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Abstract
Weight characterization is obtained for the LP-X? boundedness of

the two-dimensional Hardy operator (Ha f)(z1,x2) = Ozl 012 f(t1,t2) dty dis.

By using a limiting procedure as well as by a direct method, the corre-
sponding boundedness of the two-dimensional geometric mean operator

1 x x . .
(Gaf)(z1,22) = exp (— 0 1 fo *1In f(t1,t2) dtr dtz) is obtained.
X1X2

1 Introduction.

Let Q C R™. A real normed linear space X = {f : || f||x < oo} of measurable
functions on € is called a Banach function space (BFS), if in addition to the
usual norm axioms, || f||x satisfies the following.

(1) [[fllx = [If]llx for all fe X.

(2) 0<f<gae = |fllx <lgllx-

(B) 0<fu 1 fae = |fullx T fllx
(4)
(5)

mes E < oo = |[Xg|lx < oco.

5) mes F < 0o = / f < Cgl||f|lx for some constant C'y depending upon E.

E
Given a BFS X, its associate space X' is defined by

X':{g:/ﬂ|fg\<ooforallf€X}
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126 PANKAJ JAIN AND DAULTI VERMA

and is endowed with the associate norm

lgllx: = sup { / Fol: F e Xsllflx < 1}.

Examples of BFS are Lebesgue LP-spaces, Lorentz spaces, Orlicz spaces etc.
It is known that the second associate space of X; i.e., (X)) = X" coincides
with X itself and consequently, the norm of the function in X can be written
in terms of functions in X', i.e.,

1£llx = sup {/ Fol g€ X lgllx < 1}.
Q

The idea of BFS was introduced by Luxemburg [8]. A good treatment of
the theory of such spaces can be found, e.g., in [1].

Throughout the paper, we shall take 2 = (0, 00) % (0, 00). We are concerned
here with the space XP, —co < p < oo, p # 0 Whicli is the space of all

measurable functions f on Q for which || f||x» := || |f|P ||% < 0o, X being the
underlying BFS. For X = L', the space X? coincides with the LP-space. It is
known, see e.g., [9], [11] that for 1 < p < co, XP is a BFS,

In this paper, we are concerned with the two-dimensional Hardy operator

(HQf)(.’El,l‘Q) = /Orl /012 f(tl,tg) dtl dtz (1.1)

and the two-dimensional geometric mean operator

(Ggf)(ﬂ:l,l‘g)—exp( L /0 /Olenf(tl,tQ)dtldtg). (1.2)

L1122

In fact, we obtain necessary and sufficient conditions for the LP- X ¢ bounded-
ness of these operators; i.e., we characterize the weighted inequalities

H(H2f)qUH§( < C(/OOO /O°° P (21, x2)v(w2, 22) day dx2>; (1.3)

and

||(G2f)qu||§( < C’</OOO /000 TP (@1, z2)v(T1, 22) dy d:r2> " (1.4)

When X = L', 1 < p < ¢ < oo, the inequality (1.3) has been characterized
by Sawyer [13] giving three conditions. It was shown by Wedestig [16] (see
also [14]) that if we take v(x9,z2) = v(z1)v(z2), then only one condition is
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required for the corresponding inequality to hold. We extend this result of
Wedestig for the LP-X? boundedness (See Theorem 1). We also discuss the
corresponding boundedness of the conjugate Hardy operator

(H3 f)(z1,12) = /°° /OC f(t1,t2) dty dts,

which is new even for LP-L9 case.
As regards the inequality (1.4), we study it in two different ways. The first
is to use the fact

1 1 pT2 é 1 1 [T2
lim ( / / fa (tl, tg) dtl dtg) = exp < / / In f(tl, tQ) dtl dt2>
a—0\x1T2 Jo 0 T1x2 Jo 0

n (1.3). Another is a direct way without using the limiting procedure. More-
over, in the later case, we study a more general inequality than (1.4) where
the functions f are defined on (0,b1) x (0,b2), 0 < by, by < co. Also, in this
case, the weight on the R.H.S. of the corresponding inequality need not be of
the product type (see Theorem 4). The corresponding LP-L9 case has been
proved for the case p = ¢ = 1 by Heinig, Kerman and Krebec [2] and Jain and
Hassija [5] while for the case 0 < p < ¢ < oo by Wedestig [14], [16].

