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Abstract

Wilczynski’s definition of Lebesgue density point given in [19] created
a new tool for the study of the more subtle properties of the notion
of density point and the density topology, their various modifications
and most of all category analogues. In the paper we develop further
properties of the Ad-density topology on the real line, introduced in [22].
The topology is a generalization of the Lebesgue density topology and is
based on the definition given by Wilczyński. We consider the properties
of continuos functions with respect to the Ad-density topology and prove
that the topology is completely regular but not normal.

Let S be the σ-algebra of Lebesgue measurable subsets of the real line
R, and I the σ-ideal of null sets. We shall say that the sets A, B ∈ S are
equivalent (A ∼ B), if and only if λ(A4B) = 0, where λ stands for Lebesgue
measure on the real line. Recall that a point x ∈ R is a density point of a set
A ∈ S, if and only if

lim
h→0

λ (A ∩ [x− h, x+ h])
2h

= 1. (∗)

The notion of density point has been studied and developed extensively
since the notion of the density topology T was introduced by Haupt and Pauc
in 1952 [9]. It is interesting that the related notion of approximate continuity,
as defined by Denjoy in 1915 [5], had been known far earlier and utilized in the
study of the theory of integration. The properties of the density topology were
discovered gradually by Goffman andWaterman [8], Goffman, Neugebauer and
Nishiura [7] and Tall [17]. The theory seemed to be mostly complete in late
seventies. However, in 1981 W. Wilczyński in [19] reformulated the notion
of density point. It was a turning point in the development of the theory of
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density topologies. Wilczyński no longer employed the notion of measure in
his version of the definition, replacing it with the notion of a null set.

He observed that the condition (∗) in the definition is equivalent to each
of the following:

lim
n→∞

λ
(
A ∩

[
x− 1

n , x+ 1
n

])
2
n

= 1

or
lim
n→∞

λ (n · (A− x) ∩ [−1, 1]) = 2

or {
χ

(n·(A−x))∩[−1,1]

}
n∈N converges in measure to χ[−1,1].

With this last condition in hand and the Riesz theorem, he could give the
definition of a density point of a set A ∈ S, in terms of convergence almost
everywhere of characteristic functions of dilations of the set A.

A point x ∈ R is a density point of a set A ∈ S, if and only if ev-
ery subsequence

{
χ

(nm·(A−x))∩[−1,1]

}
m∈N of

{
χ

(n·(A−x))∩[−1,1]

}
n∈N contains

a subsequence
{
χ(nmp ·(A−x))∩[−1,1]

}
p∈N

, which converges to χ[−1,1] I-almost

everywhere on [−1, 1] (which means except on a set belonging to I).
The above definition, as proved in [14] (Corollary 1 p. 556), is equivalent

to the following (for the detailed discussion see [20] p. 680–681):
A point x ∈ R is a density point of a set A ∈ S, if and only if for any

sequence of real numbers {tn}n∈N, decreasing to zero, there is a subsequence

{tnm
}m∈N such that the sequence

{
χ 1

tnm
·(A−x)∩[−1,1]

}
m∈N

of characteristic

functions converges I-almost everywhere on [−1, 1] to χ[−1,1].
Wilczynski’s definition created a new tool for the study of the subtler

properties of the notion of density point and the density topology, their various
modifications and most of all category analogues (see [13], [14], [4] and [16]).

Recently, the notions of simple density point and complete density point
have been introduced with associated Ts and Tc density topologies, respec-
tively, essentially different from density topology T (see [1] and [21]). Actually,
we have the inclusions

Tn & Tc & Ts & T ,

where Tn is the natural topology on the real line.
Following this approach, in [22] we gave a new generalization of density

point, leading to a new density topology TAd
that extends the sequence of

inclusions to
Tn & Tc & Ts & T & TAd

.

We consider the following families of sets:
a) A[−1,1]- the family of subsets of interval [−1, 1] of Lebesgue measure two,
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b) Aseg = {E ∈ S : λ (E ∩ J) = λ (J) for some segment J centered at 0},
c) Ad- the family of measurable subsets of [−1, 1] that have Lebesgue density

one at 0.
We have A[−1,1] ⊂ Aseg ⊂ Ad.

