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TYPICAL PROPERTIES OF LIPSCHITZ
FUNCTIONS

Abstract

In terms of Baire category, a typical real-valued Lipschitz function
on a finite dimensional space has a local minimum at every point of
a dense subset of the domain, and a Dini subdifferential that is either
singleton or empty at all points. Moreover, its Dini subdifferential is
empty outside a set of first category. Hence a typical Lipschitz function
has no points of subdifferential regularity.

1 Introduction

In [8], Sciffer constructs a real-valued Lipschitz function on the line that is
nowhere Clarke regular. Here we describe a natural setting in which this
behavior can be regarded as typical, even for a function of several variables.
In fact, we show that for a typical Lipschitz function,

• the Dini subdifferential never contains more than one element,

• the Dini subdifferential is empty outside a set of first category,

• local minimizers are dense in the domain, and

• the Clarke subdifferential is maximal at every point.
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Throughout this paper we deal with a fixed finite-dimensional normed
space X with closed unit ball B, topological dual X∗, and closed dual ball
B∗, and with a fixed compact convex set C ⊂ X∗ such that intC 6= ∅. We
write

LipC := {f : X → R : f(x)− f(y) ≤ σC(x− y) for all x, y ∈ X} ,

where σC(x) := max {〈c, x〉 : c ∈ C} is the support function of C. The bound-
edness of C implies that every function in LipC is Lipschitzian in the usual
sense. Indeed, when C = KB∗ for some K > 0, LipC is the usual set of
K-Lipschitz functions on X. We define a complete metric space (LipC , ρ) by
setting ρn(f, g) := sup {|f(x)− g(x)| : x ∈ nB} and

ρ(f, g) :=
∞∑
n=1

1
2n

min{ρn(f, g), 1}, f, g ∈ LipC .

Note that a sequence of functions 〈fk〉 in LipC converges to f in the metric ρ
if and only if fk converges to f uniformly on each compact subset of X. We
call a property typical in LipC when it holds throughout some subset of LipC
whose complement has first category.

Subgradients. For f ∈ LipC and x ∈ X, the lower Dini directional derivative
and Dini subgradient are defined by

f+(x; v) := lim inf
t→0+

f(x+ tv)− f(x)
t

,

∂̂f(x) := {x∗ ∈ X∗ : f+(x; v) ≥ 〈x∗, v〉 ∀v ∈ X} .

(Other authors call ∂̂f the Fréchet subdifferential or the regular subdifferen-
tial.) The set ∂̂f(x) is closed, but may well be empty. Thus we must contend
with the set dom(∂̂f) :=

{
x ∈ X : ∂̂f(x) 6= ∅

}
. We will also refer to the upper

Dini directional derivative f+ = −(−f)+, given explicitly by

f+(x; v) := lim sup
t→0+

f(x+ tv)− f(x)
t

.

The general subgradient of f at x is, by definition,

∂f(x) :=
⋂
δ>0

cl
{
z∗ : z∗ ∈ ∂̂f(z), ‖z − x‖ < δ

}
.
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The Clarke directional derivative and subgradient of f at x are

f◦(x; v) := lim sup
y→x,t↓0

f(y + tv)− f(y)
t

, v ∈ X,

∂◦f(x) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ f◦(x; v) ∀v ∈ X} .

Since f ∈ LipC , we have ∂◦f ≡ co ∂f . (See [3, 6] for details and discussion.)
Recall that f ∈ LipC is called subdifferentially regular [or Clarke regular ] at x
when ∂̂f(x) = ∂◦f(x).

Our purpose in this note is to show that while a typical function in LipC
has a local minimum on a dense subset of points in its domain, making its
Clarke subdifferential large everywhere, its Dini subdifferential is empty out-
side a set of first category, and never contains more than one element. Taken
together, these statements imply that a typical Lipschitz function is nowhere
subdifferentially regular.

2 Density of Local Minimizers

Given a continuous function φ : X → R, let Σ(φ) denote the set of points in
X where φ has a local minimum.

Theorem 1. For each c ∈ int(C), the following set is residual in (LipC , ρ).

G(c) := {f ∈ LipC : Σ(f − c) is dense in X} .

(Here (f − c)(y) = f(y)− 〈c, y〉.)

Proof. Fix c ∈ intC. For each fixed x ∈ X, define a sequence of sets indexed
by n ∈ N.

Gnx :=
{
f ∈ LipC : Σ(f − c) ∩ int

(
x+

1
n

B
)
6= ∅
}
.

