Marianna Csörnyei, Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UK. e-mail: mari@math.ucl.ac.uk

AN EXAMPLE ILLUSTRATING $P^g(K) \neq P_0^g(K)$ FOR COMPACT SETS OF FINITE PREMEASURE

Abstract

We construct a doubling gauge function g and a compact set $L \subset \mathbb{R}$ for which $\mathcal{P}^g(L) < \mathcal{P}_0^g(L) < \infty$.

D. J. Feng, S. Hua and Z. Y. Wen proved in [1] that for every compact set $K \subset \mathbb{R}^n$ and for every $0 \le s \le n$,

$$\mathcal{P}_0^s(K) < \infty \Rightarrow \mathcal{P}_0^s(K) = \mathcal{P}^s(K),$$

where \mathcal{P}^s and \mathcal{P}_0^s denote the s-dimensional packing measure and premeasure, respectively. (The definition and the basic properties of packing measures and premeasures see e.g. in [2].) One can check that their proof works for every gauge function g and the corresponding packing measure and premeasure \mathcal{P}^g , \mathcal{P}_0^g , provided that for every positive ε there are positive δ and t_0 , such that

$$\frac{g((1+\delta)t)}{g(t)} < 1 + \varepsilon \quad \forall t < t_0.$$

Especially, if $g(t) = t^s L(t)$ where L is slowly varying in the sense of Karamata; that is, $\lim_{t\to 0} \frac{L(ct)}{L(t)} = 1$ for every c > 0 (see [3]), then

$$\mathcal{P}_0^g(K) < \infty \Rightarrow \mathcal{P}_0^g(K) = \mathcal{P}^g(K) \tag{*}$$

Key Words: packing measure, premeasure, doubling gauge function Mathematical Reviews subject classification: 28A78, 28A80

Received by the editors May 27, 2000 *Supported by the Hungarian National Foundation for Scientific Research, grant # F029768 and FKFP 0192/1999.

for every compact set K. These are the gauge functions which naturally arise in dynamics and stochastic processes. R. D. Mauldin asked whether (*) remains true for any gauge function q.

In this paper we show that (*) is false for general gauge functions g and for the packing measure and premeasure $\mathcal{P}^g, \mathcal{P}_0^g$. We prove that it is not even true for doubling measures. We prove the following theorem.

Theorem 1. There exists a doubling gauge function g, and compact sets $K \subset L \subset \mathbb{R}$, for which

$$\mathcal{P}_0^g(K) < 1 \le \mathcal{P}_0^g(L) < \infty, \tag{**}$$

and $L \setminus K$ is countable.

The following is an immediate corollary of Theorem 1.

Theorem 2. There exists a doubling gauge function g and a compact set $L \subset \mathbb{R}$, for which $\mathcal{P}^g(L) < \mathcal{P}_0^g(L) < \infty$.

We will use the notations

$$a_n = 2^n$$
, $b_n = 4a_n + 2$, $c_n = \prod_{m=1}^n b_m$, $d_n = 80^{-n^3}$.

For every $n \in \mathbb{N}$ we define a set of c_n pairwise disjoint intervals

$$\mathcal{I}^n = \{I_i^n = [x_i^n, y_i^n] : 1 \le j \le c_n\}$$

of length d_n , as follows. We choose an interval I^0 of length 1 arbitrarily. If \mathcal{I}^{n-1} has been defined, then for every $1 \leq j \leq c_{n-1}$ we choose the b_n subintervals

$$[x_j^{n-1} + 6d_n, x_j^{n-1} + 7d_n], \quad [y_j^{n-1} - 7d_n, y_j^{n-1} - 6d_n],$$

$$[x_j^{n-1} + i \cdot \frac{d_{n-1}}{2a_n} + 4d_n, x_j^{n-1} + i \cdot \frac{d_{n-1}}{2a_n} + 5d_n] \quad (0 \le i \le 2a_n - 1),$$

$$[y_j^{n-1} - i \cdot \frac{d_{n-1}}{2a_n} - 5d_n, y_j^{n-1} - i \cdot \frac{d_{n-1}}{2a_n} - 4d_n] \quad (1 \le i \le 2a_n).$$

These are pairwise disjoint subintervals, since $12d_n < d_{n-1}/2a_n$ for every $n \ge 1$.

