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ON SOME PROPERTIES OF SETS
BLOCKING ALMOST CONTINUOUS

FUNCTIONS

Abstract

We define operators E( · ) and N ( · ) for blocking sets for almost
continuous functions. Using the language of these operators we give
new proofs for some classical theorems and prove some new theorems.
Finally, we make some remarks regarding uniform limits of almost con-
tinuous functions.

1 Preliminaries

Let I = [0, 1]. We will consider the AC subclass of Darboux real functions
defined on the interval I (a function f : A → R is AC (almost continuous) if
whenever U ⊂ A×R is an open set containing the graph of f , then U contains
the graph of a continuous function g : A → R). For properties of this and
other Darboux-like classes of functions see e. g. the survey [4]. In particular it
is known, that if f : I→ R ∈ AC then f � J is almost continuous as a function
from J for every interval J ⊂ I. It is also known, that for every finite set
F ⊂ I and open neighborhood G of f there exists continuous function g ⊂ G
such that g � F = f � F .

For every setA ⊂ I×R and x ∈ I, byAx we will denote {y ∈ R | 〈x, y〉 ∈ A}.
By bd(A) we will denote border of A. We will say that set A is left-open (right-
open) iff for every 〈x, y〉 ∈ A there exists open neighborhood U of 〈x, y〉 such
that ([0, x]× R) ∩ U ⊂ A (([x, 1]× R) ∩ U ⊂ A).
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Cesáro-Vietoris function, maximum of functions, uniform limit.

Mathematical Reviews subject classification: 26A15
Received by the editors June 5, 2001

∗Some of the results presented in this paper are taken from author’s Master Thesis,
written under the supervision of Tomasz Natkaniec.

373



374 Piotr Szuca

For an a ∈ R and a set A ⊂ R by |a−A| we will denote distance between
a and A.

We will use the symbol A for denoting the topological closure of set A.
We will also use the symbol F for denoting family of all limits of uniformly
convergent sequences of functions from F ⊂ RI.

A closed set B ⊂ I × R is blocking if f ∩ B = ∅ for at least one function
f : I→ R and g ∩B 6= ∅ for every continuous function g : I→ R. Obviously, f
is almost continuous iff f ∩B 6= ∅ for every blocking set B (see e. g. [8]).

2 Properties of blocking sets

There are known examples of sets blocking almost continuous functions which
have some pathological properties (see e. g. [12]). To investigate general prop-
erties of such sets we define two operators.

Definition 1. Let B ⊂ I× R be a blocking set. Define:

• E(B) = {〈a, b〉 ∈ I × R | (∃h : [0, a] → R) (h(a) = b & h ∩ B =
∅ & h is continuous)};

• N (B) = (I× R)\(B ∪ E(B)).

Note thatB, E(B), N (B) are pairwise disjoint andB∪E(B)∪N (B) = I×R.
Thus every blocking set B divides the plane into three parts B, E(B) and
N (B)—we will show below that these parts have some nice properties.

Definition 2. Let B be a blocking set. Define also:

• AEE(B) = {〈a, b〉 ∈ I×R | there exists an open set G such that 〈a, b〉 ∈
G & G ⊂ E(B)};

• ANN(B) = {〈a, b〉 ∈ I×R | there exists an open set G such that 〈a, b〉 ∈
G & G ⊂ N (B)};

• ANE(B) = {〈a, b〉 ∈ I×R | there exists an open set G such that 〈a, b〉 ∈
G & ([0, a]× R) ∩G ⊂ N (B) & ((a, 1]× R) ∩G ⊂ E(B)}.

Theorem 1. Let B ⊂ I× R be a blocking set. Then:

1. {0} × R ⊂ B ∪ E(B);

2. {1} × R ⊂ B ∪N (B);

3. E(B) is open;
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4. N (B) is left-open;

5. if for every open neighborhood G of 〈x, y〉 there exist 〈x1, y1〉 ∈ G∩E(B),
〈x2, y2〉 ∈ G ∩N (B) such that x1 < x2, then 〈x, y〉 ∈ B;

6. if 〈x, y〉 6∈ B then 〈x, y〉 ∈ AEE(B) ∪ANN(B) ∪ANE(B);

7. if f : I → R, f ∈ AC, 〈x1, f(x1)〉 ∈ E(B), 〈x2, f(x2)〉 ∈ N (B) and
x1 < x2, then there exists x ∈ (x1, x2) such that 〈x, f(x)〉 ∈ B.1

Proof. (1), (2) These facts are easy consequences of definitions.
(3) Let 〈p, q〉 ∈ E(B). Since 〈p, q〉 6∈ B, there exists a rectangular open

neighborhood G of 〈p, q〉 such that G∩B = ∅. Let h : [0, p]→ R be continuous,
h ∩ B = ∅ and h(p) = q. There exists 〈s, t〉 ∈ bd(G) such that s < p and
h(s) = t. For every point 〈a, b〉 from ((s, 1]×R)∩G we can extend h by linear
segment [〈s, t〉, 〈a, b〉] ⊂ G to the continuous function h′ : [0, a] → R. Hence
〈a, b〉 ∈ E(N), so ((s, 1]× R) ∩G ⊂ E(B).

(4) Suppose 〈p, q〉 ∈ N (B). Since 〈p, q〉 6∈ B, there exists a rectangular
open neighborhood G of 〈p, q〉 such that G∩B = ∅. If ([0, p]×R)∩G 6⊂ N (B)
then there exists 〈s, t〉 ∈ G∩ E(B) such that s ≤ p. Because E(B) is open, we
can assume that s < p. Let h : [0, s] → R be a continuous function such that
h ∩ B = ∅ and h(s) = t. We can extend h by the segment [〈s, t〉, 〈p, q〉] ⊂ G
to the continuous function h′ : [0, p] → R such that h′ ∩ B = ∅, contrary to
〈p, q〉 ∈ N (B).

