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ON A CONCAVE DIFFERENTIABLE
MAJORANT OF A MODULUS OF

CONTINUITY

Abstract

In this paper we prove that for any modulus of continuity on [0,∞)
there exists a concave majorant that is infinitely differentiable on (0,∞)
and satisfies an additional inequality. This extends the results of Stechkin
and Korneychuk obtained previously without the requirement that ma-
jorants be differentiable.

Recall that a real function ω on [0,∞) or on [0, l], 0 < l < ∞, is called
a modulus of continuity if ω is continuous, semiadditive, nondecreasing and
ω(0) = 0. The concavity of ω is sometimes a desirable property but in general
ω fails to be concave. In certain cases this difficulty can be surmounted by
using a concave majorant of ω. Throughout this paper we assume that ω
differs from the zero function. The following lemma is due to S. B. Stechkin.
It was published and applied for the first time in [1].

Lemma A. Let ω be a modulus of continuity on [0, π]. Then there exists a
concave modulus of continuity ω̄ such that ω(t) ≤ ω̄(t) < 2ω(t) for t ∈ (0, π].
Moreover, the constant 2 cannot be reduced.

The proof in [1] remains valid if π is replaced by any positive number l.
Later N. P. Korneychuk [2] proved the following lemma.

Lemma B. Let ω be a modulus of continuity on [0,∞) and ω̄ be the minimal
concave majorant of ω. Then ω̄(µt) < (1 + µ)ω(t) for any t > 0, µ > 0. This
inequality is best possible for each t > 0 and each natural µ.
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The construction of ω̄ in [1, 2] proves that any modulus of continuity has
a minimal concave majorant which is a modulus of continuity as well. As is
known any concave function of one variable is differentiable at each point in
its domain except at most a countable set. The question that we are dealing
with was suggested by P. L. Ul’janov. Let ω be a modulus of continuity
on [0,∞). The question is whether there exist a constant c and a concave
modulus of continuity ω0 on [0,∞) so that the restriction of ω0 to (0,∞) has
a given order of smoothness and satisfies ω(t) ≤ ω0(t) < cω(t). It is natural
in view of Lemma B to consider the problem with the inequality of the form
ω0(µt) < c(µ)ω(t). The next theorem yields an answer to Ul’janov’s problem.

Theorem. Let ω be a modulus of continuity on [0,∞) and I be a closed
interval in (0,∞). Then there exists a concave modulus of continuity ω0 on
[0,∞) such that the restriction of ω0 to (0,∞) is infinitely differentiable and
satisfies ω(µt) ≤ ω0(µt) < (1 + µ)ω(t) for t > 0 and µ ∈ I. Moreover, if
ω′(0) <∞, then ω0(t) = ω′(0)t on some neighborhood of zero.

To prove the theorem we need two more lemmas. In Lemma 1 it is possible
that ω̄′(0) =∞.

Lemma 1. Let ω be a modulus of continuity on [0,∞) and ω̄ be the minimal
concave majorant of ω. Then lim

t→∞
ω(t)
t = lim

t→∞
ω̄(t)
t <∞ and ω′(0) = ω̄′(0).

Proof. Note that ω̄(t)
t is a nonincreasing function on (0,∞) since ω̄ is concave.

This ensures the existence of lim
t→∞

ω̄(t)
t . The proof of Lemma B in [2] contains

the inequality

ω̄(t) <
ω(t0)
t0

t+ ω(t0), for t > 0 and t0 > 0. (1)

Hence lim
t→∞

ω̄(t)
t ≤

ω(t0)
t0
≤ ω̄(t0)

t0
and the first statement of the lemma follows.

Since ω̄ is concave, it has a finite or infinite derivative from the right
ω̄′(0). By passing to the limit as t0 → 0+ in (1) we get ω̄(t) ≤ t lim

t→0
inf ω(t)

t ;

whence ω̄′(0) ≤ lim
t→0

inf ω(t)
t . On the other hand, lim

t→0
sup ω(t)

t ≤ ω̄′(0). So

ω′(0) = ω̄′(0).

Below we make use of the following smoothing method [3]. For every
δ > 0 let ϕ(δ, t) be an even infinitely differentiable function on (−∞,∞) with
ϕ(δ, t) > 0 on (−δ, δ) and ϕ(δ, t) = 0 elsewhere. Assume also

∫ δ
−δ ϕ(δ, t) dt = 1.
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Then given a continuous function f on (−∞,∞) the function of t defined by

f(δ, t) =

∞∫
−∞

f(x)ϕ(δ, x− t) dx =

δ∫
−δ

f(x+ t)ϕ(δ, x) dx

is infinitely differentiable and lim
δ→0

f(δ, t) = f(t) uniformly over any compact

set in (−∞,∞) [3, p. 46]. It is easy to show that if f is concave, then so is
f(δ, t).