Let us mention that all the results cited or proved in this paper are known
in the one dimensional situation. The LP-L? boundedness of the one dimen-
sional Hardy operator (Hf)(z) = fox f(t)dt and geometric mean operator

(Gf)(xz) = exp (% fom In f(t)dt) have been largely settled for all parameters,

see [6], [7], [10], [12] and the references therein. While the corresponding
LP-X1? boundedness has recently been studied in [3], [4].

Throughout, all functions will be Lebesgue measurable. By a weight func-
tion, we shall mean a function which is measurable, positive and finite a.e.
on the appropriate domain. We shall be using two-dimensional version of the
Minkowski’s integral inequality from [14], [15] stated below.

Proposition A. Letr > 1, —o0 < a1 < by <00, —00 < as < by < > and
O, U be positive measurable functions on [a1,b1] X [az,ba]. Then

b1 bz Ty T2 T
/ / O (1, x2) (/ / U(y1,y2) dyr dy2> dx1 dxo
ai as al as
by pba by pbs r
< / / U(y1,y2) / / O (21, 22) dry do dyi1 dys.
ai az Y1 Y2
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2 The Operators H, and HJ.

In this section, we give necessary and sufficient conditions for the LP-X1
boundedness of the two-dimensional Hardy operator Hs defined in (1.1) and
its conjugate

(H3 f) (1, 02) = / h / " Htuota) dby dbs.

We begin with the following precise result concerning H .

Theorem 1. Let 1 < p < q < 00, s1,52 € (1,p), u be a weight function on R3.
t; ,
and vy, v be weight functions on Ry. Let Vi(t;) = / vil_p (x;)dz;, 1 = 1,2

0
and assume that V;(t;) < oo, 0 < t; < co. Then the inequality

H(Hzf)quui gc{ /OOO /OOO fP (21, m2)v1 (1) v () day dmg}p (2.1)

holds for all measurable functions f > 0 if and only if sup A(si,s2) < 0o,
t1,t2>0
where

s1—1 sg—1

A(s1,52) ="’ (tl)VQ " (t2)

a(p—s1) a(p—s2) 1

X[ Xty 00) (#1) X[ty 00 (@2)u(m1, 22) V7 (21)Vy 7 (22)||%

and the best constant C in (2.1) has the estimates

=) T ) )
sup pp— 51 pp— 52 A(s1,82)
1<s1,82<p P 1 P 1
+ +
p—S1 s1—1 P — S sog—1

<C< inf (p_:l)p <p_1>pz4(81,sz).

1<s1,82<p \ P — S1 p— S2

PROOF. The key step here is to use the following expression for the norm on

X
ool =y {7 (L o)

X u(xy, xe)h(xy, o) day dag ¢ ||h||x < 1}
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Now, if we take fP(x1,22)v1(21)v2(z2) = g(x1,22), then (2.1) becomes equiv-

alent to
s { [ ([ ottt s e )

w(xy, xo)h(x1, x2) day dxo : ||h]|x < 1} (2.2)

SC’{/ / g(xl,xg)dxldxg}p
o Jo

We prove the necessity first. For fixed t1,t2 > 0, consider the test function

Q=

atonaa) =( L) (2 ) Ve el ) el (a2

— 51 — 89

p
p —s —p’
< XX (2) + (52 ) Vo0l (o)

X Vo "2 (w2)vy " (22) X (0,0, (€1) X 15 00) (w2)

+( - >pvlsl(x1) P 1) Vs (t2)vy " (w2)

p— 52
X X(t,00) (€1)X(0,85) (¥2) + Vi e ()
X Vy *2(22)03 " (22)X(t1,00) (1) X(3.,00) (T2) ,

using which it is easy to check as in [16] that the R.H.S. of (2.2) is not greater

than
p 1 i
((;f ) s 1) VRVt ),

() +5)

since V;'**(00) = 0 if V;(00) = oo and positive if 0 < V;(o0) < 00, i = 1,2.
On the other hand, the L.H.S. can be estimated as follows.

