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TYPICAL PROPERTIES OF LIPSCHITZ
FUNCTIONS

Abstract

In terms of Baire category, a typical real-valued Lipschitz function
on a finite dimensional space has a local minimum at every point of
a dense subset of the domain, and a Dini subdifferential that is either
singleton or empty at all points. Moreover, its Dini subdifferential is
empty outside a set of first category. Hence a typical Lipschitz function
has no points of subdifferential regularity.

1 Introduction
In [8], Sciffer constructs a real-valued Lipschitz function on the line that is
nowhere Clarke regular. Here we describe a natural setting in which this
behavior can be regarded as typical, even for a function of several variables.
In fact, we show that for a typical Lipschitz function,

e the Dini subdifferential never contains more than one element,

e the Dini subdifferential is empty outside a set of first category,

e local minimizers are dense in the domain, and

e the Clarke subdifferential is maximal at every point.
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Throughout this paper we deal with a fixed finite-dimensional normed
space X with closed unit ball B, topological dual X*, and closed dual ball
B*, and with a fixed compact convex set C C X* such that int C # 0. We
write

Lipe = {f: X = R : f(z) — f(y) < oc(z —y) for all 2,y € X},

where o¢(z) := max {(c,x) : ¢ € C} is the support function of C. The bound-
edness of C' implies that every function in Lip. is Lipschitzian in the usual
sense. Indeed, when C = KB* for some K > 0, Lip, is the usual set of
K-Lipschitz functions on X. We define a complete metric space (Lips, p) by

setting pn(f,g) :=sup{|f(z) — g(x)| : * € nB} and

oo

1 .

p(fr9)="> on min{pn(f,9),1% f.9 € Lipc.
n=1

Note that a sequence of functions (f;) in Lip- converges to f in the metric p

if and only if fi converges to f uniformly on each compact subset of X. We

call a property typical in Lip, when it holds throughout some subset of Lip

whose complement has first category.

Subgradients. For f € Lip, and x € X, the lower Dini directional derivative
and Dini subgradient are defined by

fi(z;v) == liminf fz +tv) - f(z)

t—0+ t ’

Of(x) = {z* e X" ¢ fi(z;v) > (a¥,v) Yve X}.

(Other authors call 0 f the Fréchet subdifferential or the regular subdifferen-
tial.) The set 0f(z) is closed, but may well be empty. Thus we must contend

with the set dom(gf) = {x eX: 5f(a:) #* @} . We will also refer to the upper
Dini directional derivative f* = —(—f)4, given explicitly by

f+($' v) := lim sup flz+tv) — f(x) .
’ t—0+ t

The general subgradient of f at x is, by definition,

af (z) := mcl{z* 2 €df(2), ||z —a| < 6}.

6>0
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The Clarke directional derivative and subgradient of f at = are

f°(x;v) := limsup M
y—x,t]0 t
0°f(x) :=={x* € X* : (x*,v) < f(z;v) Vv € X}.

, vE X,

Since f € Lipe, we have 9°f = codf. (See [3, 6] for details and discussion.)
Recall that f € Lip is called subdifferentially regular [or Clarke reqular] at x
when 5f(:v) = 0°f(x).

Our purpose in this note is to show that while a typical function in Lips
has a local minimum on a dense subset of points in its domain, making its
Clarke subdifferential large everywhere, its Dini subdifferential is empty out-
side a set of first category, and never contains more than one element. Taken
together, these statements imply that a typical Lipschitz function is nowhere
subdifferentially regular.

2 Density of Local Minimizers

Given a continuous function ¢: X — R, let 3X(¢) denote the set of points in
X where ¢ has a local minimum.

Theorem 1. For each ¢ € int(C), the following set is residual in (Lipe, p).
G(c):={f € Lipc : Z(f —¢) is dense in X} .
(Here (f —¢)(y) = f(y) = (¢.9).)

PRrROOF. Fix c € int C. For each fixed z € X, define a sequence of sets indexed
by n € N.