(5) Suppose 〈x, y〉 6∈ B. Then there exists a rectangular open neighborhood
G of 〈x, y〉 such that G∩B = ∅. Take 〈x1, y1〉 ∈ G∩E(B), 〈x2, y2〉 ∈ G∩N (B),
x1 < x2. There exists continuous h : [0, x1] → R such that h(x1) = y1 and
h ∩ B = ∅. If we define h′ : [0, x2] → R as extension of h by linear segment
[〈x1, y1〉, 〈x2, y2〉] ⊂ G then h′ is continuous. Since 〈x2, y2〉 ∈ N (B), then h′ ∩
B 6= ∅, so [〈x1, y1〉, 〈x2, y2〉]∩B 6= ∅ and G∩B 6= ∅. This is the contradiction.

(6) Suppose 〈x, y〉 6∈ B. Then either 〈x, y〉 ∈ E(B) or 〈x, y〉 ∈ N (B). If
〈x, y〉 ∈ E(B) then, since E(B) is open, 〈x, y〉 ∈ AEE(B). If 〈x, y〉 ∈ N (B)
then, since N (B) is left-open, there exists a rectangular open neighborhood
G of 〈x, y〉 such that ([0, x] × R) ∩ G ⊂ N (B) and G ∩ B = ∅. Now suppose
〈x, y〉 6∈ ANN(B) ∪ ANE(B). This means that in every open neighborhood
of 〈x, y〉 we can find points from E(B) and N (B) to the right of x. Take
〈x2, y2〉 ∈ G ∩ N (B), x2 > x and 〈x1, y1〉 ∈ ([0, x2) × R) ∩ G ∩ E(B). Now,
analogously to (4), the linear segment [〈x1, y1〉, 〈x2, y2〉] intersects B, contrary
to G ∩B = ∅.

1As an easy corollary we have that f ∈ AC iff for every blocking set B and 〈x1, y1〉 ∈
E(B), 〈x2, y2〉 ∈ N (B) such that x1 < x2 there exists x ∈ (x1, x2) such that 〈x, f(x)〉 ∈ B.
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(7) Let 〈x1, f(x1)〉 ∈ E(B), 〈x2, f(x2)〉 ∈ N (B), x1 < x2. Let h : [0, x1]→
R be a continuous function such that h ∩ B = ∅ and h(x1) = f(x1). Suppose
that for every x ∈ (x1, x2), 〈x, f(x)〉 6∈ B. So, for every x ∈ [x1, x2], there
exists open neighborhood G〈x,f(x)〉 of 〈x, f(x)〉 such that G〈x,f(x)〉∩B = ∅. Let
G =

⋃
x∈[x1,x2]

G〈x,f(x)〉. Since f � [x1, x2] is almost continuous, there exists
continuous function g : [x1, x2] → R such that g(x1) = f(x1), g(x2) = f(x2)
and g ⊂ G. Since G ∩ B = ∅, we can extend h : [0, x1] → R by g to the
continuous function h′ : [0, x2]→ R such that h′(x2) = f(x2) and h′ ∩ B = ∅.
So 〈x2, f(x2)〉 belongs to E(B) rather than N (B). This is a contradiction.

Note that analogous facts remain true for functions from I to I.

Remark 1. Let B ⊂ I × R be a blocking set. Suppose 〈x, y1〉 ∈ E(B) and
〈x, y2〉 ∈ N (B). Then there exists y ∈ (y1, y2) such that 〈x, y〉 ∈ B.

We will use Theorem 2 in the next part of the proof to analyze uniform
limits of sequences of almost continuous functions.

Theorem 2. Let f : I→ R be almost continuous and B ⊂ I×R be a blocking
set. For every a, b ∈ I, if a < b, 〈a, f(a)〉 ∈ E(B) and 〈b, f(b)〉 ∈ N (B) then
at least one of the following statements holds:

1. there exists x ∈ [a, b] and left or right-open neighborhood U of 〈x, f(x)〉
such that f ∩ U ⊂ B;

2. there exists x ∈ [a, b] such that for every open neighborhood V of 〈x, f(x)〉
there exists x1 < x2 such that 〈x1, f(x1)〉 ∈ V ∩ E(B) and 〈x2, f(x2)〉 ∈
V ∩N (B).

(In the second case we will say that f breaks through B at 〈x, f(x)〉.)

Proof. Suppose, contrary to our claim, that neither (1) nor (2) hold. Denote:

BEE = {〈x,f(x)〉 | there exists an open set V〈x,f(x)〉 such that
〈x, f(x)〉 ∈ V〈x,f(x)〉 & V〈x,f(x)〉 ∩ f ⊂ E(B) ∪B}

BNN = {〈x,f(x)〉 | there exists an open set V〈x,f(x)〉 such that
〈x, f(x)〉 ∈ V〈x,f(x)〉 & V〈x,f(x)〉 ∩ f ⊂ N (B) ∪B}

BNE = {〈x,f(x)〉 | there exists an open set V〈x,f(x)〉 such that
〈x, f(x)〉 ∈ V〈x,f(x)〉 & ([0, x]× R) ∩ V〈x,f(x)〉 ∩ f ⊂ N (B) ∪B
& ((x, 1]× R) ∩ V〈x,f(x)〉 ∩ f ⊂ E(B) ∪B}
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First, note that sets BEE ∩ ((a, b) × R), BNN ∩ ((a, b) × R) and BNE ∩
((a, b)× R) are pairwise disjoint. Indeed, suppose there exists x ∈ (a, b) such
that 〈x, f(x)〉 ∈ BEE ∩BNE . So, there exists an open neighborhood V〈x,f(x)〉
of 〈x, f(x)〉 such that ([a, x]×R)∩V〈x,f(x)〉∩f ⊂ (E(B)∪B)∩(N (B)∪B) = B,
contrary to the negation of (1). Analogously we prove that BNN ∩ BNE = ∅
and BEE ∩BNN = ∅.

