Philip D. Loewen, Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z2 (email: loew@math.ubc.ca) Xianfu Wang[†], Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z2 (email: xwang@math.ubc.ca)

TYPICAL PROPERTIES OF LIPSCHITZ FUNCTIONS

Abstract

In terms of Baire category, a typical real-valued Lipschitz function on a finite dimensional space has a local minimum at every point of a dense subset of the domain, and a Dini subdifferential that is either singleton or empty at all points. Moreover, its Dini subdifferential is empty outside a set of first category. Hence a typical Lipschitz function has no points of subdifferential regularity.

1 Introduction

In [8], Sciffer constructs a real-valued Lipschitz function on the line that is nowhere Clarke regular. Here we describe a natural setting in which this behavior can be regarded as typical, even for a function of several variables. In fact, we show that for a typical Lipschitz function,

- the Dini subdifferential never contains more than one element,
- the Dini subdifferential is empty outside a set of first category,
- local minimizers are dense in the domain, and
- the Clarke subdifferential is maximal at every point.

Key Words: Lipschitz function, Dini subdifferential, Baire category, dense minimizers, nonangularity, subdifferential regularity

Mathematical Reviews subject classification: 49J52 Received by the editors August 23, 2000

^{*}Research supported by NSERC

[†]Research supported by NSERC post-doctoral fellowship

⁷¹⁷

Throughout this paper we deal with a fixed finite-dimensional normed space X with closed unit ball \mathbb{B} , topological dual X^* , and closed dual ball \mathbb{B}^* , and with a fixed compact convex set $C \subset X^*$ such that int $C \neq \emptyset$. We write

$$\operatorname{Lip}_C := \{f \colon X \to R : f(x) - f(y) \le \sigma_C(x - y) \text{ for all } x, y \in X\},\$$

where $\sigma_C(x) := \max \{ \langle c, x \rangle : c \in C \}$ is the support function of C. The boundedness of C implies that every function in Lip_C is Lipschitzian in the usual sense. Indeed, when $C = K\mathbb{B}^*$ for some K > 0, Lip_C is the usual set of K-Lipschitz functions on X. We define a complete metric space $(\operatorname{Lip}_C, \rho)$ by setting $\rho_n(f, g) := \sup \{ |f(x) - g(x)| : x \in n\mathbb{B} \}$ and

$$\rho(f,g) := \sum_{n=1}^{\infty} \frac{1}{2^n} \min\{\rho_n(f,g), 1\}, \qquad f,g \in \operatorname{Lip}_C.$$

Note that a sequence of functions $\langle f_k \rangle$ in Lip_C converges to f in the metric ρ if and only if f_k converges to f uniformly on each compact subset of X. We call a property *typical in* Lip_C when it holds throughout some subset of Lip_C whose complement has first category.

Subgradients. For $f \in \text{Lip}_C$ and $x \in X$, the lower Dini directional derivative and Dini subgradient are defined by

$$f_+(x;v) := \liminf_{t \to 0^+} \frac{f(x+tv) - f(x)}{t},$$
$$\widehat{\partial}f(x) := \left\{ x^* \in X^* : f_+(x;v) \ge \langle x^*, v \rangle \ \forall v \in X \right\}.$$

(Other authors call $\widehat{\partial} f$ the Fréchet subdifferential or the regular subdifferential.) The set $\widehat{\partial} f(x)$ is closed, but may well be empty. Thus we must contend with the set dom $(\widehat{\partial} f) := \left\{ x \in X : \widehat{\partial} f(x) \neq \emptyset \right\}$. We will also refer to the upper Dini directional derivative $f^+ = -(-f)_+$, given explicitly by

$$f^+(x;v) := \limsup_{t \to 0^+} \frac{f(x+tv) - f(x)}{t}.$$

The general subgradient of f at x is, by definition,

$$\partial f(x) := \bigcap_{\delta > 0} \operatorname{cl} \left\{ z^* \, : \, z^* \in \widehat{\partial} f(z), \, \, \|z - x\| < \delta \right\}.$$

