g in L1([α, β],m)
and x ∈ [α, β], we have

∣∣∫ x
α
f(t) dt−

∫ x
α
g(t) dt

∣∣ ≤ ∫ β
α
|f(t) − g(t)| dt. Given

i < n, s ∈ N<N and k ∈ N, it is not difficult to see that m
(
I
(i)
ℵ0;∅

)
=
β − α
2i+1

and m
(
I
(i)
n;s_k

)
=
m
(
I
(i)
n;s

)
4k+1

, while given T , T ′ in Tr, we have∫ β

α

|φn;T ′(x)− φn;T (x)| dx =
∑
i<n

∫
I
(i)
n;∅

|φn;T ′(x)− φn;T (x)| dx

=
∑
i<n

∫
I
(i)
n;∅

∣∣∣φ(i)
n;T ′(x)− φ(i)

n;T (x)
∣∣∣ dx,

where for any i < n and any x ∈ I(i)
n;∅, we have

φ
(i)
n;T ′(x)− φ(i)

n;T (x) =
∑

s∈T\{∅}

2−length(s)χ
I
(i)
n;s

(x)−
∑

s∈T ′\{∅}

2−length(s)χ
I
(i)
n;s

(x),

which implies that
∣∣∣φ(i)
n;T ′ − φ

(i)
n;T

∣∣∣ ≤ 1 and also that φ(i)
n;T ′ − φ

(i)
n;T vanishes on

I
(i)
n;s\

⋃
k∈NI

(i)
n;s_k for every s ∈ N<N. Therefore, for i < n and s ∈ N<N, we have∫

I
(i)
n;s

∣∣∣φ(i)
n;T ′(x)− φ(i)

n;T (x)
∣∣∣ dx =

∞∑
k=0

∫
I
(i)
n;s_k

∣∣∣φ(i)
n;T ′(x)− φ(i)

n;T (x)
∣∣∣ dx, where for

any k ∈ N, we have
∫
I
(i)
n;s_k

∣∣∣φ(i)
n;T ′(x)− φ(i)

n;T (x)
∣∣∣ dx ≤ m(I(i)

n;s_k

)
=
m
(
I
(i)
n;s

)
4k+1

.

So let T ∈ Tr be arbitrary but fixed and given N ∈ N \ {0}, let

VT ;N =

{
T ′ ∈ Tr :

(
∀s ∈

N⋃
n=0

{0, 1, . . . , N − 1}n
)

(s ∈ T ′ ⇐⇒ s ∈ T )

}
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It is not difficult to see that the sets VT ;N form a fundamental system of open
neighborhoods of T in Tr. So let N ∈ N \ {0} be arbitrary but fixed and let
T ′ ∈ VT ;N . Then for any i < n and any s ∈ N<N, we have

∫
I
(i)
n;s

∣∣∣φ(i)
n;T ′(x)− φ(i)

n;T (x)
∣∣∣ dx ≤ N−1∑

k=0

∫
I
(i)
n;s_k

∣∣∣φ(i)
n;T ′(x)− φ(i)

n;T (x)
∣∣∣ dx

+
∞∑
k=N

m
(
I
(i)
n;s

)
4k+1

=
N−1∑
k=0

∫
I
(i)
n;s_k

∣∣∣φ(i)
n;T ′(x)− φ(i)

n;T (x)
∣∣∣ dx+m

(
I(i)
n;s

)
· 1

3 · 4N

and hence we obtain that∫
I
(i)
n;∅

∣∣∣φ(i)
n;T ′(x)− φ(i)

n;T (x)
∣∣∣ dx ≤ N−1∑

k0=0

( N−1∑
k1=0

(
. . .
( N−1∑
kN−1=0

∫
I
(i)
n;(k0,k1,...,kN−1)

∣∣∣φ(i)
n;T ′(x)− φ(i)

n;T (x)
∣∣∣ dx

+ m
(
I
(i)
n;∅
)
· 1

4k0+1
. . .

1
4kN−2+1

· 1
3 · 4N

)
. . .