00 o) 1 o . . . .
SUP{/ / </ / g7 (y1,42)v1 " (y1)v, p(y2)dy2)
h>0 0 0 0 0

xu(xy, xo)h(x1, x2) dry das @ ||h||x < 1}

cand [T () ot i)
X(/o (P—82>V2 (2)v; /(y2)dy2)

o =
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(G v e o ) (v el e
(v e ) ([ : (525 v ¥ e ) e
i < / Vo (el (m)dyl) ( / vy # (a)ol ™ (1) dy2>r

q

|~

X U($1,l‘2)h(l‘1,$2) dl?l d$2 : Hh”X/ < 1}

P P oo oo Q(P’—51)
= sup / / u(zy,x)Vy 7 (1)
(p_51><p_52)h>0{ t1 Jto !

a(p—s2)

x Vo 7 (x2)h(x1,22)drydrs : ||h]|x < }

p p a(p—s1) M 1
:(p - 81) (p — 52) HX[tl,OO)X[tQ,oo)’lﬂ/v1 R A H;(

Consequently, the inequality (2.2) takes the form

1 1
o) G ]
p— 51 p— 52

P P

1 1
p T p "
p— 81 s1—1 p— So so—1

(s1—-1) (s2—1) a(p—s1) a(p—s1)

1
x Vi 7T (t)Vy T (82X Xt Vi T (21)Vy T (m2)ul|L < C

1
2x) ) |
p— 81 p— 352

( D >p 1 ( D >p 1 A(Sl, 52) S C (23)
+ +
p—s1 s1—1 p — S S9—1

and the necessity follows.

Q=

i.e.,

=

d ' d
Towards the sufficiency, first note that Evl (t1) = v P (1), %VQ(tQ) =
1 2

v%fp , (t2). Now, by applying Holder’s inequality and Minkowski’s inequality
(1.5), the L.H.S. of (2.2) becomes

oo OO 1 T2 1 s1—1 sg—1 —(s1—1) =1
s { [T [ st ™ w7 v T e @)
h>0 0 0 0 0
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—(s2—-1) —1

=1 4 q
X Vv2 v (tz)UQP (tg)dtl dtg) u(xl,ajg)h(xhxg)dxl dxs : ”hHX’ < 1}

gsup{/ / </ / g(ty )V D () V32 (1) dity dt2>
h>0
—(s1—-1)p’ - —(so—1)p" -
X (/ Vl P (t1) p tl dt1> (/ ‘/2 o tg) P (tg)dtg)
0

1

1S

a
Iy

X u(z1, x2)h(z1, x2) dey das : ||h||x < 1}
1

(o) G el (L e

p a(p—s1) a(p—s2)

VDV ) VT @y )

1

X u(wy, v2)h(r1, x2) dry das « ||h]|x < 1}

1
p—1\7
<( ) ( ) Sup{/ / gty )V () V52 ()
—S1 — 52 h>0
a(p—s1) a(p—s3)
([T e

X U(Il,xg)h(Il,lL‘Q) dlL‘l dIQ) q dtl dtg : ||hHX’ < 1}p

(o2 QAL [ s

a(p—s1) a(p—s2)

< Xt1,00 X200V T Vo 7 UHthldtz}

—INT [ p—1\7 0 oo b
S ( P ) ( d ) A(Sl, 82){ / / g(tl, tg) dtl dtz} 5 (24)
p—351 p—S2 0 0

and, the sufficiency follows. The estimate for the best constant in (2.1) follows
from (2.3) and (2.4). O

Remark 1. Theorem 1 extends a result of Wedestig [14], [15] who proved the
LP-L7 boundedness of Hy which can be obtained by taking X = L'.

We next consider the operator Hj (the conjugate of Hs) and character-
ize its LP-X? boundedness. The corresponding result for the LP-L? case is
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also not known. However, it is standard. Indeed, one can use either duality
arguments or variable substitution method on the LP-L? boundedness of Ho.
In the present situation, none of the methods is applicable as the dual of XP
is not known and also the expression of the XP-norm does not support vari-
able substitution. Therefore, we treat this case directly. However, the proof
employs similar techniques as those in Theorem 1. We prove it below.

Theorem 2. Let 1 < p < g < 00, 51,82 € (1,p), u be a weight function on Ri

and v1,vy be weight functions on R,.. let ‘Z(tz) = ftoo vilfpl (x;)dz;, i = 1,2

and assume that IN/Z(tz) < 00, 0 <t; < oo. Then the inequality

(E3 )2l 2 gc{ /OOO /000 FP (w1, w2)v1 (1 )va (22) day d@};’ (2.5)

holds for all measurable functions f > 0 if and only if sup A*(s1,s2) < oo,
t1,t2>0
where

_(s1—1) __ (so—1)

A%(s1,82) =V 7 (t)Vy 7 (t2)