The Clarke directional derivative and subgradient of f at x are

$$f^{\circ}(x;v) := \limsup_{y \to x, t \downarrow 0} \frac{f(y+tv) - f(y)}{t}, \ v \in X,$$
$$\partial^{\circ}f(x) := \left\{ x^* \in X^* : \langle x^*, v \rangle \le f^{\circ}(x;v) \ \forall v \in X \right\}.$$

Since $f \in \operatorname{Lip}_C$, we have $\partial^{\circ} f \equiv \operatorname{co} \partial f$. (See [3, 6] for details and discussion.) Recall that $f \in \operatorname{Lip}_C$ is called *subdifferentially regular* [or *Clarke regular*] at x when $\partial f(x) = \partial^{\circ} f(x)$.

Our purpose in this note is to show that while a typical function in Lip_C has a local minimum on a dense subset of points in its domain, making its Clarke subdifferential large everywhere, its Dini subdifferential is empty outside a set of first category, and never contains more than one element. Taken together, these statements imply that a typical Lipschitz function is nowhere subdifferentially regular.

2 Density of Local Minimizers

Given a continuous function $\phi: X \to \mathbb{R}$, let $\Sigma(\phi)$ denote the set of points in X where ϕ has a local minimum.

Theorem 1. For each $c \in int(C)$, the following set is residual in (Lip_C, ρ) .

$$G(c) := \{ f \in \operatorname{Lip}_C : \Sigma(f - c) \text{ is dense in } X \}.$$

(Here $(f - c)(y) = f(y) - \langle c, y \rangle$.)

PROOF. Fix $c \in \text{int } C$. For each fixed $x \in X$, define a sequence of sets indexed by $n \in \mathbb{N}$.

$$G_x^n := \left\{ f \in \operatorname{Lip}_C : \Sigma(f-c) \cap \operatorname{int}\left(x + \frac{1}{n}\mathbb{B}\right) \neq \emptyset \right\}.$$

We claim that each set $\operatorname{int}(G_x^n)$ is dense in Lip_C . To prove this, choose an arbitrary $f \in \operatorname{Lip}_C$ and $\varepsilon \in (0,1)$. Define $h(y) := f(x) - \varepsilon + \sigma_C(y-x)$ for $y \in X$, and let $h_1 := \min\{f, h\}$. Clearly h and h_1 lie in Lip_C . Since $f(y) - f(x) \leq \sigma_C(y-x)$ for every $y \in X$, we have

$$f(y) - \varepsilon \le f(x) - \varepsilon + \sigma_C(y - x) = h(y);$$

so $f \ge h_1 \ge f - \varepsilon$ and $\rho(h_1, f) \le \varepsilon$.

As h(x) < f(x), by continuity there is some $\delta \in (0, 1/n)$ sufficiently small that h(y) < f(y) for all y in $x + \delta \mathbb{B}$, whence $h_1(y) = h(y)$ for all $y \in x + \delta \mathbb{B}$.

This implies that $h_1 - c$ has a local minimum at x, since every $y \in x + \delta \mathbb{B}$ obeys

$$h_1(y) - \langle c, y \rangle = h_1(x) - \langle c, x \rangle + [\sigma_C(y - x) - \langle c, y - x \rangle]$$
(1)

and the inequality $\sigma_C(y-x) \ge \langle c, y-x \rangle$ holds because $c \in C$. Thus $h_1 \in G_x^n$. Let us show that in fact $h_1 \in \operatorname{int} G_x^n$. By hypothesis, there is some r > 0

such that $c + r\mathbb{B}^* \subset C$. Thus (1) implies

$$m := \inf \{h_1(y) - \langle c, y \rangle : \|y - x\| = \delta\} \ge h_1(x) - \langle c, x \rangle + r\delta.$$

Let $\alpha := m - (h_1(x) - \langle c, x \rangle) > 0$ and choose $0 < \beta < \min \{\alpha/2, 1\}$. Also choose an integer N > ||x|| + 1, and note that every $g \in \operatorname{Lip}_C$ with $\rho(g, h_1) < \beta/2^N$ satisfies $\rho_N(g, h_1) < \beta$. When $||y - x|| = \delta$ we have

$$g(y) - \langle c, y \rangle = g(y) - h_1(y) + h_1(y) - \langle c, y \rangle \ge -\beta + m, \text{ and}$$

$$g(x) - \langle c, x \rangle = g(x) - h_1(x) + h_1(x) - \langle c, x \rangle \le \beta + h_1(x) - \langle c, x \rangle.$$