Actually, this method will be applied to special functions defined on a
finite interval. Specifically, let f be a continuous function defined on [p, q] so
that f is affine on [p, p1] and [q1, q] with different slopes, p < p1 < q1 < q.
Further without special mention f is extended to (−∞,∞) so that the resulting
function is affine on (−∞, p1] and [q1,∞) respectively. For convenience the
extension of f is also denoted by f . It is easy to check that such a function
satisfies f(δ, t) = f(t) outside (p1 − δ, q1 + δ). We will adhere to the following
convention. If L is the tangent at a point (x, y) to the graph of some function,
then we say simply that L is the tangent to the graph at the point x. The
topology on any interval is induced, as usual, by that on (−∞,∞).

Lemma 2. Let y = k1t+ d1 and y = k2t+ d2 be the tangents to the graph of
a concave function v at points a < b respectively. Suppose that these tangents
meet outside the graph of v. Then given any ε > 0 there exists an infinitely
differentiable concave function u on [a, b] with the following properties:

1. 0 ≤ u(t)− v(t) < ε for all t ∈ [a, b];

2. u(t) = k1t+ d1 on some neighborhood of a and
u(t) = k2t+ d2 on some neighborhood of b.

Proof. Denote by (c, y0) the point of intersection of the two tangents. Clearly
k1 > k2, a < c < b and y0 > v(c). The function v1 defined by v1(t) =
k1t + d1 on [a, c] and v1(t) = k2t + d2 on [c, b] is concave. Let ε > 0. Set
v0(t) = min{v1(t), v(t) + ε

2}, a ≤ t ≤ b. Then 0 ≤ v0(t) − v(t) ≤ ε
2 . If

t = a or t = b, then v0(t) − v(t) = 0, while v0(c) − v(c) > 0. Consequently,
there are an ε0 > 0 and points a1 ∈ (a, c), b1 ∈ (c, b) such that ε0 <

ε
2 and

v0(a1) − v(a1) = v0(b1) − v(b1) = ε0. The definition of v0 and the concavity
of v imply v0(t) = v1(t) for t ∈ [a, a1] ∪ [b1, b] and v0(t) − v(t) ≥ ε0 for
a1 ≤ t ≤ b1. By the continuity of v0 and v we have also v0(t) − v(t) ≥ 1

2ε0

for t ∈ [a1 − δ, b1 + δ] if δ is sufficiently small, δ > 0, provided a1 − δ > a and
b1 + δ < b.

Let us smooth v0 by means of the above method. For a sufficiently small
δ we get an infinitely differentiable concave function u(t) = v0(δ, t) with the
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following properties. The inequality |u(t)− v0(t)| < 1
2ε0 holds for all t ∈ [a, b]

and hence u(t)−v(t) < ε. If t ∈ [a, a1−δ]∪[b1+δ, b], then u(t) = v1(t) ≥ v(t). If
t ∈ [a1−δ, b1+δ], then u(t)−v(t) = u(t)−v0(t)+v0(t)−v1(t) > − 1

2ε0+ 1
2ε0 = 0,

completing the proof.

Proof of the theorem. Observe that ω(µt) ≤ ω0(µt) < (1 + µ)ω(t) for all
t > 0 and µ ∈ I if and only if ω(t) ≤ ω0(t) < (1+µ)ω( tµ ) for all t > 0 and µ ∈ I.
Let ω̄ be the minimal concave majorant of ω and let I = [µ1, µ2]. First we
construct ω0 sometimes disregarding the statement concerning ω0(t) = ω′(0)t.
Let us consider different cases. The case with a linear ω̄ is trivial. Assume that
ω̄ is of the form: ω̄(t) = k1t on [0, t0] and ω̄ = k2t+ d on [t0,∞) with k1 > k2

and some t0 > 0. The minimality of ω̄ implies ω̄(t0) = ω(t0). If k2 = 0,
then ω(t) = ω̄(t) = d on [t0,∞). Therefore (1 + µ)ω( tµ ) − ω̄(t) = µd ≥ µ1d
for all µ ∈ I and sufficiently large t. If k2 > 0, then we argue as follows.
By Lemma 1, lim

t→∞
ω(t)
t = lim

t→∞
ω̄(t)
t = k2. Then given any ε > 0 there is an

arbitrarily large τ > 0 such that 1
t ω̄(t) ≤ (1 + ε)k2 and µ

t ω( tµ ) ≥ (1 − ε)k2

for t ≥ τ and all µ ∈ I. If ε is sufficiently small, then a simple calculation
shows that (1 + µ)ω( tµ )− ω̄(t) ≥ 1