Next, note that f � [a, b] ⊂ BEE ∪ BNN ∪ BNE . Indeed, it is easy to see
that 〈a, f(a)〉 ∈ BEE and 〈b, f(b)〉 ∈ BNN ∪BNE . Now, take x ∈ (a, b). There
exists an open neighborhood U of 〈x, f(x)〉 such that either ([a, x)×R)∩U ∩
f ⊂ E(B) ∪ B or ([a, x) × R) ∩ U ∩ f ⊂ N (B) ∪ B. (If it is not the case,
since ([a, x) × R) ∩ U ∩ f 6⊂ N (B) ∪ B, we can find x1 < x such that point
〈x1, f(x1)〉 ∈ E(B)∩U . Next, since ((x1, x)×R)∩U ∩ f 6⊂ E(B)∪B, we find
a point 〈x2, f(x2)〉 ∈ ((x1, x) × R) ∩ N (B) ∩ U . We can find such points for
arbitrary set U—contrary to the negation of (2).) Using the same arguments
we show that there exists an open neighborhood V of 〈x, f(x)〉 such that either
((x, b)×R)∩V ∩f ⊂ E(B)∪B or ((x, b)×R)∩V ∩f ⊂ N (B)∪B. Let G = U∩V .
Since f is bilaterally dense in itself, the case ([a, x)× R) ∩G ∩ f ⊂ E(B) ∪B
and ((x, b) × R) ∩ G ∩ f ⊂ N (B) ∪ B contradicts to the negation of (2). In
any other case there exists an open neighborhood V〈x,f(x)〉 of 〈x, f(x)〉 as in
the definition of BEE or BNN or BNE . It is equivalent to 〈x, f(x)〉 ∈ BEE or
〈x, f(x)〉 ∈ BNN or 〈x, f(x)〉 ∈ BNE .

For S〈x,y〉 being an open square with the center 〈x, y〉 let 3 · S〈x,y〉 denote
the open square with the center 〈x, y〉 and with the diagonal 3 times that of
S〈x,y〉. For every x ∈ [a, b] let S〈x,f(x)〉 be an open square with the center
〈x, f(x)〉 such that:

3 · S〈x,f(x)〉 ⊂ V〈x,f(x)〉

3 · S〈x,f(x)〉 ⊂ (a, b]× R, for x > a

3 · S〈x,f(x)〉 ⊂ [a, b)× R, forx < b

Note that for x > a the square S〈x,f(x)〉 does not contain points with
abscissa a. Respectively, the square S〈x,f(x)〉 does not contain points with
abscissa b for x < b. Note also, that if S〈a,b〉 ∩ S〈c,d〉 6= ∅ then either S〈a,b〉 ⊂
3 · S〈c,d〉 or S〈c,d〉 ⊂ 3 · S〈a,b〉.

For every x ∈ [a, b] let R〈x,f(x)〉 = (xl, xr)× (yl, yu) be an open rectangular
neighborhood of 〈x, y〉 such that R〈x,f(x)〉 ⊂ S〈x,f(x)〉, f(xl) ∈ (yl, yu) for x > a
and f(xr) ∈ (yl, yu) for x < b.

Then for every x ∈ [a, b] the set R〈x,f(x)〉 fulfills the following conditions:

(◦1) if 〈r, f(r)〉 ∈ V〈x,f(x)〉 ∩ E(B) for an r ≤ x then 〈x, f(x)〉 ∈ BEE and for
every t > xl there exists z < t such that 〈z, f(z)〉 ∈ R〈x,f(x)〉 ∩ E(B);
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(◦2) if 〈r, f(r)〉 ∈ V〈x,f(x)〉 ∩ E(B) for an r > x then 〈x, f(x)〉 ∈ BEE ∪ BNE
and for every t > x there exists z ∈ (x, t) such that 〈z, f(z)〉 ∈ R〈x,f(x)〉∩
E(B);

(•1) if R〈x,f(x)〉∩((r, x)×R)∩f ⊂ E(B)∪B for an r ∈ (xl, x) then 〈x, f(x)〉 ∈
BEE and there exists z ≤ r such that 〈z, f(z)〉 ∈ R〈x,f(x)〉 ∩ E(B);

(•2) if R〈x,f(x)〉∩((x, xr)×R)∩f ⊂ E(B)∪B for an r ∈ (x, xr) then 〈x, f(x)〉 ∈
BEE ∪BNE and there exists z ≤ r such that 〈z, f(z)〉 ∈ R〈x,f(x)〉∩E(B).

Let H =
⋃
x∈[a,b]R〈x,f(x)〉. H is open and f ⊂ H, so there exists a contin-

uous function g : [a, b] → R such that g ⊂ H. Let R be a finite subfamily of{
R〈x,f(x)〉 | x ∈ [a, b]

}
such that g ⊂

⋃
R.

Since only theR〈a,f(a)〉 contains points with abscissa a and only theR〈b,f(b)〉
contains points with abscissa b, R〈a,f(a)〉 ∈ R and R〈b,f(b)〉 ∈ R. Moreover,
since R is finite and 3 · S〈x,f(x)〉 ⊂ ([a, b)× R) for every x < b,

sup
{
x ∈ [a, b] | 〈x, y〉 ∈

⋃
(R \

{
R〈b,f(b)〉

}
)
}
< b. (?)

Let C = {x ∈ [a, b] | (∃R ∈ R) (〈x, g(x)〉 ∈ R & (∃x1 ≤ x) 〈x1, f(x1)〉 ∈
E(B)∩R)}, and let s = supC. Since 〈a, f(a)〉 ∈ E(B) and 〈a, g(a)〉 ∈ R〈a,f(a)〉,
there exists x > a, x1 ∈ (a, x) such that 〈x, g(x)〉 ∈ R〈a,f(a)〉, 〈x1, f(x1)〉 ∈
E(B) ∩R〈a,f(a)〉, so s ≥ x > a. Analogously, the condition (?) implies s < b.

Since R is finite and g is continuous, so there exists R〈p,f(p)〉 ∈ R and
p1 ≤ s such that 〈s, g(s)〉 ∈ R〈p,f(p)〉 and 〈p1, f(p1)〉 ∈ E(B) ∩R〈p,f(p)〉.

Let R〈q,f(q)〉 ∈ R be an open rectangle such that 〈s, g(s)〉 ∈ R〈q,f(q)〉. Since
〈s, g(s)〉 ∈ R〈p,f(p)〉 ∩R〈q,f(q)〉, R〈p,f(p)〉 ∩R〈q,f(q)〉 6= ∅.