Definition 1. We shall say that x is an Ad-density point of A ∈ S, if for any
sequence of real numbers {tn}n∈N, decreasing to zero, there is a subsequence

{tnm
}m∈N and a set B ∈ Ad such that the sequence

{
χ 1

tnm
·(A−x)∩[−1,1]

}
m∈N

of characteristic functions converges I-almost everywhere on [−1, 1] to χB .
(In other words, for any sequence of real numbers {tn}n∈N, decreasing to zero,
there is a subsequence {tnm}m∈N and a set B ∈ Ad such that the sequence{
χ 1

tnm
·(A−x)∩[−1,1]

}
m∈N

of characteristic functions converges on [−1, 1] in

measure to χB .)
By analogy, we define a notion of Aseg-density point and A[−1,1]-density

point of A ∈ S. The familyA[−1,1] corresponds precisely to the definition of the
Lebesgue density point. The set of all Ad-density points, Aseg-density points
and Lebesgue density points of A ∈ S are denoted by ΦAd

(A), ΦAseg
(A) and

Φ (A), respectively.

Proposition 1. For each A ∈ S, Φ(A) ⊂ ΦAseg
(A) ⊂ ΦAd

(A).

It was proved in [22] that the definition of Ad-density point leads to the
above mentioned topology, defined as the family TAd

= {A ∈ S : A ⊂ ΦAd
(A)}.

The TAd
-topology is stronger than the density topology T . However, it has

similar properties, in particular:
• For an arbitrary set A ⊂ R, IntTAd

(A) = A ∩ ΦAd
(B), where B is a mea-

surable kernel of A.
• A set A ∈ TAd

is TAd
-regular open, if and only if A = ΦAd

(A).
• I = {A ⊂ R : A is TAd

-nowhere dense set}
= {A ⊂ R : A is TAd

-first category set}
= {A ⊂ R : A is TAd

-closed TAd
-discrete set}.

• A σ-algebra of TAd
-Borel sets coincides with S.

• If E ⊂ R is TAd
-compact set, then E is finite.

• The space (R, TAd
) is neither first countable, nor second countable, nor

Lindelöf, nor separable.
• (R, TAd

) is a Baire space.
We shall now investigate further properties of the TAd

-topology. The following
proposition is of great importance.

Proposition 2. If 0 is an Ad-density point of a set A, then
a) lim infh→0+

λ(A∩[−h,0])
h > 0 and lim infh→0+

λ(A∩[0,h])
h > 0.
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b) lim suph→0
λ(A∩[−h,h])

2h = 1.

Proof. The proof of a) is given in [22]. We shall prove b). If 0 is an Ad-
density point of a set A, then there exists a decreasing to zero sequence of real
numbers {tn}n∈N such that a sequence

{
χ(

1
tn
·A
)
∩[−1,1]

}
n∈N

of characteristic

functions converges I-almost everywhere on [−1, 1] to χB for some B ∈ Ad.
Since limk→∞ λ ((k ·B) ∩ [−1, 1]) = 2, we can find an increasing sequence

of natural numbers {ki}i∈N such that λ ([(ki ·B) ∩ [−1, 1]]4 [−1, 1]) < 1
2i for

every i ∈ N. The sequence
{
χ( 1

tn
·A)∩[−1,1]

}
n∈N

converges in measure to χB
on [−1, 1], thus given the sequence {ki}i∈N, we can find an increasing sequence
of natural numbers {ni}i∈N such that

λ
([( 1

tni

·A
)
∩
[
− 1
ki
,

1
ki

]]
4
[
B ∩

[
− 1
ki
,

1
ki

]])
<

1
2iki

for every i ∈ N, or equivalently

λ
([((

ki ·
1
tni

)
·A
)
∩
[
− 1, 1

]]
4
[(
ki ·B

)
∩
[
− 1, 1

]])
<

1
2i

for every i ∈ N.
Let us consider a decreasing to zero sequence of real numbers

{
1
ki
·tni

}
i∈N

.
For every i ∈ N we have

λ
([(( 1

1
ki
· tni

)
·A
)
∩
[
− 1, 1

]]
4
[
− 1, 1

])
≤λ
([(( 1

1
ki
· tni

)
·A
)
∩
[
− 1, 1

]]
4
[(
ki ·B

)
∩
[
− 1, 1

]])
+ λ
([(

ki ·B
)
∩
[
− 1, 1

]]
4
[
− 1, 1

])
≤ 1

2i
+

1
2i

=
1
i
;

i.e., the sequence of characteristic functions
{
χ((

1
1

ki
·tni

)
·A
)
∩[−1,1]

}
i∈N

con-

verges in measure to two. Hence, lim suph→0
λ(A∩[−h,h])

2h = 1.

In [22] we proved the following assertion.