Thus

$$\inf \{g(y) - \langle c, y \rangle : \|y - x\| = \delta\} \ge -\beta + m$$

> $\beta + h_1(x) - \langle c, x \rangle \ge g(x) - \langle c, x \rangle$

Now the continuous function g - c must attain its minimum over the compact set $x + \delta \mathbb{B}$, and the strict inequality above implies that the minimizing point cannot lie on the boundary. Hence this point must actually provide an unrestricted local minimum for g - c. Since $\delta < 1/n$, this shows that $g \in G_x^n$. The same conclusion holds for every g satisfying $\rho(g, h_1) < \beta/2^N$; so indeed $h_1 \in \operatorname{int} G_x^n$.

Since $\operatorname{int}(G_x^n)$ is open and dense in Lip_C , the set $G_x := \bigcap_{n=1}^{\infty} \operatorname{int}(G_x^n)$ is dense in Lip_C . If $f \in G_x$, then for every *n* there exists $x_n \in \operatorname{int}(x + n^{-1}\mathbb{B})$ such that f - c attains a local minimum at x_n . That is, f - c attains a local minimum in every neighborhood of x.

Finally, let $Q = \{x_k : k \in \mathbb{N}\}$ be a countable dense subset of X. Since each $G_{x_k}, k \in \mathbb{N}$, is a dense G_{δ} by the previous paragraph, the set $G := \bigcap_{k=1}^{\infty} G_{x_k}$ is a dense G_{δ} in Lip_C . Now consider any $f \in G$. Every open set U in X contains some x_k in Q, and since $f \in G_{x_k}$, the function f - c attains a local minimum at some point in U. Hence the set of points at which f - c attains a local minimum is dense in X. Since f is arbitrary in G, the dense G_{δ} set G defined here is a subset of the set G(c) defined in the theorem statement. Hence G(c) is residual.

Corollary 2 ([1]). The following set is residual in (Lip_C, ρ) .

$$\{f \in \operatorname{Lip}_C : \partial^{\circ} f(x) = \partial f(x) = C \,\,\forall x \in X\}.$$

PROOF. For each $c \in C$, define G(c) as in Theorem 1. If $f \in G(c)$, then c lies in $\partial f(x)$ at every point where f - c has a local minimum, and such points are dense in X. Consequently $c \in \partial f(x)$ for every $x \in X$. By taking a countable set $\{c_k : k \in \mathbb{N}\}$ dense in the interior of C we obtain a residual set $G := \bigcap_{k \in \mathbb{N}} G(c_k)$ such that every $f \in G$ obeys $c_k \in \partial f(x)$ for every $k \in \mathbb{N}$ and every $x \in X$. But $\partial f(x)$ is a closed set; so $\partial f(x) \supseteq C$. The reverse inclusion follows immediately from the defining property of Lip_C ; so equality holds. Hence $\partial f(x) = C = \operatorname{co} C = \operatorname{co} \partial f(x) = \partial^\circ f(x)$.

3 Sparseness of the Dini Subdifferential

We include a simpler proof of the following lemma due to Giles and Sciffer [4] to make our exposition self-contained. Both the statement and the proof remain valid when X is replaced by an arbitrary separable Banach space.

Lemma 3. For every $f \in \operatorname{Lip}_C$, there exists a dense G_{δ} subset of X in which every point x obeys $f^{\circ}(x; v) = f^{+}(x; v) \ \forall v \in X$.