)
+ m

(
I
(i)
n;∅

)
· 1

4k0+1
· 1

3 · 4N
)

+m
(
I
(i)
n;∅

)
· 1

3 · 4N

So let (k0, k1, . . . , kN−1) ∈ {0, 1, . . . , N − 1}N be arbitrary but fixed. Given
s ∈ N<N, if s is an initial segment of (k0, k1, . . . , kN−1), then s ∈ T ⇐⇒ s ∈
T ′, and if s is not an initial segment of (k0, k1, . . . , kN−1), then for any x ∈
I
(i)
n;(k0,k1,...,kN−1)

, we have χ
I
(i)
n;s

(x) = 0. Therefore, for any x ∈ I(i)
n;(k0,k1,...,kN−1)

,

we have − 1
2N

= −
∑
k>N

2−k ≤ φ
(i)
n;T ′(x) − φ

(i)
n;T (x) ≤

∑
k>N

2−k = 1
2N

, which

implies that∫
I
(i)
n;(k0,k1,...,kN−1)

∣∣φ(i)
n;T ′(x)− φ(i)

n;T (x)
∣∣ dx ≤ 1

2N
·m
(
I
(i)
n;∅

)
· 1

4k0+1
· · · 1

4kN−1+1

and, as
N−1∑
k=0

1
4k+1

=
1
3
·
(

1− 1
4N

)
, we obtain that

∫
I
(i)
n;∅

∣∣∣φ(i)
n;T ′(x)− φ(i)

n;T (x)
∣∣∣ dx

≤
N−1∑
k0=0

( N−1∑
k1=0

(
. . .
( N−1∑
kN−1=0

1
2N
·m
(
I
(i)
n;∅
)
· 1

4k0+1
· · · 1

4kN−1+1

+ m
(
I
(i)
n;∅
)
· 1

4k0+1
. . .

1
4kN−2+1

· 1
3 · 4N

)
. . .

)
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+ m
(
I
(i)
n;∅
)
· 1

4k0+1
· 1

3 · 4N
)

+m
(
I
(i)
n;∅
)
· 1

3 · 4N

≤ 1
2N
·m
(
I
(i)
n;∅
)
·
[ N−1∑
k0=0

( N−1∑
k1=0

(
. . .
( N−1∑
kN−1=0

1
4k0+1

· · · 1
4kN−1+1

+
1

4k0+1
· · · 1

4kN−2+1

)
. . .
)

+
1

4k0+1

)
+ 1
]

=
1

2N
·m
(
I
(i)
n;∅
)
·
N∑
k=0

(1
3
·
(
1− 1

4N
))k

<
1

2N
·m
(
I
(i)
n;∅
)
·
∞∑
k=0

(1
3
·
(
1− 1

4N
))k
≤ 3

2N−1
·m
(
I
(i)
n;∅
)

for every i < n, which implies that
∫ β
α
|φn;T ′(x) − φn;T (x)| dx ≤ 3 · (β − α) ·

2−N+1 for every T ′ ∈ VT ;N .

4 Analytic Non-Borel Sets, Tangents of Continuous
Curves in the Plane and Tangent Hyperplanes of
Graphs of Continuous Functions

Theorem 4.1. Given any line in the plane and any non-zero cardinal number
n ≤ ℵ0, the set of continuous paths in the plane tracing curves which have at
least n tangents parallel to the given line is analytic, non-Borel.

Proof. Once 1 ≤ n ≤ ℵ0 is given, by appropriately choosing a coordinate
system in the plane, it is enough to prove that the set of continuous paths in
R2 tracing curves which have at least n tangents parallel to the real line is Σ1

1-
complete in C([0, 1],R2), and therefore analytic, non-Borel. The fact that the
set in question is Σ1

1-hard in C([0, 1],R2) follows immediately from Theorem
3.1. Indeed, for α = 0 and β = 1 we need only consider the mapping that
assigns to every tree T on N the continuous path [0, 1] 3 t 7→ (t, κn;T (t)) ∈
R2. Thus, what is left to show is that the set in question is actually Σ1

1 in
C([0, 1],R2) in case n < ℵ0. (See, for example, 14.4 on page 86 of [18].) But
this follows from the fact that given any (x, y) ∈ C([0, 1],R2), the path (x, y)
traces a curve which has at least n tangents parallel to the real line if and
only if there exists (a1, . . . , an, b1, . . . , bn) ∈ [0, 1]n × Rn with the properties
a1 < · · · < an, (∀i ∈ {1, . . . , n})(bi 6= 0) and (∀i ∈ {1, . . . , n})(∀ε ∈ Q∗+)(∃δ ∈
Q∗+)(∀r ∈ [0, 1] ∩Q)(

0 < |r − ai| ⇒
(∣∣∣∣x(r)− x(ai)

r − ai
− bi

∣∣∣∣ ≤ ε ∧ ∣∣∣∣y(r)− y(ai)
r − ai

∣∣∣∣ ≤ ε)) .
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(See, for example, 14.3 on page 86 of [18].)