We have two cases:

1. R〈p,f(p)〉 ⊂ 3 · S〈q,f(q)〉 ⊂ V〈q,f(q)〉, if diameter of S〈p,f(p)〉 is less than
diameter of S〈q,f(q)〉;

2. R〈q,f(q)〉 ⊂ 3 · S〈p,f(p)〉 ⊂ V〈p,f(p)〉, otherwise.

Case 1. Then 〈p1, f(p1)〉 ∈ E(B) ∩ V〈q,f(q)〉. There exists q1 ≤ s such
that 〈q1, f(q1)〉 ∈ R〈q,f(q)〉 ∩ E(B). Indeed, if p1 ≤ q then 〈p1, f(p1)〉 ∈
([a, q]× R) ∩ V〈q,f(q)〉 ∩ E(B), so 〈q, f(q)〉 ∈ BEE and there exists q1 ≤ s such
that 〈q1, f(q1)〉 ∈ E(B) ∩ R〈q,f(q)〉 (see the condition (◦1)). If p1 > q, then
〈p1, f(p1)〉 ∈ ((q, b]×R)∩V〈q,f(q)〉∩E(B) and s > q, so 〈q, f(q)〉 ∈ BEE ∪BNE
and there exists q1 ≤ s such that 〈q1, f(q1)〉 ∈ E(B)∩R〈q,f(q)〉 (see the condi-
tion (◦2)).

Now, since g is continuous and s < b, there exists s1 > s such that
〈s1, g(s1)〉 ∈ R〈q,f(q)〉, so s1 ∈ C, a contradiction.
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Case 2. There exists q1 > s such that 〈q1, f(q1)〉 ∈ N (B) ∩ R〈q,f(q)〉.
Indeed, suppose by contradiction that no q1 > s fulfills the claim. Since g
is continuous and s < b, there exists s1 > s such that 〈s1, g(s1)〉 ∈ R〈q,f(q)〉
and s1 6= q. By supposition, ((s1, b] × R) ∩ R〈q,f(q)〉 ∩ N (B) ∩ f = ∅, so
((s1, b]×R)∩R〈q,f(q)〉 ∩ f ⊂ E(B)∪B. If s1 < q then there exists z ≤ s1 such
that 〈z, f(z)〉 ∈ E(B) ∩R〈q,f(q)〉 (see the condition (•1)). If s1 > q then there
exists z ≤ s1 such that 〈z, f(z)〉 ∈ E(B)∩R〈q,f(q)〉 (see the condition (•2)). In
any case, s1 ∈ C. Since this is a contradiction, there exists q1 > s such that
〈q1, f(q1)〉 ∈ N (B) ∩R〈q,f(q)〉.

Since 〈q1, f(q1)〉 ∈ N (B) ∩R〈q,f(q)〉, so 〈q1, f(q1)〉 ∈ N (B) ∩ V〈p,f(p)〉. But
〈p1, f(p1)〉 ∈ E(B) ∩ V〈p,f(p)〉 and p1 < q1—it is impossible, since 〈p, f(p)〉 ∈
BEE ∪BNN ∪BNE .

3 Some new proofs of old theorems and a proof of the
new one

We will show below that some classical theorems can be proved in a shorter
way by using the theory of operators E( · ) and N ( · ).

Theorem 3 ([1]). Every DB1 function f : I→ R is almost continuous.

Proof. Suppose f : I→ R is DB1 and there exists blocking set B ⊂ I×R such
that f ⊂ E(B) ∪ N (B). Recall that f , as a Darboux function, is bilaterally
dense in itself.

Denote:

E′ = {x ∈ I | 〈x, f(x)〉 ∈ E(B)}
N ′ = {x ∈ I | 〈x, f(x)〉 ∈ N (B)}

By Theorem 1, we have E′ ∩N ′ = ∅, 0 ∈ E′, 1 ∈ N ′ and E′ ∪N ′ = I. Let
K be the set of all x ∈ I such that for every open neighborhood G of x there
exist x1, x2 ∈ G with x1 < x2 and x1 ∈ E′, x2 ∈ N ′.

Note that for x1 < x2, x1 ∈ E′, x2 ∈ N ′ there exists x ∈ [x1, x2] such that
x ∈ K (E. g. sup (E′ ∩ [x1, x2]) ∈ K), so K 6= ∅. It is also easy to see that
K is closed. Since f is Baire class 1, there exists p ∈ K such that f � K is
continuous at p. Since 〈p, f(p)〉 6∈ B, 〈p, f(p)〉 ∈ ANE(B)∪ANN(B)∪AEE(B).
During the rest of the proof we will suppose 〈p, f(p)〉 ∈ ANE(B); the proof in
other cases is analogous.

Since f � K is continuous at p, there exists an open neighborhood G of p
such that [0, p] ∩ G ∩ K ⊂ N ′ and (p, 1] ∩ G ∩ K ⊂ E′. We will show that
[0, p] ∩G ⊂ N ′ and (p, 1] ∩G ⊂ E′.
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Indeed, suppose there exists p1 < p such that p1 ∈ G∩E′. Then p1 6∈ K, so
p1 is contained in a component (a, b) of I \K. Since b ∈ K and b ≤ p, b ∈ N ′.
Since 〈b, f(b)〉 ∈ N (B), N (B) is left-open and f is bilaterally dense in itself,
there exists b1 ∈ (p1, b) such that b1 ∈ N ′. But now there exists k ∈ K such
that p1 ≤ k ≤ b1, contrary to [p1, b1] ⊂ (a, b) ⊂ I \K. Analogous arguments
work for the right side of p.

Since [0, p]∩G ⊂ N ′ and (p, 1]∩G ⊂ E′, p 6∈ K. This is a contradiction.

Theorem 4 ([2]). The Cesáro-Vietoris function φ : I→ R defined by:

φ(x) = lim sup
n→∞

a1 + a2 + · · ·+ an
n

(where the ai are given by the unique nonterminating binary expansion of x)
is almost continuous.