Gl = {feLipC : E(f—c)ﬂint(x—l—i]ﬂ%) ;é@}.

We claim that each set int(G?%) is dense in Lips. To prove this, choose an
arbitrary f € Lipo and ¢ € (0,1). Define h(y) := f(z) — ¢ + oc(y — )
for y € X, and let hy := min{f, h}. Clearly h and hy lie in Lip-. Since

fly) — f(z) < oc(y — x) for every y € X, we have

fly) —e < f(x) —e+oc(y—x) =h(y);

so f>hy>f—cand p(hy, f) <e.
As h(z) < f(z), by continuity there is some ¢ € (0,1/n) sufficiently small
that h(y) < f(y) for all y in z + B, whence hy(y) = h(y) for all y € = + JB.
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This implies that h; — ¢ has a local minimum at x, since every y € = + 6B
obeys
hi(y) = {c,y) = hi(z) = (¢, 2) + [oc(y — =) — (c,y — )] (1)
and the inequality oc(y — ) > (¢, y — ) holds because ¢ € C. Thus h; € GZ.
Let us show that in fact h; € int G}. By hypothesis, there is some r > 0
such that ¢ + rB* C C. Thus (1) implies

m = inf {h1(y) — (¢, y) : |ly — 2l = 6} = ha(z) — (¢, ) +7d.

Let a := m—(h1(z)—(c,x)) > 0 and choose 0 < < min {«/2,1}. Also choose
an integer N > ||z| + 1, and note that every g € Lip. with p(g, h1) < 8/2N
satisfies pn(g,h1) < 3. When ||y — z|| = § we have

9(y) — (¢, y) =g(y) — ha(y) + ha(y) — {c,y) > =B+ m, and
g(x) — (e, x) =g(x) — hi(z) + hi(z) — (¢, x) < B+ hi(z) — {c,x).

Thus

inf{g(y) — (c,y) : ly—al[ =0t =2—-B+m
> B+ hi(z) = (c,x) 2g(z) — (e, ).

Now the continuous function g — ¢ must attain its minimum over the compact
set x 4+ 0B, and the strict inequality above implies that the minimizing point
cannot lie on the boundary. Hence this point must actually provide an un-
restricted local minimum for g — ¢. Since § < 1/n, this shows that g € GZ.
The same conclusion holds for every g satisfying p(g,h1) < 3/2"; so indeed
hi € int GZ.

Since int(G%) is open and dense in Lipg, the set G, := (-, int(G?) is
dense in Lipy. If f € G, then for every n there exists z,, € int(x +n~'B)
such that f — ¢ attains a local minimum at x,. That is, f — c attains a local
minimum in every neighborhood of z.

Finally, let @ = {z : k € N} be a countable dense subset of X. Since each
Gy, k €N, is a dense G5 by the previous paragraph, the set G := ()~ G,
is a dense G5 in Lip,. Now consider any f € G. Every open set U in X
contains some xj in @, and since f € G,,, the function f — c attains a local
minimum at some point in U. Hence the set of points at which f — ¢ attains
a local minimum is dense in X. Since f is arbitrary in G, the dense Gs set
G defined here is a subset of the set G(c) defined in the theorem statement.
Hence G(c) is residual. O

Corollary 2 ([1]). The following set is residual in (Lipg, p).
{f €Lipy : 8°f(x) =0f(x) =C Vx € X}.
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PRrROOF. For each ¢ € C, define G(c) as in Theorem 1. If f € G(c), then
¢ lies in 9 f(x) at every point where f — ¢ has a local minimum, and such
points are dense in X. Consequently ¢ € df(z) for every z € X. By taking
a countable set {c : k € N} dense in the interior of C' we obtain a residual
set G := [,y G(ck) such that every f € G obeys ¢ € 0f(x) for every k € N
and every x € X. But 9f(x) is a closed set; so 9f(x) 2 C. The reverse
inclusion follows immediately from the defining property of Lips; so equality
holds. Hence 0f(x) = C =coC = codf(x) = 0° f(x). O

3 Sparseness of the Dini Subdifferential

We include a simpler proof of the following lemma due to Giles and Sciffer [4] to
make our exposition self-contained. Both the statement and the proof remain
valid when X is replaced by an arbitrary separable Banach space.