Theorem 4.2. Given any positive integer N and any non-zero cardinal num-
ber n ≤ ℵ0, if −∞ < α < β <∞, then the set of all functions in C([α, β]N ,R)
whose graph in RN+1 has at least n tangent N -dimensional hyperplanes par-
allel to RN is Σ1

1-complete in C([α, β]N ,R), and therefore analytic non-Borel.

Proof. We will first prove that the set in question is Σ1
1-hard in C([α, β]N ,R).

To this end we consider the mapping that assigns to every tree T on N the
continuous function fT : [α, β]N 3 (x1, . . . , xN ) 7→ κn;T (x1)+ · · ·+κn;T (xN ) ∈
R. We remark that given (a1, . . . , aN ) ∈ [α, β]N , the graph of fT in RN+1 has
a tangent N -dimensional hyperplane at the point (a1, . . . , aN , fT (a1, . . . , aN ))
if and only if fT is differentiable at the point (a1, . . . , aN ) or (equivalently)
κn;T is differentiable at the points a1, . . . , aN . Moreover, the tangent N -
dimensional hyperplane in question, if it exists, is perpendicular to the vector
(−∇fT (a1, . . . , aN ), 1) =

(
−κ′n;T (a1), . . . ,−κ′n;T (aN ), 1

)
, and consequently it

is parallel to RN if and only if κ′n;T (a1) = · · · = κ′n;T (aN ) = 0. Therefore,
an application of Theorem 3.1 shows that the set in question is Σ1

1-hard in
C([α, β]N ,R), and what is left to show is that it is actually Σ1

1 in C([α, β]N ,R)
in case n < ℵ0. (See, for example, 14.4 on page 86 of [18].) But again this
follows from the fact that given f ∈ C([α, β]N ,R), the graph of f in RN+1

has at least n tangent N -dimensional hyperplanes parallel to RN if and only
if there is (a1, . . . ,an) ∈ ([α, β]N )n satisfying 1 ≤ i < j ≤ n⇒ ai 6= aj and

(∀(i, ν) ∈ {1, . . . , n} × {1, . . . , N})(∀ε ∈ Q∗+)(∃δ ∈ Q∗+)(∀r ∈ [α, β] ∩Q)(
0 <

∣∣r − aiν∣∣ < δ ⇒
∣∣∣∣f(ai + (r − aiν)eν)− f(ai)

r − aiν

∣∣∣∣ ≤ ε) ,
(See, for example, 14.3 on page 86 of [18].) where e1, . . . , eN denote the
standard basis vectors in RN .

5 Analytic Non-Borel Sets and Vertices of Differentiable
Curves in the Plane

Theorem 5.1. For any non-zero cardinal number n ≤ ℵ0, the set of paths
in P2 tracing curves which have at least n vertices is Σ1

1-complete in P2, and
therefore analytic, non-Borel in P2, while for any r ∈ (N ∪ {∞}) \ {0, 1, 2},
the set of paths in Pr tracing curves which have at least n vertices is Σ0

2 in
Pr, in other words, Fσ in Pr if n < ℵ0, and Π0

3 in Pr, in other words, Fσδ
in Pr if n = ℵ0.
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Proof. We will first prove that the set of paths in P2 tracing curves which
have at least n vertices is Σ1

1-hard in P2. To this end for α = 0 and β = 1
we consider the mapping that assigns to every tree T on N the path in P2

defined by xn;T (s) =
∫ s
0

cos(ψn;T (ξ))dξ and yn;T (s) =
∫ s
0

sin(ψn;T (ξ))dξ for
every s ∈ [0, 1], where ψn;T (s) =

∫ s
0
κn;T (ξ)dξ for every s ∈ [0, 1]. It is not

difficult to verify that the mapping Tr 3 T 7→ (xn;T , yn;T ) ∈ P2 is well-
defined, and given any T ∈ Tr, we have T ∈ IF if and only if (xn;T , yn;T )
traces a curve having at least n vertices. This follows from Theorem 3.1 and
the fact that for any T ∈ Tr, the curvature of the curve traced by (xn;T , yn;T )
is given by the function κn;T , as it follows from the proof of the theorem
on the existence of a plane curve with given curvature. (See, for example,
Section 12 on pages 27–28 of [30].) What we need to show is that the mapping
Tr 3 T 7→ (xn;T , yn;T ) ∈ P2 is continuous. By Theorem 3.1, if φ is either the
identity, the sine or the cosine function, it suffices to show that the mappings
Φ1 : C([0, 1],R) → C1([0, 1],R) and Φ2 : C1([0, 1],R) → C2([0, 1],R), defined
by Φ1(f)(x) =