Proposition 3. There exists a set A such that Φ(A) $ ΦAd
(A).

We may say more.

Proposition 4. There exists a set A such that Φ(A) $ ΦAseg
(A) $ ΦAd

(A).
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Proof. To prove that there exists a set B such that ΦAseg
(B) $ ΦAd

(B), we
shall follow the proof of Proposition 2 in [22], defining the set B as described
below.

Let {(an, bn)}n∈N be a sequence of intervals such that an+1 < bn+1 < an,
limn→∞ an = 0 and 0 is a right density point of the set ∪n∈N(an, bn). We put
D = ∪n∈N(an, bn). Now, let {cn}n∈N be an arbitrary sequence of real numbers
decreasing to 0, c1 < 1, such that limn→∞

cn+1
cn

= 0. We define the set B ∈ S
as

B =
(
−
∞⋃
n=1

[(cn ·D) ∩ (cn+1, cn)]
)
∪
∞⋃
n=1

[(cn ·D) ∩ (cn+1, cn)].

To prove that there exists a set C such that Φ(A) $ ΦAseg
(A), we shall

follow the proof of Proposition 2 in [22] again and define the set C as follows.
Let D = (0, 1

2 ), and {cn}n∈N be an arbitrary sequence of real numbers de-
creasing to 0, c1 < 1, such that limn→∞

cn+1
cn

= 0. We define a set C ∈ S
as

C =
(
−
∞⋃
n=1

[(cn ·D) ∩ (cn+1, cn)]
)
∪
∞⋃
n=1

[(cn ·D) ∩ (cn+1, cn)].

Finally the set A = B ∪ (C + 2) satisfies Φ(A) $ ΦAseg
(A) $ ΦAd

(A), since
2 ∈ ΦAseg

(A) \ Φ(A) and 0 ∈ ΦAd
(A) \ ΦAseg

(A).

We shall now discuss some properties of the continuity of real functions
with respect to the TAd

-topology.

Definition 2. We say that the real valued function f is TAd
-topologically

approximately continuous at a point x0, if and only if for every number ε >
0, the set {x : |f (x)− f (x0)| < ε} is a TAd

-neighborhood of x0; i.e., there
exists a set Ax0 ∈ S, Ax0 ⊂ {x : |f(x) − f(x0)| < ε} such that x0 is a
TAd

-density point of Ax0 .

Definition 3. We say that the real valued function f is TAd
-restrictively

approximately continuous at a point x0, if and only if there exists a set E ∈ S
such that x0 ∈ ΦAd

(E) and f(x0) = limx→xo
x∈E

f(x).

Remark 1. It is clear that every TAd
-restrictively approximately continuous

function at a point x0 is TAd
-topologically approximately continuous at the

point x0.

Proposition 5. There exists a function that is TAd
-topologically but not TAd

-
restrictively continuous at zero.
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Proof. We shall start with the continuity at zero from the right. Let {cn}n∈N
be a sequence of real numbers decreasing to zero such that cn+1 <

1
4n cn and

c1 = 1. Let

f(x) =

{∑∞
n=1

(∑∞
i=0

1
2i
χ

( cn
2i+1 ,

cn
2i ](x)

)
χ

(cn+1,cn](x) for x ∈ (0, 1]

0 for x = 0.

Equivalently put

g(x) =
∞∑
i=0

1
2i
χ

( 1
2i+1 ,

1
2i ](x)

and let

f(x) =

{∑∞
n=1 g( 1

cn
x)χ(cn+1,cn](x) for x ∈ (0, 1]

0 for x = 0.

The function f is right Ad-topologically continuous at zero. Indeed, consider
the sequence

Ek =
{
x ∈ [0, 1] : |f(x)− 0| ≤ 1

2k
}
, k ∈ N.

By definition of f
Ek =

⋃
n∈N

(cn+1,
cn
2k

], k ∈ N

and it is a simple observation that for every k ∈ N, Ek has 0 as an Ad-density
point (even Aseg-density point).

The function f is not right TAd
-restrictively continuous at 0. Suppose,

to the contrary, that there exists a set E ∈ S such that x0 ∈ ΦAd
(E) and

limx∈E, x→0 f(x) = 0. Then, since x0 ∈ ΦAd
(E), we can find k ∈ N such that

lim inft→0
λ(E∩[0,t])

t > 1
2k .