Proof. Suppose there exists a blocking set B ⊂ I× I, such that φ ⊂ E(B) ∪
N (B).

First, observe that φ is Darboux. Let s = sup {x | 〈x, φ(x)〉 ∈ E(B)}. Since
〈0, φ(0)〉 ∈ E(B), E(B) is open and φ is bilaterally dense in itself, so s > 0
and 〈s, φ(s)〉 ∈ N (B). By theorem 1 (4) there are a, b and c such that
a < s, b < φ(s) < c and (a, s) × (b, c) ⊂ N (B). Let s′ ∈ (a, s) be such that
〈s′, φ(s′)〉 ∈ E(B). Take a′, b′ and c′ such that s′ < a′ < s, b′ < φ(s′) < c′ and
(s′, a′)× (b′, c′) ⊂ E(B). Then we have the vertical strip W = [s′, a′]×R such
that every vertical line lying in W contain a point of E(B), a point of N (B)
and therefore a point of B. (See Remark 1.)

The rest of the proof is a modification of Brown’s (Vietoris) proof. Let
B0 = B ∩W and {Wn}n be a descending sequence of open neighborhoods of
B0 such that B0 =

⋂
n∈N Wn. We will define an ascending sequence n1, n2, . . .

of natural numbers and dyadic decimal 0.a1a2 · · · an1an1+1 · · · an2an2+1 · · · si-
multaneously.

Take any dyadic rational ξ0 = 0.a1a2 · · · ai ∈ (s′, a′) and η0 > 0 such that
〈ξ0, η0〉 ∈ W1 ∩W . Define Q as a square neighborhood of 〈ξ0, η0〉 which has
radius q < η0

2 and lies interior to W1 ∩W . Now, take k > i such that if we
put ai+1 = ai+2 = · · · = ak = 0, then:

1. ξ0 < 0.a1a2 · · · ak111 · · · < ξ0 + q; and

2. Mk < q, with Mk denoting a1+a2+···ak

k ; and

3. 1
k < q.

Condition 1 implies that regardless of how 0.a1a2 · · · ak is continued it will
differ from ξ0 by less than q. Then define ak+1 = ak+2 = · · · = an1 = 1, such
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that 〈ξ1,Mn1〉 ∈ Q, with ξ1 denoting 0.a1a2 · · · an1 . (This can be accomplished
since |Mi+1 −Mi| < 1

i+1 < q for each i > k.)
If we have defined ξm = 0.a1a2 · · · anm

∈ (s′, a′) such that 〈ξm,Mnm
〉 ∈

Wm∩W , we can repeat the process, starting from the point 〈ξm, ηm〉 ofWm+1∩
W with ηm > 0, and define anm+1, anm+2, . . . , anm+1 first using consecutive
0’s and then using consecutive 1’s, so that 〈ξm+1,Mnm+1〉 ∈Wm+1 ∩W .

Define ξω = 0.a1a2 · · · . Since consecutive 0’s and then consecutive 1’s were
used in proceeding from anr

to anr+1 in the above induction, for each i between
nr and nr+1 we have Mi ≤ max

{
Mnr

,Mnr+1

}
, so φ(ξω) = lim supi→∞Mi =

lim supr→∞Mnr
. Therefore, the point 〈ξω, φ(ξω)〉 is the limit of some subse-

quence 〈ξmr
,Mnmr

〉 of 〈ξm,Mnm
〉. Since 〈ξmr

,Mnmr
〉 ∈Wmr

and
⋂
r∈N Wmr

=
B0, 〈ξω, φ(ξω)〉 ∈ B0 ⊂ B, contrary to φ ∩B = ∅.

The next theorem is connected with a problem: “Given a Darboux function
f : I→ I, does there exists almost continuous function g : I→ I with g ⊂ f?”
(see [10]). This problem has been solved by H. Rosen in more general case
of extendible functions (see [13]). Here we will present an easier and shorter
proof for the case of almost continuous function.

Theorem 5. For every Darboux function f : I→ I there exists almost contin-
uous function g : I→ I with g ⊂ f .

Proof. Let:

C−(x0) = {y ∈ I | there exists a sequence {xn}n ⊂ [0, x0], f(xn)→ y}
C+(x0) = {y ∈ I | there exists a sequence {xn}n ⊂ [x0, 1], f(xn)→ y}

It is easy to see that f =
⋃
x∈I ({x} × (C−(x) ∪ C+(x))). It is also known

that for every Darboux function f and x ∈ I, f is bilaterally c-dense in itself,
sets C−(x) and C+(x) are closed intervals and by well-known Young theorem,
set {x ∈ I | C−(x) 6= C+(x)} is countable.

Now we will show that for every blocking set B at least one of the following
conditions holds:

1. there exists x ∈ I such that C−(x) ∩ C+(x) ⊂ Bx;

2. the set {x ∈ I | (C−(x) ∪ C+(x)) ∩Bx 6= ∅} has cardinality c.

Suppose that there exists blocking set B such that neither (1) nor (2)
holds. Then for every x ∈ I there exists y ∈ (C−(x)∩C+(x)) \Bx and the set
{x ∈ I | 〈x, f(x)〉 ∈ B} has cardinality less than c.

Denote:

E′ = {x ∈ I | 〈x, f(x)〉 ∈ E(B)}
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N ′ = {x ∈ I | 〈x, f(x)〉 ∈ N (B)}
B′ = {x ∈ I | 〈x, f(x)〉 ∈ B}

Sets E′, N ′ and B′ are pairwise disjoint, 0 ∈ E′ ∪ B′, 1 ∈ N ′ ∪ B′ and
E′ ∪N ′ ∪B′ = I.

Let K be the set of all x ∈ I such that for every open neighborhood G of
x there exists x1, x2 ∈ G with x1 < x2, x1 ∈ E′ and x2 ∈ N ′. It is easy to see
that K is closed.