__ap—s1) __a(p—s2) 1
X X001 (@1) X (0,00) (m2)ulmr, 22) VT (x1)Vy T (w2)]| 2
(2.6)

and, the best possible constant C in (2.5) has the estimates

G5 T G
sup P— 51 P~ %2 A*(s1,82)

1<s1,52<p p p+ 1 p p+ 1
p— s s1—1 P — 8o S9— 1

1 1
SCS inf <p )P (p )pA*(Sl,Sg)
1<s1,82<p \ P — S1 p— S2

ProOOF. Take fP(z1,22)v1(x1)v2(x2) = g(x1,z2) and we find that the inequal-
ity (2.5) becomes equivalent to

00 0%, 00 00 1 1 q
sup {/ / (/ / g7 (t1,t2)vy * (t1)vy " (t2) dty dtz)
h>0 0 0 XT1J T2

1
q

u(zy, x2)h(x1, 22) dy darg} (2.7)

§C’{/ / g(:cl,:cg)dasldxg}p
o Jo
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Assume first that (2.6) holds. Then Holder’s inequality, Minkowski’s in-
equality (1.5) and the fact that %%(tz) = —v%fp’ (t2) = —v,7 (t2), give

ili%{/ / (/ / gr (t1,t2)v (tl)UQ (t2)dt1 dtz)q

1

q
X u(xy, re)h(x1, x2) dry dag : ||| x < 1}

RV

x V. v (t1) (tl)V B (tz)dtldtz)q

Q=

X u(xl,xg)h(x1,x2) dl‘l d.TQ Hh'HX' < 1}

§sup{/ / (/ / gty )V D (1) V3 1’(t2)dt1dt2>
h>0
_ —(s1=1p’ -  —(s2-1)p" -
X </ Vl P (tl) p tl dt1> (/ ‘/2 P tg) e (tg)dtg)
T1

X ’U,(:L‘l,aig)h(l‘hxg)dﬂ?l dxs : ”hHX’ < 1}

.
Iy

1
7

(=) (=) sl IV

p . a(p—s1) _ a(p—s2)

xVf“‘”(u)%‘”‘”(tz)dmdtz) Vi, 7 @)V, 7 (2)

Q=

X u(ml,xg)h(xl,xg)dxl d.TQ ||hHX’ < 1}

1
—1\7#
§<p ) ( ) S“p{// gl t2)
b—=351 p— 52 h>0

~(s1—1) = (s3—1) Nq(Ppsl) Nfz(p;n)
x Vi (t1)V; (t2) Vi (z1)Vs (z2)
o Jo

r

X u(xl, xg)h(l'17$2) drq d!)?g) ’ dty dts : ||h||X’ < 1}

=

1 1
Iy 7

p—1 —1\v» 00 poo 1
< < ) (p > A*(S1,s2){ / / g(t1,t2) dty dtg}
p—35 p— 82 o Jo
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and the sufficiency follows.
The necessity can be obtained by putting for fixed t1,t5 > 0, the following
test function in (2.7).

— 1 — 82

stonaz) =( L) () T el ) )

’ p~
X ,U;—p (l‘z)X(tl,oo)(ml)X(tQ,oo)(1’2) 4+ (p — 31> VfSl (tl)
1—p’

0 7 (@) Vs " (22)05 7 (22)X (11,00 (@1)X(0,1) (22)

p~ , _ .

+( P ) T (ol (a0) Ty (1)l ()
p— S2

X X(0,60) (T1)X 63,00y (T2) + V7 (1)} 7 (21)Vy ™ (22)vy " (22)

X X(0,t1)(#1)X(0,1,) (2) -

Indeed, with the above test function, the RHS of (2.7) becomes

(G2s) Gra)rmem o (325) (55

<V () - T 0) + () ()i e

— 89 81—].

~(1—s1) _(1=s1) 1 1
(70w - o) + (57) ()
P 1 % P 1 %
<((-2=) + L
p— S1 51— 1 D — S2 sp—1

since V.17%1(0) = 0 if V;(0) = oo and positive if 0 < V;(0) < oo, i = 1,2,
On the other hand, the L.H.S. can be estimated as follows:

[ <[ -1 _1 q
sup {/ / (/ / 97 (y1,y2)v1 " (y1)vy " (y2) dys dy2>
h>0 0 0 z1 za

xu(x1, x2)h(x1, x2) dry dze @ ||h||x < 1}

= { L ) e o an)