On the other hand, since limx∈E, x→0 f(x) = 0, we can find c > 0 such
that f(x) < 1

2k for all x ∈ E ∩ (0, c). Hence, E ∩ (0, c) ⊂ {x : f(x) < 1
2k } and

lim inft→0
λ(E∩[0,t])

t < lim inft→0
λ({x:f(x)< 1

2k }∩(0,t))

t < 1
2k from definition of f ,

a contradiction. Now the function

h(x) =


f(x) x > 0
0 x = 0
f(−x) x < 0

is TAd
-topologically but not TAd

-restrictively continuous at zero.
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Remark 2. The existence of a function that is TAd
-topologically but not TAd

-
restrictively continuous at zero, can be proved with the use of the Jędrzejewski
condition (W ) from Theorem 4 in [10]. By the theorem, the TAd

-topological
continuity from the right of a function at 0 is equivalent to its TAd

-restrictive
continuity from the right at the point 0, if and only if
(W ) for every descending sequence of sets Ek such that each Ek is an TAd

-
neighborhood of 0 from the right, there exists a sequence of real numbers
{ak}k∈N, decreasing to 0 and such that ∪∞k=1

(
(ak+1, ak)∩Ek

)
is also an

TAd
-neighborhood of 0 from the right.

We shall show that the condition (W ) is not fulfilled in case of TAd
-topology.

Consider the sequence

Ek =
⋃
n∈N

(cn+1,
cn
2k

], k ∈ N,

defined in the proof of the above proposition. For every k ∈ N, Ek ∈ S is an
TAd

-neighborhood of 0.
Let {ak}k∈N be an arbitrary sequence of real numbers decreasing to zero.

We shall show that zero is not an Ad-density point of ∪∞k=1

(
(ak+1, ak) ∩ Ek

)
from the right and thus zero is not an Ad-density point of( ∞⋃

k=1

((ak+1, ak) ∩ Ek)

)
∪

(
−

( ∞⋃
k=1

((ak+1, ak) ∩ Ek)

))
.

Indeed, we have Ek+1 ⊂ Ek. Let cnk
be the first element of the sequence

{cn}n∈N less or equal to ak. Then

lim inf
h→0

λ
(⋃∞

p=1 ((ap+1, ap) ∩ Ep) ∩ [0, h]
)

h

≤ lim inf
k→∞

λ
(⋃∞

p=1 ((ap+1, ap) ∩ Ep) ∩ [0, cnk
]
)

cnk

= lim inf
k→∞

λ
(⋃∞

p=k ((ap+1, ap) ∩ Ep) ∩ [0, cnk
]
)

cnk

≤ lim inf
k→∞

λ
((⋃∞

p=k (ap+1, ap)
)
∩ Ek ∩ [0, cnk

]
)

cnk

≤ lim inf
k→∞

λ (Ek ∩ [0, cnk
])

cnk

≤ lim inf
k→∞

cnk

2k

cnk

= lim
k→∞

1
2k

= 0.
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Hence, by Proposition 3 in [22], zero is not an Ad-density point of the set⋃∞
k=1

(
(ak+1, ak) ∩ Ek

)
∈ S from the right, i.e.

⋃∞
k=1

(
(ak+1, ak) ∩ Ek

)
is not

an Ad-neighborhood of 0 from the right.

Remark 3. Let us recall that for the T -topology the notions of T -topological
continuity and T -restrictive continuity coincide. Thus the notion of T -continuity
is used.

Remark 4. It is a simple observation that every T -continuous function is
TAd

-restrictively continuous; the converse is not true. Indeed, the first part
is a consequence of Remark 3 and T ⊂ T Ad

. The characteristic function of
the set (−A ∪A) ∪ {0}, where A is defined in Proposition 2 in [22], is TAd

-
restrictively continuous, but not T -continuous at 0.

Theorem 1. For a real function f , defined on R the following conditions are
equivalent:
(i) f is measurable.
(ii) f is TAd

-topologically continuous almost everywhere on R.
(iii) f is TAd

-restrictively continuous almost everywhere on R.