Note that K ⊂ {x ∈ I | (C−(x) ∪ C+(x)) ∩Bx 6= ∅}. Indeed, for every
open neighborhood G of x ∈ K, if we take x1 < x2, 〈x1, f(x1)〉 ∈ E(B) and
〈x2, f(x2)〉 ∈ N (B), then (by a slight change in the proof of Theorem 1 (5))
there exists x3 ∈ (x1, x2) and y3 ∈ (f(x1), f(x2)) (we can assume that f(x1) <
f(x2)) such that 〈x3, y3〉 ∈ B. Having sequences {〈xn1 , f(xn1 )〉}n ⊂ E(B), xn1 →
x and {〈xn2 , f(xn2 )〉}n ⊂ N (B), xn2 → x, we can build a sequence {〈xn3 , yn3 〉}n ⊂
B such that |yn3 − f(x)| ≤ max {|f(xn1 )− f(x)| , |f(xn2 )− f(x)|}. Since B is
compact and {〈xn3 , yn3 〉}n ⊂ B then there exists a subsequence of {〈xn3 , yn3 〉}n
which converges to some 〈x, y〉 ∈ B. Thus y ∈ (C−(x) ∪ C+(x)) ∩Bx.

Note also that for x1 < x2, x1 ∈ E′, x2 ∈ N ′ there exists x ∈ [x1, x2] such
that x ∈ K. Indeed, x = sup (E′ ∩ [x1, x2]) ∈ K. Since f is bilaterally dense
in itself, 〈x, f(x)〉 ∈ B ∪ N (B). If x ∈ B′, then (x, x2] ∩N ′ is dense in x (the
cardinality of B′ is less then c). If x ∈ N ′ then [x1, x) ∩N ′ is dense in x (f is
left side dense in itself and N (B) is left-open). As a corollary we have K 6= ∅.

Now, we will show that K is dense in itself. Let x ∈ K. There exists
y ∈ (C−(x) ∩ C+(x)) \Bx, so by Theorem 1 (6) 〈x, y〉 ∈ AEE(B) ∪ANN(B) ∪
ANE(B). The proof for these three cases is analogous, so suppose 〈x, y〉 ∈
ANE(B). Take an open rectangular neighborhood (a, b)× (c, d) of 〈x, y〉 such
that (a, x) × (c, d) ⊂ N (B) and (x, b) × (c, d) ⊂ E(B). Since x ∈ K, there
exists x1 ∈ (a, b) ∩E′ and x2 ∈ (a, b) ∩N ′, x1 < x2. Either x1 < x or x2 > x.

If x1 < x then 〈x1, f(x1)〉 ∈ E(B). Since y ∈ C−(x) and 〈x, y〉 ∈
ANE(B), there exists x′ ∈ (x1, x) such that 〈x′, f(x′)〉 ∈ N (B). Now we
have 〈x1, f(x1)〉 ∈ E(B), 〈x′, f(x′)〉 ∈ N (B) and x1 < x′, so there exists
x′′ ∈ [x1, x

′] ∩K.
Analogously, if x2 > x then we can find x′ ∈ (x, x2) such that 〈x′, f(x′)〉 ∈

E(B), so there exists x′′ ∈ [x′, x2] ∩K.
So, K ⊂ {x ∈ I | (C−(x) ∪ C+(x)) ∩Bx 6= ∅}. But K is closed and dense

in itself, so K has cardinality c. This is a contradiction with the negation of
condition (2).

Now we can construct by transfinite induction a function g such that g ⊂ f
and g ∩ B 6= ∅ for every blocking set B. Let A = {x ∈ I | C−(x) 6= C+(x)}.
(By Young theorem, A is countable.) Let {Bα}α<c be an ordered family
of all blocking sets B such that the set {x ∈ I | (C−(x) ∪ C+(x)) ∩Bx 6= ∅}
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has cardinality c. For every α < c choose 〈xα, yα〉 ∈ Bα such that xα ∈
I \ (A ∪ {xβ | β < α}) and yα ∈ C−(xα) ∩ C+(xα). Define g by

g(x) =

{
yα if x = xα for an α < c;
y ∈ C−(x) ∩ C+(x) otherwise.

It is easy to see that g ⊂
⋃
x∈I ({x} × (C−(x) ∩ C+(x))) ⊂ f and g is almost

continuous.

It is known, that if f : I→ R is almost continuous, then max(f, g) is almost
continuous for every Darboux upper semicontinuous function g : I → R ([9]).
We don’t know if the converse statement is true, but we can prove the following
fact.

Theorem 6. Suppose f : I → R. If max(f, c) ∈ AC and min(f, c) ∈ AC for
every real number c, then f ∈ AC.

Proof. Suppose, max(f, c) ∈ AC and min(f, c) ∈ AC for every c ∈ R and
there exists a blocking set B with B ∩ f = ∅. Let

s = sup {x ∈ I | 〈x, f(x)〉 ∈ E(B)} .

Then either 〈s, f(s)〉 ∈ E(B) or 〈s, f(s)〉 ∈ N (B).
If 〈s, f(s)〉 ∈ E(B) then s < 1 and there exists a rectangular right-open

neighborhood [s, x1) × (y1, y2) ⊂ E(B) of 〈s, f(s)〉. Fix t ∈ (s, x1) such that
〈t, f(t)〉 ∈ N (B). Suppose f(t) < f(s) (f(t) > f(s)) and consider g =
min(f, f(s)) (g = max(f, f(s))). Since g ∈ AC and 〈s, g(s)〉 = 〈s, f(s)〉 ∈ E(B)
and 〈t, g(t)〉 = 〈t, f(t)〉 ∈ N (B), by Theorem 1 (7) there exists x ∈ (s, t) such
that 〈x, g(x)〉 ∈ B. This is the contradiction, because g(x) 6= f(x) (since
f ∩B = ∅) and g(x) 6= f(s) (since 〈x, f(s)〉 ∈ [s, x1)× (y1, y2) ⊂ E(B)).

The case 〈s, f(s)〉 ∈ N (B) is analogous if we take into consideration left-
open rectangular neighborhood of 〈s, f(s)〉 contained in N (B).