X
7N\
!
iy
»
=
<
-
>
—~
=)
S~—
N~
R
D
iy
|
Y
D
—
~
[\]
S~—
\
o
i
|
»
N\
=
N~~~
—
x|
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x (/:O (p _1782>‘72?(t2)vé_p/ (y2)dy2>
" (/:O (p jDn‘>’1>‘7lspl(tl)vipl (yl)dy1> (/: ‘727%2(342)71;# (yz)dy2>

i sy ’ o0 ~_ 52 .
H(LT et e ) ([T (22T 7 el e )
T t2

t1 o S1 , ta 52 L q
+ (/ Vi () P (yl)dy1)< Vy 7 (ya)vy P (y2)dy2>}

1 2

=

q

X w(x1,x2)h(x1,x2) dory das : ||| x < 1}

P D t1 ta _ ap—sq)
= sup / / u(z,x0)Vy 7 (21)
p— 81 P—=52/) h>0 0 0
1

__ a(p—s2)

x Vo 7 (z2)h(xy, x2) dry dog - |[h] x0 g}

p p __a(p—sy) __a(p—s2) 1
= — 51 — 59 HX(0¢1)(xl)X(O,tz)(l‘Q)u(Ihx2)V1 Po(r)Vy ” (xQ)H}Z(

Consequently, the inequality (2.7) takes the form

p p  ap—s1) __a(p—s2) 1
(p_ 81><p— 82) ||X(O,t1)(Il)x(o,h)(xZ)u(zlaIQ)‘/l P (Il)‘é P (IQ)H;(

P 5 P s
<|(2) +oml 1GE) =5
p—S1 s1—1 D — S2 s9—1

o~ (1=s1) o (I1—s2)

x Vi P (t)Vy P (t2)

or,

3=
3=

p \" p \"
= 25
P 1 P 1
p \", p \",
p— S1 s1—1 p— S2 9 —1

PNt )) o (s2—1) __a(p—sq) __alp—s1)

1
x VP (t)Vy T ()Xo X Vs T (B)Ve T (t2)ul| < C;
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ie.,
P B P
) [ G ]
b _p51 L _p82 A*(s1,82) < C
p 1 p 1
+ +
p—s1 s1—1 p— 52 s2—1

and the necessity follows. O

Remark 2. The assertion of Theorem 2 is new even for the case X = L!,
which gives the LP-L? boundedness of Ho.

3 The Operator G2 As a Limiting Case of Hs.

In this section, we shall characterize the boundedness of the operator G5 de-
fined in (1.2). In fact, the idea is to use the boundedness of Hy obtained in
Theorem 1 and apply limiting arguments. The result generalizes a result of
[14], [15] who proves it for X = L. Such technique has been used in the
one dimensional situation to derive the boundedness of the geometric mean
operator G. The corresponding LP-L? boundedness is obtained in [12] while
the LP-X7 boundedness in [3].

Theorem 3. Let 0 < p < ¢ < 00, 81,82 € (1,p), and u,v be weight functions

*51

defined on R?.. Let 0;(x;) = x;” ,i=1,2 and

_ ’ .31
w(xy,2) [exp <x1x2/0/0 17752 dtldtgﬂ u(xy, x2) (3.1)

Then the inequality

H(Ggf)quu)%( < C{ /OC>O /000 P (a1, 2)v(m1, 22) day dxg}p (3.2)

holds for all positive and measurable functions f on (0,00) X (0,00) if and only
if sup B(s1,s2) < 0o, where
y1 €(0,00)
yo2 €(0,00)
sp—1 sp—1

B(s1,82) =1y, " yp * ||01(z1)02(z2)w(m1, 32) 7 Xy, o) (1) X[ys,00) (22) || xa
and the best constant C' in (3.2) satisfies

1 1
s1 —1 P S2 -1 P
sup ( e (&1 ) ) ( e (s ) > B(s1, s2)r
81,82>1 es1 (51 - 1) +1 €52 (82 - 1) +1 (33)
s1+sp—2

<C< inf e » B(s,$2).

s1,82>1
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PROOF. Writing fv%1 for f, we find that the inequality (3.2) becomes equiv-
alent to

H(Ggf)q’wH)é( S C{ /Ooo /0oo fp(.’lﬁl,wg) d,Tl da?g}p7 (34)

with w as given by (3.1). Here, we have used the facts that Ga(gh) =
G2(9)G2(h) and G2(g¥) = [G2(g)]Y almost everywhere on (0,00) x (0,00)
for all measurable functions g and h for which G2(g) and Ga(h) are defined
almost everywhere on (0,00) x (0,00) and y € R.

