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AN EXAMPLE ILLUSTRATING
P9(K) # P{(K) FOR COMPACT SETS OF
FINITE PREMEASURE

Abstract

We construct a doubling gauge function g and a compact set L C R
for which P9(L) < P§(L) < oo.

D. J. Feng, S. Hua and Z. Y. Wen proved in [1] that for every compact set
K C R” and for every 0 < s < n,

PHK) < 00 = P§(K) =P(K),

where P® and P§ denote the s-dimensional packing measure and premeasure,
respectively. (The definition and the basic properties of packing measures and
premeasures see e.g. in [2].) One can check that their proof works for every
gauge function g and the corresponding packing measure and premeasure PY,
P§, provided that for every positive ¢ there are positive § and to, such that

1+ 0)t
g(@+9)t) +e Vt<t.
9(t)
Especially, if g(t) = t*L(¢t) where L is slowly varying in the sense of Karamata;
L(ct
that is, lim, L((Ct)) =1 for every ¢ > 0 (see [3]), then
PJ(K) < 00 = PJ(K) =PI (K) (%)
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for every compact set K. These are the gauge functions which naturally
arise in dynamics and stochastic processes. R. D. Mauldin asked whether (x)
remains true for any gauge function g.

In this paper we show that (x) is false for general gauge functions g and
for the packing measure and premeasure P, PJ. We prove that it is not even
true for doubling measures. We prove the following theorem.

Theorem 1. There exists a doubling gauge function g, and compact sets K C
L C R, for which
PY(K) <1< PJ(L)< oo, (xx)

and L\ K is countable.
The following is an immediate corollary of Theorem 1.

Theorem 2. There exists a doubling gauge function g and a compact set
L C R, for which P9(L) < P§(L) < oo.

We will use the notations

an =2", by =da,+2, cn= ] bm, dn=80""

m=1
For every n € N we define a set of ¢,, pairwise disjoint intervals
I"={I} =[z},y}]: 1<j<ecun}

of length d,, as follows. We choose an interval I° of length 1 arbitrarily.
If ¢! has been defined, then for every 1 < j < ¢,_1 we choose the b,
subintervals

[x?_l + 6dn,w?_1 +7d,], [y;-l_1 — 7dn,y;7_1 — 6d,,],

dy— dy—
n—1 n—1 n—1 . n—1 .
(2] +i- 2. +ddy, x T + i 2, +5d,) (0<i<2a,—1),
dy— dy—
n—1 . n—1 n—1 . n—1 .
i — . — 4 — - — < < .
[yj 1 2, 5dn, y; 1 . 4d,] (1 <i<2ayp)

These are pairwise disjoint subintervals, since 12d,, < d,,_1/2a, for every
n>1.
Let

0o Cp 00 Cn—12an d
n—1

K=Un, r=xul U Utar ' +i- 2 1.

n=0j=1 n=1 j=1 i=0
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Then both K and L are compact, and L is the union of the Cantor set K and
countable many points. We put
dn—l dn—l

"7dn7 n =
2an f (29

—8dn, gn = 10d,.

en =
It is easy to check that e, > f, > gn > en+1. We define

1 .
g(t) = { anen if g1 > t/2>en
v ift/2=f,

10ancn—1

and we extend g to the intervals [g,, f,] and [f,, €,] linearly. Then we obtain
a gauge function, the only thing we need to check is that g(f,) > g(ent1). We
will prove (xx). We will also prove that g is doubling.

PROOF THAT P§(K) < 1.

Let p be the (unique) probability measure of support K, for which u(I}') =
1/¢,, for every m,j. Let I be an arbitrary interval whose midpoint belongs to
K, and for which |I| < d; = 1/80. Let n be the first index for which I
intersects only one of the intervals of Z°~1, but at least 2 of the intervals of
A

Since the distance between the intervals I}, I} is at least d,, for every
j # j', the midpoint of I belongs to an interval I, and I intersects at least
two intervals of Z", we have |I| > 2d,,. Then from |I| < di, n > 2 follows.
The length of I3 is dp; so I3 C I. Thus

(D) > 1/en. (1)

On the other hand, it is easy to see from the construction that for every
1<k, 1<j<ck, and for every z € 1']’4C there is an index j' # j and a point
Yy € I]’-C, for which |z — y| < 9di, < g. Therefore, since I intersects only one of
the intervals of Z"~!, we have |I| < 2g,,—1 and

1

2ancn—1.

g(1]) < 9(2gn—1) = (2)

If |1] < 2f,, then

1 1

1
I|) < ¢g(2 = < = —. 3
o) < 920) = g < e = 30 3)

From (1) and (3)

g(l1]) < 5 - p()

N[ =
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follows. On the other hand, if |I| > 2f,, then it is also easy to see from the
construction that I covers at least 3 of the intervals of Z". Thus

NGES -

Cn bncn—l

(4)

Since n > 2, a, > 4 and hence from (2) and (4) we obtain

_dan +2
" 6ay

- p().

o

by,

I) < — - u(l 1) <
ol11) < g () pll) <
So for every interval I for which I < 1/80 and whose midpoint belongs to K
we have g(|I]) < 3/4 - p(I). Thus P4(K) < 3/4 for every ¢ < 1/80. From this
we obtain P§(K) < 3/4 < 1. O

PROOF THAT 1 < PJ(L).