2k2τµ
−1
2 , where t ≥ τ , µ ∈ I. Thus in both

cases: k2 = 0 and k2 > 0, we have min
t≥t0, µ∈I

(
(1 + µ)ω( tµ )− ω̄(t)

)
= 2m with

m > 0. Denote by (t1, y1) the point of intersection of the lines y = k1t and
y = k2t + d + m. Set ω1(t) = k1t for 0 ≤ t ≤ t1 and ω1(t) = k2t + d + m for
t ≥ t1. Then ω1(t1) > ω̄(t1) and ω̄(t) ≤ ω1(t) < (1 + µ)ω( tµ ) for all t > 0. By
smoothing we obtain a function ω0(t) = ω1(δ, t) with all the desired properties
if δ is sufficiently small.

Consider the case, where ω̄(t) = k1t on [0, a1] and ω̄(t) = k2t+d on [b1,∞)
with 0 < a1 < b1 provided the lines y = k1t and y = k2t+ d meet outside the
graph of ω̄. In this case the conclusion of the theorem follows at once from
Lemma 2.

Assume now that ω̄(t) = kt on some interval [0, b1], but ω̄ is not affine
on any infinite interval. We suppose ω̄′(b1) = k, since otherwise b1 can be
replaced by a smaller positive number. Choose a b2 > b1 + 1 so that ω̄′(b2)
exists and the tangents to the graph of ω̄ at b1 and b2 meet outside the graph.
Such a choice is possible, since otherwise ω̄ would be affine on some infinite
interval. Again, choose a b3 > b2 + 1 so that ω̄′(b3) exists and the tangents
at b2 and b3 meet outside the graph of ω̄. Continuing this process we obtain
a sequence {bi}∞i=1 such that bi+1 > bi + 1 and the tangents at bi and bi+1

meet outside the graph of ω̄. Denote by Li the tangent at bi, i ∈ N. Set
εi = min

bi≤t≤bi+1,µ∈I

(
(1 + µ)ω( tµ )− ω̄(t)

)
. By Lemma 2 for each i ∈ N there is

infinitely differentiable concave function ωi0 on [bi, bi+1] such that 0 ≤ ωi0(t)−
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ω̄(t) < εi and hence ω(t) ≤ ωi0(t) < (1 + µ)ω( tµ ), t ∈ [bi, bi+1], µ ∈ I.
Moreover, the graph of ωi0 coincides with Li on some neighborhood of bi
and with Li+1 on some neighborhood of bi+1. Set ω0(t) = kt on [0, b1] and
ω0(t) = ωi0(t) on [bi, bi+1], i ∈ N. The values of ωi0 on consecutive intervals
are coordinated so that ω0 is infinitely differentiable. The concavity of ω0 is
obvious. Thus the conclusion of the theorem holds.

Consider the case where ω̄(t) = kt+d on some half-line [a1,∞), a1 > 0, and
ω̄ is not linear on any neighborhood of zero. We can assume that ω̄′(a1) = k.
As in the preceding case we choose a decreasing sequence {ai}∞i=1 so that
ai → 0 as i → ∞ and the tangents at ai, ai+1 meet outside the graph of ω̄.
Applying again Lemma 2 and setting ω0(0) = 0 we construct a function ω0 so
that ω0 has the desired properties except for the last statement of the theorem.

Suppose that ω̄ is not affine on [t1,∞) as well as on [0, t2] for any positive
t1, t2. Choose an a1 > 0 so that ω̄′(a1) exists and set b1 = a1. We determine
two sequences {ai}∞i=1 and {bi}∞i=1 in the same way as in the two previous
cases. The further construction being clear we omit the details.

We have still to prove the last statement of the theorem when ω′(0) < ∞
and ω̄ is not linear on any neighborhood of zero. To this end let us change
our construction somewhat. Choose ε > 0 so that (1 + µ−1

2 )(1 − ε) > 1. By
Lemma 1 ω(t) ∼ ω̄′(0)t as t→ 0. Then for all µ ∈ I and t sufficiently small

(1 + µ)ω(
t

µ
) ≥ 1 + µ

µ
(1− ε)ω̄′(0)t ≥ (1 + µ−1

2 )(1− ε)ω̄′(0)t > ω̄′(0)t.