Proof. (i)⇒ (ii) Suppose that f defined on R is measurable. Then, by the
Denjoy-Stepanoff theorem, it is T -continuous almost everywhere on R; i.e.,
T -topologically continuous almost everywhere on R; hence TAd

-topologically
continuous almost everywhere on R, since T ⊂ T Ad

.
(ii) ⇒ (i) Suppose that f is TAd

-topologically continuous almost every-
where. Let a, b ∈ R, and B = {x : a < f(x) < b}. We shall show that B
is Lebesgue measurable. Let C be the set of TAd

-continuity points of f . We
have B = (B ∩ C) ∪ (B − C) and λ(B − C) = 0. The proof is completed
by showing that B ∩ C is measurable. If x ∈ B ∩ C, and y = f(x), we take
ε > 0, ε < min(b− y, y − a). Then {x : |f(x)− y| < ε} is a TAd

-neighborhood
of x; i.e., there exist a set Ax ∈ TAd

, Ax ⊂ f−1{(f(x) − ε, f(x) + ε)} such
that x is a Ad-density point of Ax. Of course, Ax ⊂ B, and we may assume
Ax ⊂ B∩C), by Theorem 1 (2) of [22], since λ(B−C) = 0. Finally, we obtain
B ∩ C =

⋃
x∈B∩C Ax ∈ TAd

⊂ S.
(i) ⇒ (iii) Suppose f defined on R is measurable. Then, by the Denjoy-

Stepanoff theorem, it is T -continuous almost everywhere on R; i.e., T -restric-
tively continuous almost everywhere on R; hence TAd

-restrictively continuous
almost everywhere on R since T ⊂ T Ad

.
(iii) ⇒ (ii) Suppose that f is TAd

-restrictively continuous almost every-
where. Then, by Remark 1 it is TAd

-topologically continuous almost every-
where.

Corollary 1. For every measurable real function f , the set of TAd
-topological
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continuity points, the set of TAd
-restrictive continuity points and the set of

T -continuity points differ by a null set.

Remark 5. In the proof of part (i) of the above theorem we used a classical
argument referring only to the Denjoy-Stepanoff theorem and to the inclusion
T ⊂ T Ad

. However, since TAd
⊂ S and ΦAd

is a lower density operator, we
could rely on Theorem 6.39 from [11] or use recent results of Bartoszewicz and
Kotlicka given in more general settings (see [3] Theorem 2.2).

Proposition 6. There exists a set A ⊂ [0, 1] such that zero is an Ad-density
point of A∪ (−A) and such that there are a sequence of real numbers {tn}n∈N
decreasing to zero and c different sets from S \ I associated with (assigned to)
different subsequences { 1

tnm
}m∈N in Definition 1.

Proof. Let {wi}i∈N be a sequence of all rational numbers from interval ( 1
2 , 1)

and {cn}n∈N an arbitrary sequence of real numbers decreasing to 0, c1 < 1,
such that limn→∞

cn+1
cn

= 0. Put Di = [0, 1
2 ] ∪ (wi, 1]. We define a set A by

A =
∞⋃
n=1

n⋃
i=1

(
cn(n−1)

2 +i
·Di

)
∩
(
cn(n−1)

2 +i+1
, cn(n−1)

2 +i

)
.

Every natural number k can be uniquely expressed as a sum k = n(n−1)
2 + i,

where n ∈ N and i = 1, 2, . . . ,
(

(n+1)n
2 − n(n−1)

2

)
= n. We shall write i as

a function of k; i.e., i(k). We have in particular (n+1)n
2 = n(n−1)

2 + n and
i
( (n+1)n

2

)
= n. We may rewrite the definition of set A as

A =
∞⋃
k=1

(
ck ·Di(k)) ∩ (ck+1, ck).

The i(k), as a function of k, takes the consecutively values, 1, 1, 2, 1, 2, 3,
1, 2, 3, 4, . . . .We shall show that zero is an Ad-density point of A ∪ (−A).

Suppose that {tn}n∈N is an arbitrary sequence of real numbers decreasing
to zero. As in the proof of Proposition 2 in [22], we choose two subsequences
{tnr}r∈N and {cmr}r∈N such that cmr ≤ tnr , r ∈ N and there are no elements
of {cm}m∈N nor of {tn}n∈N between cmr

and tnr
. Again, we consider the

sequence
{
cmr

tnr

}
r∈N

and find a subsequence
{
cmrk

tnrk

}
k∈N

convergent to some

a ∈ [0, 1].
There are two possible situations:
a) limk→∞

(
cmrk

· 1
tnrk

) = a 6= 0; i.e., limk→∞
(
cmrk

· 1
atnrk

) = 1. In this

case we consider the behavior of the sequence cmrk
· 1
tnrk

wi(mrk
). Since it is
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bounded, it contains a subsequence cmrkp
· 1
tnrkp

wi(mrkp
) convergent to some

c ∈ a ·
[
1
2 , 1
]
, and χ( 1

tnrkp

·A)∩[0,a]
converges a.e. to χ

a·
([

0, 12

]
∪[c,1]

). Thus, we

obtain B on [0, a], as

B ∩ [0, a] = a ·
([

0,
1
2

]
∪
[ c
a
, 1
])

.