We claim that each set int(Gnx) is dense in LipC . To prove this, choose an
arbitrary f ∈ LipC and ε ∈ (0, 1). Define h(y) := f(x) − ε + σC(y − x)
for y ∈ X, and let h1 := min {f, h}. Clearly h and h1 lie in LipC . Since
f(y)− f(x) ≤ σC(y − x) for every y ∈ X, we have

f(y)− ε ≤ f(x)− ε+ σC(y − x) = h(y);

so f ≥ h1 ≥ f − ε and ρ(h1, f) ≤ ε.
As h(x) < f(x), by continuity there is some δ ∈ (0, 1/n) sufficiently small

that h(y) < f(y) for all y in x + δB, whence h1(y) = h(y) for all y ∈ x + δB.
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This implies that h1 − c has a local minimum at x, since every y ∈ x + δB
obeys

h1(y)− 〈c, y〉 = h1(x)− 〈c, x〉+ [σC(y − x)− 〈c, y − x〉] (1)

and the inequality σC(y−x) ≥ 〈c, y − x〉 holds because c ∈ C. Thus h1 ∈ Gnx .
Let us show that in fact h1 ∈ intGnx . By hypothesis, there is some r > 0

such that c+ rB∗ ⊂ C. Thus (1) implies

m := inf {h1(y)− 〈c, y〉 : ‖y − x‖ = δ} ≥ h1(x)− 〈c, x〉+ rδ.

Let α := m−(h1(x)−〈c, x〉) > 0 and choose 0 < β < min {α/2, 1}. Also choose
an integer N > ‖x‖ + 1, and note that every g ∈ LipC with ρ(g, h1) < β/2N

satisfies ρN (g, h1) < β. When ‖y − x‖ = δ we have

g(y)− 〈c, y〉 =g(y)− h1(y) + h1(y)− 〈c, y〉 ≥ −β +m, and
g(x)− 〈c, x〉 =g(x)− h1(x) + h1(x)− 〈c, x〉 ≤ β + h1(x)− 〈c, x〉 .

Thus

inf {g(y)− 〈c, y〉 : ‖y − x‖ = δ} ≥ − β +m

> β + h1(x)− 〈c, x〉 ≥g(x)− 〈c, x〉 .

Now the continuous function g− c must attain its minimum over the compact
set x+ δB, and the strict inequality above implies that the minimizing point
cannot lie on the boundary. Hence this point must actually provide an un-
restricted local minimum for g − c. Since δ < 1/n, this shows that g ∈ Gnx .
The same conclusion holds for every g satisfying ρ(g, h1) < β/2N ; so indeed
h1 ∈ intGnx .

Since int(Gnx) is open and dense in LipC , the set Gx :=
⋂∞
n=1 int(Gnx) is

dense in LipC . If f ∈ Gx, then for every n there exists xn ∈ int(x + n−1B)
such that f − c attains a local minimum at xn. That is, f − c attains a local
minimum in every neighborhood of x.

Finally, let Q = {xk : k ∈ N} be a countable dense subset of X. Since each
Gxk

, k ∈ N, is a dense Gδ by the previous paragraph, the set G :=
⋂∞
k=1Gxk

is a dense Gδ in LipC . Now consider any f ∈ G. Every open set U in X
contains some xk in Q, and since f ∈ Gxk

, the function f − c attains a local
minimum at some point in U . Hence the set of points at which f − c attains
a local minimum is dense in X. Since f is arbitrary in G, the dense Gδ set
G defined here is a subset of the set G(c) defined in the theorem statement.
Hence G(c) is residual.

Corollary 2 ([1]). The following set is residual in (LipC , ρ).

{f ∈ LipC : ∂◦f(x) = ∂f(x) = C ∀x ∈ X} .
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Proof. For each c ∈ C, define G(c) as in Theorem 1. If f ∈ G(c), then
c lies in ∂̂f(x) at every point where f − c has a local minimum, and such
points are dense in X. Consequently c ∈ ∂f(x) for every x ∈ X. By taking
a countable set {ck : k ∈ N} dense in the interior of C we obtain a residual
set G :=

⋂
k∈N G(ck) such that every f ∈ G obeys ck ∈ ∂f(x) for every k ∈ N

and every x ∈ X. But ∂f(x) is a closed set; so ∂f(x) ⊇ C. The reverse
inclusion follows immediately from the defining property of LipC ; so equality
holds. Hence ∂f(x) = C = coC = co ∂f(x) = ∂◦f(x).

3 Sparseness of the Dini Subdifferential

We include a simpler proof of the following lemma due to Giles and Sciffer [4] to
make our exposition self-contained. Both the statement and the proof remain
valid when X is replaced by an arbitrary separable Banach space.