Let

$$K = \bigcap_{n=0}^{\infty} \bigcup_{j=1}^{c_n} I_j^n, \quad L = K \cup \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{c_{n-1}} \bigcup_{i=0}^{2a_n} \{x_j^{n-1} + i \cdot \frac{d_{n-1}}{2a_n}\}.$$

Then both K and L are compact, and L is the union of the Cantor set K and countable many points. We put

$$e_n = \frac{d_{n-1}}{2a_n} - 7d_n$$
, $f_n = \frac{d_{n-1}}{2a_n} - 8d_n$, $g_n = 10d_n$.

It is easy to check that $e_n > f_n > g_n > e_{n+1}$. We define

$$g(t) = \begin{cases} \frac{1}{2a_n c_{n-1}} & \text{if } g_{n-1} \ge t/2 \ge e_n\\ \frac{1}{10a_n c_{n-1}} & \text{if } t/2 = f_n \end{cases}$$

and we extend g to the intervals $[g_n, f_n]$ and $[f_n, e_n]$ linearly. Then we obtain a gauge function, the only thing we need to check is that $g(f_n) > g(e_{n+1})$. We will prove (**). We will also prove that g is doubling.

Proof that $\mathcal{P}_0^g(K) < 1$.

Let μ be the (unique) probability measure of support K, for which $\mu(I_j^n) = 1/c_n$ for every n, j. Let I be an arbitrary interval whose midpoint belongs to K, and for which $|I| < d_1 = 1/80$. Let n be the first index for which I intersects only one of the intervals of \mathcal{I}^{n-1} , but at least 2 of the intervals of \mathcal{I}^n .

Since the distance between the intervals I_j^n , $I_{j'}^n$ is at least d_n for every $j \neq j'$, the midpoint of I belongs to an interval I_j^n , and I intersects at least two intervals of \mathcal{I}^n , we have $|I| \geq 2d_n$. Then from $|I| < d_1$, $n \geq 2$ follows. The length of I_j^n is d_n ; so $I_j^n \subset I$. Thus

$$\mu(I) \ge 1/c_n. \tag{1}$$

On the other hand, it is easy to see from the construction that for every $1 \leq k, 1 \leq j \leq c_k$, and for every $x \in I_j^k$ there is an index $j' \neq j$ and a point $y \in I_{j'}^k$ for which $|x - y| < 9d_k < g_k$. Therefore, since I intersects only one of the intervals of \mathcal{I}^{n-1} , we have $|I| < 2g_{n-1}$ and

$$g(|I|) \le g(2g_{n-1}) = \frac{1}{2a_n c_{n-1}}. (2)$$

If $|I| \leq 2f_n$, then

$$g(|I|) \le g(2f_n) = \frac{1}{10a_n c_{n-1}} \le \frac{1}{2b_n c_{n-1}} = \frac{1}{2c_n}.$$
 (3)

From (1) and (3)

$$g(|I|) \leq \frac{1}{2} \cdot \mu(I)$$

follows. On the other hand, if $|I| > 2f_n$, then it is also easy to see from the construction that I covers at least 3 of the intervals of \mathcal{I}^n . Thus

$$\mu(I) \ge \frac{3}{c_n} = \frac{3}{b_n c_{n-1}}. (4)$$

Since $n \geq 2$, $a_n \geq 4$ and hence from (2) and (4) we obtain

$$g(|I|) \le \frac{b_n}{6a_n} \cdot \mu(I) = \frac{4a_n + 2}{6a_n} \cdot \mu(I) \le \frac{3}{4} \cdot \mu(I).$$

So for every interval I for which I < 1/80 and whose midpoint belongs to K we have $g(|I|) < 3/4 \cdot \mu(I)$. Thus $\mathcal{P}^g_{\varepsilon}(K) \leq 3/4$ for every $\varepsilon < 1/80$. From this we obtain $\mathcal{P}^g_0(K) \leq 3/4 < 1$.