Note that in the above proof we use only the following property of the
family C of constant functions: for every 〈x, y〉 ∈ I×R there exists right-open
(left-open) set G = [x, x2) × (y1, y2) (G = (x1, x] × (y1, y2)) and a function
c ∈ C such that 〈x, y〉 ∈ G and c � [x, x2) ⊂ G (c � (x1, x] ⊂ G). So, we can
formulate the general corollary.

Corollary 1. Suppose C is a subfamily of continuous real functions such that⋃
C is dense in the plane. If f : I → R is such that max(f, g) ∈ AC and

min(f, g) ∈ AC for every g ∈ C, then f is almost continuous.

Note that, in particular, C can be countable.
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4 Uniform limits of almost continuous functions

The problem of characterization of uniform limits of AC functions has been
posed by K. Kellum in [7]. This problem remains still open ([5]) and it seems
to be the most interesting unsolved problem concerning almost continuous
functions. We will apply Theorem 2 to obtain some partial results concerning
this problem.

First, recall two notions defined by Bruckner, Ceder and Weiss.

Definition 3. Let f : I→ R.

• f is in class U0 if for every interval J ⊂ I the set f(J) is dense in the
interval [infx∈J f(x), supx∈J f(x)];

• f is in class U if for every interval J ⊂ I and every set A ⊂ I such that
cardinality of A is less than c the set f(J \ A) is dense in the interval
[infx∈J f(x), supx∈J f(x)].

Note that D = U ([3]).
Of course, AC ⊂ U . An example showing that AC 6= U was found by

Kellum ([7], see also [6]). The next definition is connected with necessary and
sufficient conditions for a function f : I→ R to be in AC.

Definition 4. Let B be a blocking set and ε > 0.

• α(B, ε) is the class of all f : I→ R for which at least one of the following
conditions holds:

1. the set {x ∈ I | |f(x)−Bx| < ε} has cardinality c;
2. there exists x ∈ I such that [f(x)− ε, f(x) + ε] ⊂ Bx.

• β(B, ε) is the class of all f : I→ R for which at least one of the following
conditions holds:

1. the set {x ∈ I | |f(x)−Bx| < ε} has cardinality c;
2. there exists x ∈ I such that [f(x)− ε, f(x) + ε]∩Bx has non-empty

interior.

We say that f is in class α (respectively f is in β) iff f ∈ α(B, ε) (respectively
f ∈ β(B, ε)) for every blocking set B and ε > 0.

T. Natkaniec proved in [11] that α ⊂ AC and, under CH, AC ⊂ β (we will
show later that α = AC ⊂ β in ZFC)2. He also proved the following theorem.

2The definition of the class α given by Natkaniec is slightly weaker than used in this
paper, since for a function f to belong to α he requires f ∈ α(B, ε) for sufficiently small
ε > 0 and every blocking set B. Author does not know if both definitions are equivalent.
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Theorem 7. Let f : I → R and ε > 0. Suppose that {x ∈ I | |f(x)− q| ≤ ε}
is c-dense in I for every rational q. Then f fulfills the first condition from the
definition of the class α(B, ε).

In the particular, if f ∈ U = D and the graph of f is dense in the plane,
then f ∈ AC.

The first from the following definitions belongs to Kellum3:

Definition 5. Let f : I→ R.

• f ∈ AAC0 (f is away-almost continuous) iff {x | |f(x)−Bx| < ε} is
non-empty for every blocking set B and ε > 0;

• f ∈ AAC iff f ∩ B 6= ∅ or {x | |f(x)−Bx| < ε} has cardinality c for
every blocking set B and ε > 0.

Obviously AAC ⊂ AAC0. It is also easy to see that AC ⊂ AAC0.
During Miniconference in Real Analysis in Auburn in 1999 Kellum formu-

lated conjecture that f is in AC iff f ∈ U ∩AAC0.
Note the alternate definition of AAC.

Remark 2. A function f is in AAC iff for every ε > 0, every set J ⊂
I of cardinality less than c and every open neighbourhood G of the set f ∪⋃
x∈I\J ({x} × [f(x)− ε, f(x) + ε]) there exists a continuous function g : I →

R such that g ⊂ G.

Theorem 8.

1. AC ⊂ α;

2. α ⊂ β ∩AAC;

3. AAC ⊂ U ∩AAC0.

Lemma 1. Suppose f : I→ R is bilaterally c-dense in itself, c ∈ I and either

1. 〈c, f(c)〉 ∈ E(B) and |f(c)−N (B)c| < ε, or

2. 〈c, f(c)〉 ∈ N (B) and |f(c)− E(B)c| < ε.

Then the set {x ∈ I | |f(x)−Bx| < ε} has cardinality c.

3Originally the class AAC0 was called AAC. We decide to change its name to AAC0 to
obtain duality with classes U and U0.
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Proof. We will prove this lemma only for the case (1).
Take y ∈ R such that 〈c, y〉 ∈ N (B) and |y − f(c)| < ε. By Theorem 1 (3)

and (4), there exists τ > 0 such that (c−τ, c+τ)×(f(c)− τ
2 , f(c)+ τ

2 ) ⊂ E(B)
and (c− τ, c]× (y − τ, y + τ) ⊂ N (B). Since f is bilaterally c-dense in itself,
the set A = (c− τ, c]× (f(c)− τ

2 , f(c) + τ
2 ) ∩ f has cardinality c.

For every 〈a, f(a)〉 ∈ A,
∣∣f(a)− (y − τ

2 , y + τ
2 )
∣∣ < ε, so since 〈a, f(a)〉 ∈

E(B) and {a} × (y − τ
2 , y + τ

2 ) ⊂ N (B), |f(a)−Ba| < ε (see Remark 1).

Proof of Theorem 8. (1) Suppose f ∈ AC and there exists blocking set
B ⊂ I× R and ε > 0 such that f 6∈ α(B, ε).