PROOF. For $k \in \mathbb{N}$ and $v \in X$, define

$$D_k^v := \left\{ x \in X : \frac{f(x + t_x v) - f(x)}{t_x} - f^{\circ}(x; v) > -\frac{1}{k} \text{ for some } t_x \in \left(0, \frac{1}{k}\right) \right\}.$$

Because f is Lipschitz and $-f^{\circ}(\cdot; v)$ is l.s.c., D_k^v is open. To show that D_k^v is dense, let $x \in X$ and $\varepsilon > 0$ be given. Choose $y \in X$ such that $||y - x|| < \varepsilon/2$ and $f^{\circ}(\cdot; v)$ is continuous at y. (This is possible because $f^{\circ}(\cdot; v)$ is u.s.c., so $f^{\circ}(\cdot; v)$ is continuous on a residual subset of X—see [7, Exercise 7.43].) Then choose $\delta \in (0, \varepsilon/2)$ so small that

$$f^{\circ}(y;v) - f^{\circ}(z;v) > -\frac{1}{2k} \quad \text{whenever } \|z - y\| < \delta.$$

$$(2)$$

The definition of $f^{\circ}(y; v)$ provides points z and t_z satisfying $||z - y|| < \delta$, $0 < t_z < 1/k$, and

$$\frac{f(z+t_z v) - f(z)}{t_z} > f^{\circ}(y; v) - \frac{1}{2k}.$$

In conjunction with (2), this implies

$$\frac{f(z + t_z v) - f(z)}{t_z} > f^{\circ}(z; v) - \frac{1}{k}$$

Thus $z \in D_k^v$; also $||z - x|| < \varepsilon$; so D_k^v is dense. It follows that each set $D(v) := \bigcap_{k \in \mathbb{N}} D_k^v$ is a dense G_{δ} in X. Moreover, for every $x \in D(v)$, each $k \in \mathbb{N}$ has some $0 < t_k < 1/k$ for which

$$\frac{f(x+t_k v) - f(x)}{t_k} - f^{\circ}(x; v) > -\frac{1}{k}$$

As $k \to \infty$ here, we obtain $f^+(x; v) \ge f^\circ(x; v)$. But $f^\circ(x; v) \ge f^+(x; v)$ is obvious, so equality holds.

Now take a countable dense subset $\{v_n : n \in \mathbb{N}\}$ of X, and consider $D := \bigcap_{n \in \mathbb{N}} D(v_n)$. This is a dense G_{δ} in X, and for every $x \in D$ we have $f^+(x; v_n) = f^{\circ}(x; v_n)$ for all $n \in \mathbb{N}$. But both $f^+(x, \cdot)$ and $f^{\circ}(x, \cdot)$ are Lipschitz, so in fact $f^+(x; \cdot) \equiv f^{\circ}(x; \cdot)$, as required.

Theorem 4. The following subset of (Lip_C, ρ) is residual.

$$G := \left\{ g \in \operatorname{Lip}_C : \operatorname{dom}(\widehat{\partial}g) \text{ has first category in } X \right\}.$$

PROOF. We will show $G \supseteq A$, where $A := \{g \in \operatorname{Lip}_C : \partial^\circ g(x) = C \ \forall x \in X\}$. Recall that A is residual in $(\operatorname{Lip}_C, \rho)$, by Corollary 2. Fix $g \in A$. Then $\partial^\circ(-g) \equiv -C$ on X, and the set

$$S := \{ x \in X : (-g)^+(x; \cdot) \equiv (-g)^\circ(x; \cdot) \}$$

is residual in X by Lemma 3. For fixed x in S, the definition of the Clarke subgradient gives $(-g)^+(x;v) = (-g)^\circ(x;v) = \sigma_{-C}(v)$; i.e., $g_+(x;v) = -\sigma_C(-v)$, for all $v \in X$. Now since C has nonempty interior, the sublinear function σ_C cannot be dominated by a linear function. Therefore the set

$$\widehat{\partial}g(x) = \{x^* \in X^* : \langle x^*, v \rangle \le g_+(x;v) = -\sigma_C(-v) \ \forall v \in X\}$$

must be empty. This shows that $\operatorname{dom}(\widehat{\partial}g)$ is a subset of $X \setminus S$, which implies that $\operatorname{dom}(\widehat{\partial}g)$ has first category in X. Hence $g \in G$, as required. \Box

Although Rademacher's theorem asserts that every g in Lip_C is differentiable on a set of full Lebesgue measure, each g in the set G of Theorem 4 is differentiable at most on a set of first category in X.