Lemma 3. For every f € Lipy, there exists a dense G5 subset of X in which
every point x obeys f°(x;v) = fF(x;v) Vv € X.

PRrROOF. For k € N and v € X, define

flz+t0) — f()
ty

1 1
Dy = {xeX: —fo(x;v)>—E for some t, € (O, k)}

Because f is Lipschitz and —f°(-;v) is Ls.c., D} is open. To show that D} is
dense, let z € X and € > 0 be given. Choose y € X such that ||y — z| < /2
and f°(-;v) is continuous at y. (This is possible because f°(:;v) is u.s.c., so

f°(+;v) is continuous on a residual subset of X—see [7, Exercise 7.43].) Then
choose ¢ € (0,&/2) so small that

1
foy;v) = f°(z0) > ~% whenever ||z — y|| < 6. (2)

The definition of f°(y;v) provides points z and t, satisfying ||z — y|| < 9,
0<t, <1/k, and

f(z"_tzti) - f(Z) > fo(y;v) o i

2k
In conjunction with (2), this implies

f(z+t2tt) 7]0(2) > fO(Z;’U) _ %
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Thus z € Dy; also ||z —z| < & so D} is dense. It follows that each set
D(v) := Nyen Dy is a dense Gs in X. Moreover, for every € D(v), each
k € N has some 0 < t;, < 1/k for which

flz+tv) — f(z)
t

— [ (z0) > —%

As k — oo here, we obtain f*(z;v) > f°(x;v). But fo(z;v) > f(z;v) is
obvious, so equality holds.

Now take a countable dense subset {v,, : n € N} of X, and consider D :=
MNpen D(vn). This is a dense G5 in X, and for every x € D we have f(z;v,) =
f°(z;vy,) for all n € N. But both f*(z,-) and f°(z,-) are Lipschitz, so in fact
fH(z;+) = f°(x;-), as required. O

Theorem 4. The following subset of (Lipe, p) is residual.
G:= {g € Lipe - dom(gg) has first category in X} .

ProoF. We will show G O A, where A := {g € Lip, : 0°¢(x) = C Vz € X}.
Recall that A is residual in (Lipg, p), by Corollary 2. Fix g € A. Then
0°(—g) = —C on X, and the set

S = {x €X : (—g)f(x;) = (_9)0(x§')}

is residual in X by Lemma 3. For fixed x in S, the definition of the Clarke sub-
gradient gives (—g)*(z;v) = (—g)°(z;0) = 0_c(v); i.e., g1 (z30) = —oc(-v),
for all v € X. Now since C has nonempty interior, the sublinear function o¢
cannot be dominated by a linear function. Therefore the set

dg(x) = {z* € X* : (z*,0) < go(w;v) = —oc(—v) Vv € X}

must be empty. This shows that dom(gg) is a subset of X \ S, which implies
that dom(9g) has first category in X. Hence g € G, as required. O

Although Rademacher’s theorem asserts that every ¢ in Lip is differen-
tiable on a set of full Lebesgue measure, each g in the set G of Theorem 4 is
differentiable at most on a set of first category in X.

4 Nonangularity

A function f: X — R is called nonangular at x in direction v when

fr(aiv) < = fi (25 —v) and (= f)1(;0) < =(=f)4 (25 —v). 3)
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We call f nonangular at x when (3) holds for every v € X. This definition
extends a concept well known when X = R: see Bruckner [2].

Theorem 5. The subset of Lipy consisting of functions nonangular at every
point of X is a dense Gs.