Therefore, while constructing the sequence {ai}∞i=1 one can single out a j such
that ω̄′(0)t < (1 + µ)ω( tµ ) for t ∈ (0, aj ] and µ ∈ I. We define ω0 on [aj ,∞)
just as above. If 0 < t < aj , then we construct ω0 in a different way. Let
B denote the point (aj , ω̄(aj)). The tangent at B to the graph of ω̄ meets
the line y = ω̄′(0)t at a point A with an abscissa a ∈ (0, aj). The union of
the line segments OA and AB is the graph of some function ω2 on [0, aj ].
The segment AB, except for A, lies under the half-line OA. It follows that
ω2(t) < (1 +µ)ω( tµ ) for t ∈ (0, aj ] and µ ∈ I. Observe also that ω2(a) > ω̄(a).
Smoothing ω2 with a sufficiently small δ > 0, δ < min{a, aj − a}, and setting
ω0(t) = ω2(δ, t) on [0, aj ] we finally obtain ω0 on [0,∞) with all the properties
claimed in the theorem.

Clearly, the unimprovability asserted in Lemma B remains valid for ω0.
Let us remark that the condition of the theorem cannot be weakened by

assuming only µ ∈ (0,∞) instead of µ ∈ I. Indeed, take ω such that ω(t) = t
on [0, 1] and ω(t) = 1 on [1,∞). Then ω0(t) = ω(t) for 0 ≤ t ≤ 1, since
otherwise ω′0(0) 6= ω′(0). In order that ω0 be a concave differentiable majorant
of ω it is necessary that ω0(t) > ω(t) for t > 1 and, in particular, ω0(2) > 1.
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If ω0(2) < (1 + µ)ω( 2
µ ) for all µ > 0, then taking the limit as µ → 0 we

obtain ω0(2) ≤ 1 contradicting ω0(2) > 1. It remains unclear if the condition
µ1 ≤ µ ≤ µ2 can be weakened by assuming only µ ≥ µ1 > 0.

Lemma A does not answer the question if the factor 2 can be replaced by a
smaller value depending on ω. Lemma B gives rise to a similar question with
any µ > 0. It is also noteworthy that ω̄(µt) < (1 + µ)ω(t) if ω is defined on a
finite interval [0, l], since ω can be extended to [0,∞) by setting ω(t) = ω(l)
for t > l. However, in this case the unimprovability of the indicated inequality
requires a complementary study. Indeed, taking µ = 1 and t = l we can write
ω̄(l) = ω(l) instead of ω̄(l) < 2ω(l). Below we construct an example which
shows the unimprovability of ω̄(µt) < (1+µ)ω(t) in a sense different from that
in Lemma B and thereby we complement our theorem. Incidentally, the same
example enables us to remove in Lemma B the restriction that µ be a natural
number.

Take a sequence of positive numbers {qm}∞m=−∞ so that qm → ∞ as
|m| → ∞. Let a0 = c0 = 1. For each integer m we determine inductively
a triple am, bm, am+1 that forms a geometric progression with qm as the ratio.
Applying again induction on m we define a continuous nondecreasing function
ω on [0,∞) as follows. ω(0) = 0, ω(t) = cm for am ≤ t ≤ bm and ω(t) = cm

bm
t

for bm ≤ t ≤ am+1 with suitable constants cm. Note the following property
of the graph of ω. Given any x > 0, the points of the chord joining (0, 0) and
(x, ω(x)) lie under or on the graph. It follows that ω is semiadditive. Thus, ω
is a modulus of continuity.

Let ωl denote the restriction of ω to the finite interval [0, l] and let ϕl be
a concave majorant of ωl. Fix a µ > 0. Consider only those integers m that
satisfy am+1 ≤ l and µbm ∈ [am, am+1]. The points (am, cm) and (am+1, cm+1)
belong to the graph of ωl. It is not hard to check that the line segment joining

these points is described by y =
cm

qm + 1
(
t

am
+ qm), am ≤ t ≤ am+1. If t =

µbm, then y =
(1 + µ)qm
qm + 1

ωl(bm). It follows that ϕl(µbm) ≥ (1 + µ)qm
qm + 1

ωl(bm)

since ϕl is a concave majorant of ωl. The same argument is valid for any

concave majorant ϕ of ω on [0,∞). Clearly
(1 + µ)qm
qm + 1

→ 1 + µ as |m| → ∞.

Thus, there is a single modulus of continuity ω such that any factor 1 + µ in
ω̄(µt) < (1 + µ)ω(t) cannot be reduced, no matter if we consider functions on
a finite or infinite interval.

The function ω constructed above can be used in another way. Let µ > 0
and t0 > 0 be given. For any integer m set ω(t,m) = ω( bm

t0
t), t ≥ 0. If ψ(t)

is concave majorant of ω(t,m), then ϕ(t) = ψ( t0bm
t) is a concave majorant of
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ω(t). Therefore ψ(µt0) ≥ (1+µ)qm

qm+1 ω(t0,m). Since qm is arbitrarily large, it
follows that the last statement of Lemma B remains valid with any µ > 0.
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