For every interval I]T-L_l, the points

af =2 4 2 dy /20, 1<i<a,—1

n—1 n—1
ji T Eny Ty
disjoint subintervals of I;-L_l. It is also easy to see that each interval I;’i_l
covers 2 of the intervals of Z™ and disjoint from all the other intervals of Z™.
We have u(I;Li_l) = 2/cy,. Thus for every n > 1 we have

belong to L and the intervals I;’[l = (x + ep) are pairwise

an—1

2a, — 2 2a, — 2 2 2
I".l.il = n = n > - — In71 . 5
; Hl) cn Gan +2)en s 2 106, 10 M) ()
We also have
1 2 2

g(;7) = 9(2en) = = — = p(I;7). (6)

>
2ancnfl bncnfl Cn
We fix an m > 1 and define

T ={I;7 1< j<cpmo1, 1 <i<am — 1},

and if Z,,, Z,41, - - -, Zp, have been defined for an n > m, then we put

Top1 = {15 1< <en 1 <i<app — LIT ¢ | UZe)

{=m
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Then |J,2,, UZ; is a 2e,,-packing of L. Tt is easy to see from (5) by induction

that p(L\ Um+k 'UZy) < (8/10)%. Thus w2, UZ;) = 1. Therefore, from
(6) we obtain P§, (L) > 1 for every m > 1 and thus Pg(L) > 1. O

PROOF THAT P§(L) < cc.

Let I be an arbitrary interval whose midpoint belongs to L, and for which
|I| < di = 1/80. Let the midpoint of I be z. If z € K, then we know
g(I) < 3/4 - u(I) from the proof of PJ(K) < 1. If x ¢ K, then

_ . dm—l
r =z R i
2a.m,

for some m, j, 3.

If |I| < 10d,, = gm, then |I|/2 < 5d,,, € [em—+1, gm]- Thus
1 1 1

= 20mi1Cm 4amcm 40mbmCrm—1

(1)) <

(7)

If 10d,, < |I|, then I covers at least 2 of the intervals of Z™ and of course x
belongs to an interval of Z™~! and does not belong to Z™.

As before, let n be the smallest index for which I intersects only one of
the intervals of Z"~!, but at least 2 of the intervals of Z%. We have seen
in the proof of P§(K) < 1, that if the midpoint of I belongs to Z", then
g(|I]) < 3/4-u(I). If the midpoint of I does not belong to Z", then m—1 < n.
On the other hand, I intersects 2 intervals of Z™. Thus n < m. So in this
case n = m. We have

u(I) > 2/cn, (8)

and (since = belongs to Z" ! and I intersects only one of the intervals of Z" 1)
we obtain |I| < 2g,—1. From (8)

1 _4an+2<2an+1

20,,Cn—1 2an,cn — 2ap

g(11]) < 9(2gn—1) = (D) < 2 p(I).

REE d’g;l and ¢(|I|) can be

So for every I, either g(|I]) < 2u(I) or x = 27" 5

J
estimated by (7). But

This proves P§(L) < 3 < oc. O
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PROOF OF DOUBLING.

It is enough to prove that there exists a constant C, such that if ¢ is small
g(2
enough, then ¢(2t)/g(t) < C. We put g(u) = g(u/2), and prove g~(( u)) <C
g(u
for every u small enough. We fix a small u, let n be the index for which
U € [en+1,en]. It is easy to check that 2e, < g,—1. Thus 2u < g,—1. We know
that g is constant 5g(f,,) on [en, gn—1].
If u is small enough, then n is large enough. It is easy to see that

g(en+t1) _ 9(gn) > 9(gn)

)

€n+1 €n+1 dn

and for suitable large n

9(gn) > 9(fn)

gn fa
that is, the function §(z)/z monotone decreases on [e,+1, fn]. Thus if v and
2u € [ent1, fn], then glu)/u > §(2u)/2u; that is, §(2u)/g(u) < 2. If u €
[en+lvfn] and 2u > f,, then §(2u) = 5g(fn)’ and g(fn)/fn < g(u)/u where
fn < 2u. Thus §(2u)/g(u) < 10. Finally, if u > f,, then it is immediate that
9(2u)/g(u) = 5g(fn)/g(u) <5. O
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