Lemma 3. For every f ∈ LipC , there exists a dense Gδ subset of X in which
every point x obeys f◦(x; v) = f+(x; v) ∀v ∈ X.

Proof. For k ∈ N and v ∈ X, define

Dv
k :=

{
x ∈ X :

f(x+ txv)− f(x)
tx

− f◦(x; v) > −1
k

for some tx ∈
(

0,
1
k

)}
.

Because f is Lipschitz and −f◦(·; v) is l.s.c., Dv
k is open. To show that Dv

k is
dense, let x ∈ X and ε > 0 be given. Choose y ∈ X such that ‖y − x‖ < ε/2
and f◦(·; v) is continuous at y. (This is possible because f◦(·; v) is u.s.c., so
f◦(·; v) is continuous on a residual subset of X—see [7, Exercise 7.43].) Then
choose δ ∈ (0, ε/2) so small that

f◦(y; v)− f◦(z; v) > − 1
2k

whenever ‖z − y‖ < δ. (2)

The definition of f◦(y; v) provides points z and tz satisfying ‖z − y‖ < δ,
0 < tz < 1/k, and

f(z + tzv)− f(z)
tz

> f◦(y; v)− 1
2k
.

In conjunction with (2), this implies

f(z + tzv)− f(z)
tz

> f◦(z; v)− 1
k
.
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Thus z ∈ Dv
k; also ‖z − x‖ < ε; so Dv

k is dense. It follows that each set
D(v) :=

⋂
k∈N D

v
k is a dense Gδ in X. Moreover, for every x ∈ D(v), each

k ∈ N has some 0 < tk < 1/k for which

f(x+ tkv)− f(x)
tk

− f◦(x; v) > −1
k
.

As k → ∞ here, we obtain f+(x; v) ≥ f◦(x; v). But f◦(x; v) ≥ f+(x; v) is
obvious, so equality holds.

Now take a countable dense subset {vn : n ∈ N} of X, and consider D :=⋂
n∈N D(vn). This is a dense Gδ in X, and for every x ∈ D we have f+(x; vn) =

f◦(x; vn) for all n ∈ N. But both f+(x, ·) and f◦(x, ·) are Lipschitz, so in fact
f+(x; ·) ≡ f◦(x; ·), as required.

Theorem 4. The following subset of (LipC , ρ) is residual.

G :=
{
g ∈ LipC : dom(∂̂g) has first category in X

}
.

Proof. We will show G ⊇ A, where A := {g ∈ LipC : ∂◦g(x) = C ∀x ∈ X}.
Recall that A is residual in (LipC , ρ), by Corollary 2. Fix g ∈ A. Then
∂◦(−g) ≡ −C on X, and the set

S :=
{
x ∈ X : (−g)+(x; ·) ≡ (−g)◦(x; ·)

}
is residual in X by Lemma 3. For fixed x in S, the definition of the Clarke sub-
gradient gives (−g)+(x; v) = (−g)◦(x; v) = σ−C(v); i.e., g+(x; v) = −σC(−v),
for all v ∈ X. Now since C has nonempty interior, the sublinear function σC
cannot be dominated by a linear function. Therefore the set

∂̂g(x) = {x∗ ∈ X∗ : 〈x∗, v〉 ≤ g+(x; v) = −σC(−v) ∀v ∈ X}

must be empty. This shows that dom(∂̂g) is a subset of X \ S, which implies
that dom(∂̂g) has first category in X. Hence g ∈ G, as required.

Although Rademacher’s theorem asserts that every g in LipC is differen-
tiable on a set of full Lebesgue measure, each g in the set G of Theorem 4 is
differentiable at most on a set of first category in X.

4 Nonangularity

A function f : X → R is called nonangular at x in direction v when

f+(x; v) ≤ −f+(x;−v) and (−f)+(x; v) ≤ −(−f)+(x;−v). (3)
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We call f nonangular at x when (3) holds for every v ∈ X. This definition
extends a concept well known when X = R: see Bruckner [2].

Theorem 5. The subset of LipC consisting of functions nonangular at every
point of X is a dense Gδ.