First note, that there exist a, b ∈ I such that a < b, 〈a, f(a)〉 ∈ E(B) and
〈b, f(b)〉 ∈ N (B). To choose a ∈ [0, 1) with 〈a, f(a)〉 ∈ E(B) assume 〈0, f(0)〉 6∈
E(B). Since f 6∈ α(B, ε) and {0} × R ⊂ B ∪ E(B) (see Theorem 1 (1)), there
exists y0 ∈ R such that 〈0, y0〉 ∈ E(B) and |f(0)− y0| < ε. Take τ > 0 such
that [0, τ)× (y0 − τ, y0 + τ) ⊂ E(B) (by Th. 1 (3), E(B) is right-open). Since
f is bilaterally c-dense in itself and cardinality of f ∩ B is less than c, the
set A = [0, τ)× (f(0)− τ

2 , f(0) + τ
2 ) ∩ f ∩ (E(B) ∪N (B)) is not empty. Take

〈a, f(a)〉 ∈ A. We will show that 〈a, f(a)〉 ∈ E(B). Indeed, if 〈a, f(a)〉 ∈ N (B)
then, since

∣∣f(a)− (y0 − τ
2 , y0 + τ

2 )
∣∣ < ε and {a} × (y0 − τ

2 , y0 + τ
2 ) ⊂ E(B),

lemma 1 implies f ∈ α(B, ε). So 〈a, f(a)〉 ∈ E(B). Analogously we can find
b ∈ (a, 1] such that 〈b, f(b)〉 ∈ N (B).

By Theorem 2, there exists c ∈ [a, b] such that f breaks through B at
〈c, f(c)〉.

Since f 6∈ α(B, ε), there exists yc ∈ R such that 〈c, yc〉 6∈ B and |f(c)− yc| <
ε. Theorem 1 (6) shows that 〈c, yc〉 ∈ AEE(B)∪ANN(B)∪ANE(B). All cases
are analogous, so assume 〈c, yc〉 ∈ ANE(B). Fix τ > 0 such that (c − τ, c] ×
(yc − τ, yc + τ) ⊂ N (B) and (c, c + τ) × (yc − τ, yc + τ) ⊂ E(B). Since f
breaks through B at 〈c, f(c)〉, there are x1 < x2 with 〈x1, f(x1)〉, 〈x2, f(x2)〉 ∈
(c−τ, c+τ)×(f(c)− τ

2 , f(c)+ τ
2 ) and 〈x1, f(x1)〉 ∈ E(B), 〈x2, f(x2)〉 ∈ N (B).

Now, we have x1 ≤ c or x2 > c.
In the first case 〈x1, f(x1)〉 ∈ E(B), {x1} × (yc − τ

2 , yc + τ
2 ) ⊂ N (B) and∣∣f(x1)− (yc − τ

2 , yc + τ
2 )
∣∣ < ε, so lemma 1 implies f ∈ α(B, ε).

In the second case 〈x2, f(x2)〉 ∈ N (B), {x2} × (yc − τ
2 , yc + τ

2 ) ⊂ E(B)
and

∣∣f(x2)− (yc − τ
2 , yc + τ

2 )
∣∣ < ε, and again lemma 1 gives f ∈ α(B, ε). A

contradiction.
(2) Suppose {fn}n ⊂ α uniformly converges to f . Let ε > 0 and B ⊂ I×R

be a blocking set.
Fix n ∈ N such that |fn − f | < ε

2 . Since fn ∈ α(B, ε2 ), we have two cases:

• The set C =
{
x | |fn(x)−Bx| < ε

2

}
has cardinality c. Then for every

x ∈ C we have |f(x)−Bx| ≤ |f(x)− fn(x)|+ |fn(x)−Bx| < ε.
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• There exists c ∈ I such that [fn(c)− ε
2 , fn(c) + ε

2 ] ⊂ Bc. Because f(c) ∈
(fn(c) − ε

2 , fn(c) + ε
2 ), so 〈c, f(c)〉 ∈ B and (fn(c) − ε

2 , fn(c) + ε
2 ) ⊂

Bc ∩ (f(c)− ε, f(c) + ε).

In both cases f ∈ β ∩AAC.
(3) We will only show that AAC ⊂ U .
Suppose f ∈ AAC and f 6∈ U . Since every function in the class U is c-dense

in itself ([3]), then there exist an interval J = [a, b], a set A of cardinality
less than c, y ∈ [f(a), f(b)] (without lost of generality we can assume that
f(a) < f(b)) and ε > 0 such that a, b 6∈ A, (y − 3ε, y + 3ε) ⊂ (f(a), f(b)) and
f(J \A)∩ (y−3ε, y+3ε) = ∅. Since cardinality of A is less than c, we can also
find y′ ∈ (y − ε, y + ε) such that y′ 6∈ f(A). Now, for every 〈x, f(x)〉 define
open set S〈x,f(x)〉:

S〈a,f(a)〉 = [0,
a+ b

2
)× (f(a)− 2ε, f(a) + 2ε)

S〈b,f(b)〉 = (
a+ b

2
, 1]× (f(b)− 2ε, f(b) + 2ε)

S〈x,f(x)〉 = [0, a)× (f(x)− 2ε, f(x) + 2ε for x ∈ [0, a)
S〈x,f(x)〉 = (b, 1]× (f(x)− 2ε, f(x) + 2ε) for x ∈ (b, 1]
S〈x,f(x)〉 = (a, b)× (f(x)− 2ε, f(x) + 2ε)for x ∈ (a, b) \A
S〈x,f(x)〉 = (a, b)× Ux, where Ux is an open interval containing f(x) and

not containing y′ for x ∈ (a, b) ∩A.

Since V =
⋃
x∈I S〈x,f(x)〉 is an open neighbourhood of f fullfilling all as-

sumptions of Remark 2, there exists continuous function g : I → R, g ⊂ V .
We have built V such that g(a) < y′, g(b) > y′ and ((a, b) × {y′}) ∩ V = ∅.
So, g cannot take the value y′ between a and b; this contradicts the fact that
g has the Darboux property.

Corollary 2. AC ⊂ β ∩AAC.4

Corollary 3. AC = α.

Proof. This is a consequence of inclusions α ⊂ AC and AC ⊂ α.

Finally, we would like to state a problem.

Problem 1. Does the equality AAC = U ∩AAC0 hold?

4Using technique from the proof of Theorem 2 it is possible to show that AAC ⊂ β, but
such proof is much longer than the one presented above.
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