PROOF. Let us fix v € X and show that

A(v) :={f € Lipe : f+(z;v) > —f1(x;—v) for some z € X},
B(v) i={f € Livg + (—f)4(550) > —(—f)+ (23 —v) for some z € X},

are Fy sets of first category in Lip,. We treat the set A(v), the arguments for
B(v) being similar. Since A(v) = J,~_; A™, where

A™ :={f € Lips : f1(z;v) > —f4(z; —v) for some = € mB},

it suffices to show that each A™ is an F, of first category in Lip,. For fixed
p,q € Q and n € N, with p < ¢, let

Apgn = {f € Lip, :some z € mB obeys

both LEHW = F@) e (—1, >
t n

0
and flattv) - f@) >qVte (0,1> }
t n

Clearly A™ = U, , , Apgn- We check that each Apq, is closed and nowhere
dense in Lip,.

To see that Apg, closed, let {fi} be any sequence in Ayg, converging in
Lip; to some function f. We must show that f € A,,,. For each k, there
exists xp € mB such that

fk;(l'k:"‘t'l;)_fk:(xk) <pVte (_717170>7 (4)

By passing to a subsequence if necessary (we do not relabel), we may assume
that (z1) converges to some point x € mB. As k — oo along this subsequence,
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(4) and (5) yield

P >
Thus f € Apgn and Apgy, is closed.

To show that Ayqy, is nowhere dense in Lip., it suffices to observe that any
differentiable function in Lip, must lie outside Apq, and that differentiable
functions are dense in Lip,. Indeed, standard mollification methods show
that C*° functions are dense in Lip,. For example, following [6, page 409],
let ¢: X — R be a nonnegative function of class C*° supported in B and
satisfying [ ¢(x)dz = 1. For given f € Lipg, define v, = 1/ [ ¢(kz)dz and
let

fe(z) = vk/Xf(ﬂc—z)¢(kz)dz:vk/Xf(z)qb(k:(nc—,z))dz7 ke N.

Then fr — f uniformly on compact subsets of X, and fi € C* for each
k. Moreover, fi(z) = vy [y f'(x — 2)¢(kz)dz. Since f'(x —2) € C al-
most everywhere (Rademacher’s Theorem), while C is compact convex and
v [y ¢(kz)dz = 1, we have f/(z) € C for every x € X. This implies
fr € Lipe.

Now let {vy, : k € N} be a countable dense subset of X, and put

G =TLipc \ [ [A(vx) U B(wy)].

keN

This is a dense G in Lip~. For every f € G, we have f(x;v) < —fi(x; —vg)
and (—f) 1 (z; o) < —(—f)4(x; —vg) forall k € N. But fi(z;-) and (—f)+(z; )
are Lipschitzian, so these inequalities extend to every v in X. Hence every
f € G is nonangular in every direction, at every point of X. O

Note that if f is nonangular at z and z* € 5f(x), then (z*,v) = fy(z;v)
for all v, so df(x) = {«*}. Thus the set 0f(x) contains at most one point, and

likewise for O(—f)(z). Together with Corollary 2 and Theorem 5, this observa-
tion establishes the following generic complement to the explicit construction
of Sciffer [8].

Corollary 6. There is a residual subset G of Lip- such that every f € G
fails to be subdifferentially regular at every point of X, and the same is true

for —f.
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Remark. When X = R, analogues of Corollary 6 hold in the spaces of
bounded continuous functions on X or bounded nondecreasing functions on
X using the supremum norm.

Remark. When X = R and C = [-1,1], Preiss and Tiger [5] have shown
that the set

H:= {f € Lipy : limsup =1 for every z € [0, 1]}

Yy—x

‘f(y)—f(w)
y—a

is residual. Every f in H has f'(z) € {—1,1} for almost every z € R. In
conjunction with Corollary 2 and [3, Theorem 2.5.1], this implies that there is
a residual subset of Lip in which every f is such that both

D,={zeR: fl(x)=1} and D_={zxeR: f(z)=-1}

meet every open interval in a set of positive measure.
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