If
a1) a = 1 we are done; B ∈ Aseg ⊂ Ad.

If
a2) a < 1, as in the proof of Proposition 2 we obtain

B ∩ [0, a] ·
([

0,
1
2

]
∪
[ c
a
, 1
])

and B ∩ (a, 1] = (a, 1].

And, again, B ∈ Aseg ⊂ Ad.
b) limk→∞

(
cmrk

· 1
tnrk

)
= 0. In this case we have two possible situations

again:
b1) The sequence

{
cmrk

−1

tnrk

}
k∈N

is bounded from above. We take a sub-

sequence
{ cmrkp

−1

tnrkp

}
p∈N

such that limp→∞
cmrkp

−1

tnrkp

= b < ∞, and proceed

similarly as in a). We find a subsequence cmrkps
−1 · 1

tnrkps

w
i
“
mrkps

−1
”of

cmrkp
−1 · 1

tnrkp

w
i
“
mrkp

−1
” convergent to some c ≤ b and obtain convergence

a.e. of χ( 1
tnrkps

·A
)
∩[0,b]

to χb·([0, 12 ]∪[ c
b ,1])

. Thus we obtain as the set B

B =
[
b ·
([

0,
1
2

]
∪
[c
b
, 1
])]
∩ [0, 1].

And, again, B ∈ Aseg ⊂ Ad.
b2) The sequence

{
cmrk

−1

tnrk

}
k∈N

is not bounded from above. We take a

subsequence
{ cmrkp

−1

tnrkp

}
p∈N

such that limp→∞
cmrkp

−1

tnrkp

= ∞. As every Di

contains the interval [0, 1
2 ], we have [0, 1] ⊂ 1

tnrkp

·A, for p appropriately large,

and the sequence χ( 1
tnrkp

·A
) converges to χ[0,1] a.e. on [0, 1] and we obtain B

on [0, 1], as B ∩ [0, 1] = [0, 1]. And, again, B ∈ Aseg ⊂ Ad. Finally, zero is an
Ad-density point of (−A ∪A).

Now, let d ∈
[
1
2 , 1
]
and {wni

}i∈N be a subsequence of {wn}n∈N conver-
gent to d. As a sequence {tn}n∈N, we take {cn}n∈N. The set

[
0, 1

2

]
∪ (d, 1] ∈
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Ad is associated with the subsequence
{
c (ni+1)ni

2

}
i∈N and we obtain the se-

quence of characteristic functions χ(((
1

c (ni+1)ni
2

)
·A
)
∩[0,1]

) convergent a.e. to

χ[
0, 12

]
∪[d,1]

on [0, 1].

We shall prove now that the Ad-density topology is completely regular.
Following the approach from [2] and [18] we start with the Lusin-Menchoff
condition for the Ad-density topology.

Theorem 2. Let E ∈ S and F be a closed subset of E such that F ⊂ ΦAd
(E).

Then, there exists a closed set P such that F ⊂ P ∩ ΦAd
(P ) ⊂ E ∩ ΦAd

(E)
(i.e., F ⊂ IntTAd

(P ) ⊂ IntTAd
(E)).

Proof. Let

Rn =
{
x ∈ E ∩ ΦAd

(E);
1

n+ 1
< dist(x, F ) ≤ 1

n

}
and E0 = F ∪

∞⋃
n=1

Rn.

For any n ∈ N there is a closed set Pn ⊂ Rn such that λ (Rn \ Pn) < 1
2n . Put

P = F∪
⋃∞
n=1 Pn. Obviously, P is a closed set and F ⊂ P ⊂ E0 ⊂ E∩ΦAd

(E).
We will show that F ⊂ ΦAd

(P ). It’s enough to show that for every x ∈ F , x
is an Ad-density point of P from the right. (The proof that x is an Ad-density
point of P from the left is analogous.)

Let x ∈ F . For every n ∈ N, [x, x + 1
n ] ∩

⋃n−1
k=1 Rk = ∅. Since x ∈

ΦAd
(E), for any sequence of real numbers {tp}p∈N decreasing to zero, there

exists its subsequence {tpm
}m∈N and a set B ∈ Ad such that the sequence{

χ 1
tpm
·(E−x)∩[−1,1]

}
m∈N

of characteristic functions converges I-almost every-

where on [−1, 1] to χB . Equivalently, for any sequence of real numbers {tp}p∈N
decreasing to zero, there is its subsequence {tpm

}m∈N and a set B ∈ Ad
such that the sequence

{
χ 1

tpm
·(E−x)∩[−1,1]

}
m∈N

of characteristic functions

converges on [−1, 1] in measure to χB .