Proof that $1 \leq \mathcal{P}_0^g(L)$.

For every interval I_i^{n-1} , the points

$$x_{ii}^{n-1} = x_i^{n-1} + 2i \cdot d_{n-1}/2a_n \quad 1 \le i \le a_n - 1$$

belong to L and the intervals $I_{ji}^{n-1}=(x_{ji}^{n-1}-e_n,x_{ji}^{n-1}+e_n)$ are pairwise disjoint subintervals of I_j^{n-1} . It is also easy to see that each interval I_{ji}^{n-1} covers 2 of the intervals of \mathcal{I}^n and disjoint from all the other intervals of \mathcal{I}^n . We have $\mu(I_{ji}^{n-1})=2/c_n$. Thus for every $n\geq 1$ we have

$$\sum_{i=1}^{a_n-1} \mu(I_{ji}^{n-1}) = \frac{2a_n - 2}{c_n} = \frac{2a_n - 2}{(4a_n + 2)c_{n-1}} \ge \frac{2}{10c_{n-1}} = \frac{2}{10} \cdot \mu(I_j^{n-1}).$$
 (5)

We also have

$$g(|I_{ji}^{n-1}|) = g(2e_n) = \frac{1}{2a_n c_{n-1}} > \frac{2}{b_n c_{n-1}} = \frac{2}{c_n} = \mu(I_{ji}^{n-1}).$$
 (6)

We fix an $m \ge 1$ and define

$$\mathcal{I}_m = \{ I_{ji}^{m-1} : 1 \le j \le c_{m-1}, 1 \le i \le a_m - 1 \},$$

and if $\mathcal{I}_m, \mathcal{I}_{m+1}, \dots, \mathcal{I}_n$ have been defined for an $n \geq m$, then we put

$$\mathcal{I}_{n+1} = \{ I_{ji}^n : 1 \le j \le c_n, 1 \le i \le a_{n+1} - 1, I_j^n \not\subset \bigcup_{\ell=m}^n \cup \mathcal{I}_\ell \}.$$

Then $\bigcup_{\ell=m}^{\infty} \cup \mathcal{I}_{\ell}$ is a $2e_m$ -packing of L. It is easy to see from (5) by induction that $\mu(L \setminus \bigcup_{\ell=m}^{m+k-1} \cup \mathcal{I}_{\ell}) \leq (8/10)^k$. Thus $\mu(\bigcup_{\ell=m}^{\infty} \cup \mathcal{I}_{\ell}) = 1$. Therefore, from (6) we obtain $\mathcal{P}_{2e_m}^g(L) \geq 1$ for every $m \geq 1$ and thus $\mathcal{P}_0^g(L) \geq 1$.

Proof that $\mathcal{P}_0^g(L) < \infty$.

Let I be an arbitrary interval whose midpoint belongs to L, and for which $|I| < d_1 = 1/80$. Let the midpoint of I be x. If $x \in K$, then we know $g(I) < 3/4 \cdot \mu(I)$ from the proof of $\mathcal{P}_0^g(K) < 1$. If $x \notin K$, then

$$x = x_j^{m-1} + i \cdot \frac{d_{m-1}}{2a_m}$$

for some m, j, i.

If $|I| \le 10d_m = g_m$, then $|I|/2 \le 5d_m \in [e_{m+1}, g_m]$. Thus

$$g(|I|) \le \frac{1}{2a_{m+1}c_m} = \frac{1}{4a_m c_m} = \frac{1}{4a_m b_m c_{m-1}}.$$
 (7)

If $10d_m < |I|$, then I covers at least 2 of the intervals of \mathcal{I}^m and of course x belongs to an interval of \mathcal{I}^{m-1} and does not belong to \mathcal{I}^m .