4 Nonangularity

A function $f: X \to R$ is called *nonangular at x in direction v* when

$$f_+(x;v) \le -f_+(x;-v)$$
 and $(-f)_+(x;v) \le -(-f)_+(x;-v)$. (3)

We call f nonangular at x when (3) holds for every $v \in X$. This definition extends a concept well known when $X = \mathbb{R}$: see Bruckner [2].

Theorem 5. The subset of Lip_C consisting of functions nonangular at every point of X is a dense G_{δ} .

PROOF. Let us fix $v \in X$ and show that

$$\begin{aligned} A(v) &:= \{ f \in \operatorname{Lip}_C : f_+(x;v) > -f_+(x;-v) \text{ for some } x \in X \} \,, \\ B(v) &:= \{ f \in \operatorname{Lip}_C : (-f)_+(x;v) > -(-f)_+(x;-v) \text{ for some } x \in X \} \,, \end{aligned}$$

are F_{σ} sets of first category in Lip_{C} . We treat the set A(v), the arguments for B(v) being similar. Since $A(v) = \bigcup_{m=1}^{\infty} A^{m}$, where

$$A^m := \{ f \in \operatorname{Lip}_C : f_+(x;v) > -f_+(x;-v) \text{ for some } x \in m\mathbb{B} \},\$$

it suffices to show that each A^m is an F_{σ} of first category in Lip_C . For fixed $p, q \in \mathbb{Q}$ and $n \in \mathbb{N}$, with p < q, let

$$A_{pqn} := \left\{ f \in \operatorname{Lip}_{C} : \text{some } x \in m\mathbb{B} \text{ obeys} \right.$$

both $\frac{f(x+tv) - f(x)}{t} \le p \ \forall t \in \left(-\frac{1}{n}, 0\right)$
and $\frac{f(x+tv) - f(x)}{t} \ge q \ \forall t \in \left(0, \frac{1}{n}\right) \right\}.$

Clearly $A^m = \bigcup_{p,q,n} A_{pqn}$. We check that each A_{pqn} is closed and nowhere dense in Lip_C.

To see that A_{pqn} closed, let $\{f_k\}$ be any sequence in A_{pqn} converging in Lip_C to some function f. We must show that $f \in A_{pqn}$. For each k, there exists $x_k \in m\mathbb{B}$ such that

$$\frac{f_k(x_k+tv) - f_k(x_k)}{t} \le p \ \forall t \in \left(-\frac{1}{n}, 0\right),\tag{4}$$

$$\frac{f_k(x_k+tv) - f_k(x_k)}{t} \ge q \ \forall t \in \left(0, \frac{1}{n}\right).$$
(5)

By passing to a subsequence if necessary (we do not relabel), we may assume that $\langle x_k \rangle$ converges to some point $x \in m\mathbb{B}$. As $k \to \infty$ along this subsequence,

(4) and (5) yield

$$\frac{f(x+tv) - f(x)}{t} \le p \ \forall t \in \left(-\frac{1}{n}, 0\right),$$
$$\frac{f(x+tv) - f(x)}{t} \ge q \ \forall t \in \left(0, \frac{1}{n}\right).$$

Thus $f \in A_{pqn}$ and A_{pqn} is closed.

To show that A_{pqn} is nowhere dense in Lip_C , it suffices to observe that any differentiable function in Lip_C must lie outside A_{pqn} and that differentiable functions are dense in Lip_C . Indeed, standard mollification methods show that C^{∞} functions are dense in Lip_C . For example, following [6, page 409], let $\phi: X \to \mathbb{R}$ be a nonnegative function of class C^{∞} supported in \mathbb{B} and satisfying $\int_{\mathbb{B}} \phi(x) dx = 1$. For given $f \in \operatorname{Lip}_C$, define $v_k = 1/\int_X \phi(kz) dz$ and let

$$f_k(x) := v_k \int_X f(x-z)\phi(kz) \, dz = v_k \int_X f(z)\phi(k(x-z)) \, dz, \ k \in \mathbb{N}.$$

Then $f_k \to f$ uniformly on compact subsets of X, and $f_k \in C^{\infty}$ for each k. Moreover, $f'_k(x) = v_k \int_X f'(x-z)\phi(kz) dz$. Since $f'(x-z) \in C$ almost everywhere (Rademacher's Theorem), while C is compact convex and $v_k \int_X \phi(kz) dz = 1$, we have $f'_k(x) \in C$ for every $x \in X$. This implies $f_k \in \operatorname{Lip}_C$.