Proof. Let us fix v ∈ X and show that

A(v) := {f ∈ LipC : f+(x; v) > −f+(x;−v) for some x ∈ X} ,
B(v) := {f ∈ LipC : (−f)+(x; v) > −(−f)+(x;−v) for some x ∈ X} ,

are Fσ sets of first category in LipC . We treat the set A(v), the arguments for
B(v) being similar. Since A(v) =

⋃∞
m=1A

m, where

Am := {f ∈ LipC : f+(x; v) > −f+(x;−v) for some x ∈ mB},

it suffices to show that each Am is an Fσ of first category in LipC . For fixed
p, q ∈ Q and n ∈ N, with p < q, let

Apqn :=

{
f ∈ LipC : some x ∈ mB obeys

both
f(x+ tv)− f(x)

t
≤ p ∀ t ∈

(
− 1
n
, 0
)

and
f(x+ tv)− f(x)

t
≥ q ∀ t ∈

(
0,

1
n

)}
.

Clearly Am =
⋃
p,q,nApqn. We check that each Apqn is closed and nowhere

dense in LipC .
To see that Apqn closed, let {fk} be any sequence in Apqn converging in

LipC to some function f . We must show that f ∈ Apqn. For each k, there
exists xk ∈ mB such that

fk(xk + tv)− fk(xk)
t

≤ p ∀ t ∈
(
− 1
n
, 0
)
, (4)

fk(xk + tv)− fk(xk)
t

≥ q ∀ t ∈
(

0,
1
n

)
. (5)

By passing to a subsequence if necessary (we do not relabel), we may assume
that 〈xk〉 converges to some point x ∈ mB. As k →∞ along this subsequence,
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(4) and (5) yield

f(x+ tv)− f(x)
t

≤ p ∀ t ∈
(
− 1
n
, 0
)
,

f(x+ tv)− f(x)
t

≥ q ∀ t ∈
(

0,
1
n

)
.

Thus f ∈ Apqn and Apqn is closed.
To show that Apqn is nowhere dense in LipC , it suffices to observe that any

differentiable function in LipC must lie outside Apqn and that differentiable
functions are dense in LipC . Indeed, standard mollification methods show
that C∞ functions are dense in LipC . For example, following [6, page 409],
let φ : X → R be a nonnegative function of class C∞ supported in B and
satisfying

∫
B φ(x)dx = 1. For given f ∈ LipC , define vk = 1/

∫
X
φ(kz)dz and

let

fk(x) := vk

∫
X

f(x− z)φ(kz) dz = vk

∫
X

f(z)φ(k(x− z)) dz, k ∈ N.

Then fk → f uniformly on compact subsets of X, and fk ∈ C∞ for each
k. Moreover, f ′k(x) = vk

∫
X
f ′(x − z)φ(kz) dz. Since f ′(x − z) ∈ C al-

most everywhere (Rademacher’s Theorem), while C is compact convex and
vk
∫
X
φ(kz)dz = 1, we have f ′k(x) ∈ C for every x ∈ X. This implies

fk ∈ LipC .
Now let {vk : k ∈ N} be a countable dense subset of X, and put

G = LipC \
⋃
k∈N

[A(vk) ∪B(vk)] .

This is a dense Gδ in LipC . For every f ∈ G, we have f+(x; vk) ≤ −f+(x;−vk)
and (−f)+(x; vk) ≤ −(−f)+(x;−vk) for all k ∈ N. But f+(x; ·) and (−f)+(x; ·)
are Lipschitzian, so these inequalities extend to every v in X. Hence every
f ∈ G is nonangular in every direction, at every point of X.

Note that if f is nonangular at x and x∗ ∈ ∂̂f(x), then 〈x∗, v〉 = f+(x; v)
for all v, so ∂̂f(x) = {x∗}. Thus the set ∂̂f(x) contains at most one point, and
likewise for ∂̂(−f)(x). Together with Corollary 2 and Theorem 5, this observa-
tion establishes the following generic complement to the explicit construction
of Sciffer [8].

Corollary 6. There is a residual subset G of LipC such that every f ∈ G
fails to be subdifferentially regular at every point of X, and the same is true
for −f .
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Remark. When X = R, analogues of Corollary 6 hold in the spaces of
bounded continuous functions on X or bounded nondecreasing functions on
X using the supremum norm.

Remark. When X = R and C = [−1, 1], Preiss and Tíser [5] have shown
that the set

H :=
{
f ∈ LipC : lim sup

y→x

∣∣∣∣f(y)− f(x)
y − x

∣∣∣∣ = 1 for every x ∈ [0, 1]
}

is residual. Every f in H has f ′(x) ∈ {−1, 1} for almost every x ∈ R. In
conjunction with Corollary 2 and [3, Theorem 2.5.1], this implies that there is
a residual subset of LipC in which every f is such that both

D+ = {x ∈ R : f ′(x) = 1} and D− = {x ∈ R : f ′(x) = −1}

meet every open interval in a set of positive measure.
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