210 Wojciech Wojdowski

Consider tpm ∈ ( 1
n+1 ,

1
n ]. Then

λ
((( 1

tpm

· (E − x)
)
∩ [−1, 1]

)
4
(( 1

tpm

· (P − x)
)
∩ [−1, 1]

))
=λ
(( 1

tpm

· (E − x)
)
∩ [−1, 1] \

( 1
tpm

· (P − x)
)
∩ [−1, 1]

)
=λ
(( 1

tpm

· ((E \ P )− x)
)
∩ [−1, 1]

)
=λ
(( 1

tpm

· ((E0 \ P )− x)
)
∩ [−1, 1]

)
<λ
(( 1

tpm

·
(( ∞⋃

k=n

(Rk \ Pk
))
− x
))
∩ [−1, 1]

)
<λ
((

(n+ 1) ·
(( ∞⋃

k=n

(Rk \ Pk)
)
− x
))
∩ [−1, 1]

)
=(n+ 1)λ

((( ∞⋃
k=n

(Rk \ Pk)
)
− x
))

< (n+ 1)
∞∑
k=n

1
2k

=
n+ 1
2n−1

.

Clearly, the sequence

λ
((( 1

tpm

· (E − x)
)
∩ [−1, 1]

)
4
(( 1
tpm

· (P − x)
)
∩ [−1, 1]

))
converges to zero as m→∞, and, consequently, the sequence of characteristic
functions

{
χ 1

tpm
·(P−x)∩[−1,1]

}
m∈N

converges in measure to χB on [−1, 1]. This

means that x ∈ ΦAd
(P ). Since x was an arbitrary point of F , we have F ⊂

ΦAd
(P ).

Theorem 3. Let E be a TAd
-open set of type Fσ. There exists a TAd

-
continuous and upper semi-continuous function g such that

0 < g (x) ≤ 1 for x ∈ E, and g (x) = 0 for x /∈ E.

Proof. We may adapt here the proof from [[2] Theorem 6.5].

Theorem 4. TAd
topology is completely regular.

Proof. Since TAd
includes the natural topology, it is a T1-topology. Let F

be a TAd
-closed set and x0 /∈ F . There is a Gδ-set P such that F ⊂ P ,

λ(P \ F ) = 0 and x0 /∈ P . The complements of P and {x0} are TAd
-open and
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of type Fσ. From the above theorem it follows that there are TAd
-topologically

continuous functions g1 and g2 such that

0 < g1(x) ≤ 1 for x /∈ P , g1(x) = 0 for x ∈ P ,

and
0 < g2(x) ≤ 1 for x 6= x0, g2(x) = 0 for x = x0.

Put

g (x) =
g1 (x)

g1 (x) + g2 (x)
.

The function g (x) is clearly TAd
-topologically continuous, g(x0) = 1 and

g(x) = 0 for x ∈ F . Thus the topology TAd
is completely regular.

Theorem 5. The TAd
-topology is not normal.

Proof. We shall adapt the argument given by Foran in [6] for the density
topology. Let X and Y be two disjoint, countable, dense sets. Suppose that
there are TAd

-open sets U and V such that X ⊂ U , Y ⊂ V and U ∩ V = ∅.
We will show first that U and V cannot have disjoint TAd

-closures. Take
x1 ∈ X. Since x1 ∈ U = IntTAd

(U) = U ∩ ΦAd
(U), by Remark 1 in [22]

and Proposition 2 we have lim suph→0

λ(U ∩ [x1 − h, x1 + h])
2h

= 1 and we

can find a closed interval I1 with λ(I1) < 1, such that λ(I1 ∩ U) > 1
2λ(I1).

Since Y is dense and V = IntTAd
(V ) = V ∩ ΦAd

(V ), we can by analogy find
a closed interval I2 ⊂ I1 with λ(I2) < 1

2 such that λ(I2 ∩ V ) > 2
3 λ(I2).