Now let $\{v_k : k \in \mathbb{N}\}$ be a countable dense subset of X, and put

$$G = \operatorname{Lip}_C \setminus \bigcup_{k \in \mathbb{N}} \left[A(v_k) \cup B(v_k) \right].$$

This is a dense G_{δ} in Lip_{C} . For every $f \in G$, we have $f_{+}(x; v_{k}) \leq -f_{+}(x; -v_{k})$ and $(-f)_{+}(x; v_{k}) \leq -(-f)_{+}(x; -v_{k})$ for all $k \in \mathbb{N}$. But $f_{+}(x; \cdot)$ and $(-f)_{+}(x; \cdot)$ are Lipschitzian, so these inequalities extend to every v in X. Hence every $f \in G$ is nonangular in every direction, at every point of X. \Box

Note that if f is nonangular at x and $x^* \in \partial f(x)$, then $\langle x^*, v \rangle = f_+(x; v)$ for all v, so $\partial f(x) = \{x^*\}$. Thus the set $\partial f(x)$ contains at most one point, and likewise for $\partial (-f)(x)$. Together with Corollary 2 and Theorem 5, this observation establishes the following generic complement to the explicit construction of Sciffer [8].

Corollary 6. There is a residual subset G of Lip_C such that every $f \in G$ fails to be subdifferentially regular at every point of X, and the same is true for -f.

724

Remark. When $X = \mathbb{R}$, analogues of Corollary 6 hold in the spaces of bounded continuous functions on X or bounded nondecreasing functions on X using the supremum norm.

Remark. When $X = \mathbb{R}$ and C = [-1, 1], Preiss and Tisér [5] have shown that the set

$$H := \left\{ f \in \operatorname{Lip}_C : \limsup_{y \to x} \left| \frac{f(y) - f(x)}{y - x} \right| = 1 \text{ for every } x \in [0, 1] \right\}$$

is residual. Every f in H has $f'(x) \in \{-1, 1\}$ for almost every $x \in \mathbb{R}$. In conjunction with Corollary 2 and [3, Theorem 2.5.1], this implies that there is a residual subset of Lip_C in which every f is such that both

$$D_+ = \{x \in \mathbb{R} : f'(x) = 1\}$$
 and $D_- = \{x \in \mathbb{R} : f'(x) = -1\}$

meet every open interval in a set of positive measure.

References

- J. M. Borwein, W. B. Moors, X. Wang, Generalized subdifferentials: a Baire categorical approach, *Trans. Amer. Math. Soc.*, to appear.
- [2] A. M. Bruckner, Differentiation of Real Functions, second edition, Providence: American Mathematical Society, 1994.
- [3] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983.
- [4] J. R. Giles, S. Sciffer, Locally Lipschitz functions are generically pseudoregular on separable Banach spaces, Bull. Austral. Math. Soc. 47 (1993), 205–212.
- [5] D. Preiss, J. Tiśer, Points of nondifferentiability of typical Lipschitz functions, *Real Anal. Exch.* 20 (1994/5), 219–226.
- [6] R. T. Rockafellar, R. J-B Wets, Variational Analysis, New York: Springer-Verlag, 1998.
- [7] H. L. Royden, *Real Analysis*, third edition, Englewood Cliffs, N.J.: Prentice-Hall, 1988.
- [8] S. Sciffer, Regularity of locally Lipschitz functions on the line, *Real Anal. Exch.* 20 (1994/1995), 786–798.

Philip D. Loewen and Xianfu Wang