∫ x
0
φ(f(t)) dt for every x ∈ [0, 1] and every f ∈ C([0, 1],R), and

Φ2(f)(x) =
∫ x
0
φ(f(t)) dt for every x ∈ [0, 1] and every f ∈ C1([0, 1],R), are

continuous.
The proof of the continuity of Φ1 is left to the reader and since, for com-

plete metric spaces, uniform convergence on compacts is equivalent to con-
tinuous convergence, (See, for example, Problem 40 on page 162 of [24].) if
fk → f in C1([0, 1],R) and xk → x in [0, 1] as k → ∞, it is enough to show
that Φ2(fk)(xk) → Φ2(f)(x), Φ2(fk)′(xk) → Φ2(f)′(x) and Φ2(fk)′′(xk) →
Φ2(f)′′(x) as k → ∞. Indeed, the continuity of both φ and φ′, the Lebesgue
Dominated Convergence Theorem (See, for example, 1.34 on page 26 of [25])
and the fact that both fk(xk)→ f(x) and f ′k(xk)→ f ′(x) as k →∞ are easily
seen to imply that

Φ2(fk)(xk) =
∫ 1

0

φ(fk(t))χ[0,xk](t) dt→
∫ 1

0

φ(f(t))χ[0,x](t) dt

= Φ2(f)(x), Φ2(fk)′(xk) = φ(fk(xk))→ φ(f(x)) = Φ2(f)′(x)

and

Φ2(fk)′′(xk) = φ′(fk(xk)) · f ′k(xk)→ φ′(f(x)) · f ′(x) = Φ2(f)′′(x) as k →∞

Our next step is to show that the set of paths in P2 tracing curves which
have at least n vertices is Σ1

1 in P2 in case n < ℵ0. (See, for example, 14.4
on page 86 of [18].) Indeed, we need only remark that given any (x, y) ∈ P2,
the curve traced by (x, y) has at least n vertices if and only if there exists
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(a1, . . . , an) ∈ [0, 1]n with the properties a1 < · · · < an and

(∀i ∈ {1, . . . , n})(∀ε ∈ Q∗+)(∃δ ∈ Q∗+)(∀r ∈ [0, 1] ∩Q) (0 < |r − ai| < δ

⇒
∣∣∣∣x′(r)y′′(r)− y′(r)x′′(r)− x′(ai)y′′(ai) + y′(ai)x′′(ai)

r − ai

∣∣∣∣ ≤ ε) .
(See, for example, 14.3 on page 86 of [18].)

Finally, given r ∈ (N∪ {∞}) \ {0, 1, 2}, we will prove that the set of paths
in Pr tracing curves which have at least n vertices is Σ0

2 in Pr if n < ℵ0, and
Π0

3 in Pr if n = ℵ0. To this end, given any positive integer N , it is enough to
prove that the set

PrN =
{

(x, y) ∈ Pr : (∃(a1, . . . , an) ∈ [0, 1]n)(1 ≤ i < j ≤ n⇒ |ai − aj | ≥ N−1

∧ (∀i ∈ {1, . . . , n})(x′(ai)y′′′(ai)− y′(ai)x′′′(ai) = 0))}

is closed in Pr if n < ℵ0. So let (xk, yk) → (x, y) in Pr as k → ∞ and
let (xk, yk) ∈ PrN , whenever k ∈ N. Then for any k ∈ N, there exists
(ak1 , . . . , a

k
n) ∈ [0, 1]n such that 1 ≤ i < j ≤ n ⇒

∣∣aki − akj ∣∣ ≥ N−1 and
x′k(aki )y′′′k (aki ) − y′k(aki )x′′′k (aki ) = 0 for every i ∈ {1, . . . , n}. The compact-
ness of [0, 1]n implies that there exists a subsequence ((akj1 , . . . , a

kj
n ))j∈N of

((ak1 , . . . , a
k
n))k∈N which converges to some point (a1, . . . , an) in [0, 1]n, and it

is not difficult to prove that 1 ≤ i < j ≤ n⇒ |ai − aj | ≥ N−1. Moreover, as,
for complete metric spaces, uniform convergence on compacts is equivalent to
continuous convergence, (See, for example, Problem 40 on page 162 of [24].)
we deduce that x′(ai)y′′′(ai) − y′(ai)x′′′(ai) = 0 for every i ∈ {1, . . . , n}, and
consequently (x, y) ∈ PrN .
Open Problem. Given r ∈ (N ∪ {∞}) \ {0, 1, 2}, is the set of paths in Pr
that trace curves having infinitely many vertices, Π0

3-complete in Pr?
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