Then, again, since X is dense we can find a closed interval I3 ⊂ I2 with
λ(I3) < 1

3 and λ(I3 ∩ U) > 3
4λ(I3). Consecutively, by induction we can select

a sequence {In}n∈N of closed intervals with In+1 ⊂ In, λ(In) < 1
n and, if n is

even, λ(In ∩ U) > n
n+1λ(In) and, if n is odd, λ(In ∩ V ) > n

n+1λ(In). Then
∩∞n=1In contains a single point x0 and, clearly, the upper Lebesgue density of
U at x0 from the right is 1 or the upper Lebesgue density of U at x0 from
the left is 1, and the upper Lebesgue density of V at x0 from the right is
1 or the upper Lebesgue density of V at x0 from the left is 1. This implies
that x0 belongs to both clTAd

(U) and to clTAd
(V ), since by Proposition 2 we

have lim infh→0+
λ
(
(R\U)∩[x,x+h]

)
h > 0 and lim infh→0+

λ
(
(R\U)∩[x−h,x]

)
h > 0

and lim infh→0+
λ
(
(R\V )∩[x,x+h]

)
h > 0 and lim infh→0+

λ
(
(R\V )∩[x−h,x]

)
h > 0 for

points x from IntTAd
(R \ U) and from IntTAd

(R \ V ), respectively.
Let us consider now the two TAd

-closed sets R \ V and Y . We shall show
that they cannot be contained in two disjoint TAd

-open sets. To see this,
suppose that R \ V ⊂ U1 and Y ⊂ V1 with U1, V1 TAd

-open. Then X ⊂ U ⊂
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clTAd
(U) ⊂ R \ V and Y ⊂ V1 ⊂ clTAd

(V1) ⊂ R \ U1 ⊂ V would imply that
both TAd

-open U and V1 contain X and Y , respectively, and have disjoint
TAd

-closures, which cannot happen in accordance with the first part of the
proof. Thus, the TAd

-topology is not normal.

Theorem 6. Every TAd
-topologically continuous function is of the first class

of Baire.

Proof. (communicated by W. Wilczyński) Let f : R→ R be a TAd
-topologic-

ally continuous function. Suppose the theorem is false. Then by D. Preiss [15]
there exist a perfect set F and two real numbers a, b (a < b), such that the
sets T1 = {x : f(x) < a} and T2 = {x : f(x) > b} are dense (in natural
topology) in F (i.e., T1 ∩ F = F and T2 ∩ F = F ) (compare [14]). Observe
that T1 and T2 are Ad-open. We shall show (following Foran [6] pp 283–284),
that they cannot have disjoint Ad-closures. (T1 and T2 replace Foran’s sets
U and V , and F the real line R.) We define a descending sequence {In}n∈N
of closed intervals, such that if n is odd, λ(In ∩ T1) > λ(T1) · n

n+1 and, if n is
even λ(In ∩ T2) > λ(T1) · n

n+1 . It is possible, since T1 and T2 are dense in F
and T1, as well as T2 by Proposition 2, as Ad-open set, has upper density 1 at
each of its points. Let {x0} = ∩∞n=1In. Then, the upper Ad-density of T1 at
x0 from the right or from the left is 1, and the upper density of T2 at x0 from
the right or from the left is 1. Also x0 ∈ F , since F is closed and In ∩ F 6= ∅,
for n ∈ N.

We shall show that x0 ∈ clAd
T1 and x0 ∈ clAd

T2. Let G 3 x0 be an
Ad-open set. Then, by Proposition 2, both unilateral lower densities of G
at x0 are greater than zero. Thus, G ∩ T1 6= ∅ and x0 ∈ clAd

T1. Similarly,
x0 ∈ clAd

T2. Hence, clAd
T1 ∩ clAd

T2 6= ∅. Now the Ad-continuity of f is
equivalent to the property that for every B ⊂ R, clAd

(f−1(B)) ⊂ f−1(B̄).
Hence

clAd
(T1) = clAd

(f−1((−∞, a))) ⊂ f−1((−∞, a])

and

clAd
(T2) = clAd

(f−1((b,∞))) ⊂ f−1([b,∞))

and therefore f−1((−∞, a])∩ f−1([b,∞)) 6= ∅, a contradiction. Finally f is of
the first class of Baire.

Theorem 7. Every TAd
-topologically continuous function is a Darboux func-

tion.

Proof. It is a simple consequence of Theorem 6 and Theorem 1.1 of [2].
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Theorem 8. The family of TAd
-connected sets coincides with the family of

sets connected in the natural topology.

Proof. We can follow here the proof of Theorem 3,7 from [20].

Acknowledgement. The author thanks the referee for helpful remarks and
editorial comments.
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