As before, let n be the smallest index for which I intersects only one of the intervals of \mathcal{I}^{n-1} , but at least 2 of the intervals of \mathcal{I}^n . We have seen in the proof of $\mathcal{P}_0^g(K) < 1$, that if the midpoint of I belongs to \mathcal{I}^n , then $g(|I|) < 3/4 \cdot \mu(I)$. If the midpoint of I does not belong to \mathcal{I}^n , then m-1 < n. On the other hand, I intersects 2 intervals of \mathcal{I}^m . Thus $n \leq m$. So in this case n = m. We have

$$\mu(I) > 2/c_n,\tag{8}$$

and (since x belongs to \mathcal{I}^{n-1} and I intersects only one of the intervals of \mathcal{I}^{n-1}) we obtain $|I| < 2g_{n-1}$. From (8)

$$g(|I|) \leq g(2g_{n-1}) = \frac{1}{2a_nc_{n-1}} = \frac{4a_n+2}{2a_nc_n} \leq \frac{2a_n+1}{2a_n} \cdot \mu(I) < 2 \cdot \mu(I).$$

So for every I, either $g(|I|) < 2\mu(I)$ or $x = x_j^{m-1} + i \cdot \frac{d_{m-1}}{2a_m}$ and g(|I|) can be estimated by (7). But

$$\sum_{m=1}^{\infty} \sum_{j=1}^{c_{m-1}} \sum_{i=0}^{2a_m} \frac{1}{4a_m b_m c_{m-1}} < \sum_{m=1}^{\infty} \frac{1}{b_m} < 1.$$

This proves $\mathcal{P}_0^g(L) < 3 < \infty$.

PROOF OF DOUBLING.

It is enough to prove that there exists a constant C, such that if t is small enough, then g(2t)/g(t) < C. We put $\tilde{g}(u) = g(u/2)$, and prove $\frac{\tilde{g}(2u)}{\tilde{g}(u)} < C$ for every u small enough. We fix a small u, let n be the index for which $u \in [e_{n+1}, e_n]$. It is easy to check that $2e_n < g_{n-1}$. Thus $2u < g_{n-1}$. We know that \tilde{g} is constant $5\tilde{g}(f_n)$ on $[e_n, g_{n-1}]$.

If u is small enough, then n is large enough. It is easy to see that

$$\frac{\tilde{g}(e_{n+1})}{e_{n+1}} = \frac{\tilde{g}(g_n)}{e_{n+1}} > \frac{\tilde{g}(g_n)}{g_n},$$

and for suitable large n

$$\frac{\tilde{g}(g_n)}{g_n} > \frac{\tilde{g}(f_n)}{f_n},$$

that is, the function $\tilde{g}(x)/x$ monotone decreases on $[e_{n+1}, f_n]$. Thus if u and $2u \in [e_{n+1}, f_n]$, then $\tilde{g}(u)/u > \tilde{g}(2u)/2u$; that is, $\tilde{g}(2u)/\tilde{g}(u) < 2$. If $u \in [e_{n+1}, f_n]$ and $2u > f_n$, then $\tilde{g}(2u) = 5\tilde{g}(f_n)$, and $\tilde{g}(f_n)/f_n < \tilde{g}(u)/u$ where $f_n < 2u$. Thus $\tilde{g}(2u)/\tilde{g}(u) < 10$. Finally, if $u > f_n$, then it is immediate that $\tilde{g}(2u)/\tilde{g}(u) = 5\tilde{g}(f_n)/\tilde{g}(u) \le 5$.

References

- [1] D. J. Feng, S. Hua and Z. Y. Wen, Some relations between packing premeasure and packing measure, Bull. London Math. Soc., **31** (1999), 665–670.
- [2] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, 1995.
- [3] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer, 1971.