—9q
o

-9
Let 0 < a < p. Now, writing f%, wz,* z,*,1,1, B, K for, respectively,
a’ o
f,u,v1,v9,p,q in Theorem 1 we find that the inequality

[e’e] [ee] 1 1 x2 %
sup { / / < / / fa (tl, t2) dtl dtg)
>0 UJo Jo T1T2 Jo Jo

1

x w(wy, xo)h(w1, x2)dxy, d2g @ ||h| X < 1} (3.5)

SO{/O /O fp(Il,IQ)diil dﬁCQ}p

holds for all C' > 0 and for all measurable functions f > 0 if and only if

_ sp—1 sp—1 1

. o ' apq 5

sup A:= sup ;7 t,° ||0192wX[t1’w)X[t2’w)||§( < 0
t1,t2>0 t1,t2>0

and the constant C' in (3.5) has the estimate

1 P 1 -1
o, () |G ) i)
1<sy,s5<2 \P — Q51 p — asy s1—1
1 D —1
o o 1 P~y
() () wam] e
D — aS2 P — QSa so— 1

P P
<C< inf A(PZX (P
T T l<sa,sa< P — sy D — sy '

Note that

Q=

A= =B. (3.7)

Now, taking the limit as o — 0+, we find that the inequality (3.5) becomes
(3.2) which, in views of (3.7), holds if and only if B < co. Also, when o — 0+,
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the estimate (3.6) becomes (3.3). The lower bound in (3.3) can be obtained if
we use the test function

—sy 521
P
)e v 1,
52

P
Lo

-1 -1 —1

g1, m2) = 17 157 X(0,0)(21)X(0,02) (T2) + 147 X(0,01) (21

—sy -t
e Pltl P =1
X X(t5,00) (T2) + = X(t1,00) (T1)t5" X(0,1) (22)
;"
s1—1 sp—1
—(s1+s) t, Pt P
te P ! £ 2L2 X(thoo)(xl)x(tz,oo)(iﬂz)
z T
1 Lo

in inequality (3.4) and follow similar arguments as in [16, theorem 3.1]. O

4 The Operator G5 Revisited.

In this section, we give another characterization for the LP-X? boundedness
of Gy with a different approach. In fact, we do not use here the limiting
arguments as done in Theorem 3. Also, in this case, the weight on R.H.S. of
the inequality need not be of product type. Furthermore, the functions, here,
will be defined on [0,b1] x [0,b2], 0 < b; < 00, 7 = 1,2 so as to cover finite
domains as well. Precisely, we prove the following.

Theorem 4. Let 0 < p < g < 00, 0 < by, by < 00, 51,82 > 1 and u,v be
weight functions defined on Rf_ . Then the inequality

1 by b2 %
||(G2f)qUX(07b1)X(O7b2)||§( < C’{/ fP(x1, x2)v(T1, 22) dq dsr:z} (4.1)
o Jo

holds for all measurable functions f > 0 on [0,b1] X [0,b2] if and only if
sup B(s1,s2) < 0o, where

y1€(0,b1)

y2€(0,b2)

s1—1 so—1

~ s2-1 1
B(s1,82) =y, " 4y " Hel(xl)92(x2)w(xl7x2)qX[yubl)(xl)x[yz,b)(xQ)HXW

where 0; are as used in Theorem 3 and w is given by (3.1). Moreover, the best
constant C' in (4.1) has the estimate

. ( et (51 — 1) >( e (53 — 1) >i§(51’52)

51,52>1 681(31 _1>+1 652(82 —1)+1

. s1+sp—2 ~
<C< inf e 7 B(s1,$2)

51,82>1
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PRrROOF. Taking g(z1,22) = fP(x1,2z2)v(x1,22), the inequality in (4.1) be-

comes
by ba 1 z1 s %
sup { / / [exp ( / / log g(y1, y2) dyr dyg)]
h>0 0 0 172 Jo o

x w(zy, xa)h(x1, x2) dry dzg @ ||h]x < 1}q (4.2)

b1 b1 %
<C{/ / g(x1, z2) dzy de} ;
o Jo

where w is as given in (3.1). For fixed ¢; and t2, 0 < ¢1 < by, 0 < t2 < bg, we
choose the test function

1 _ e—s2¢521
g1, m2) =7 "5 X (0,0) (€1) X (0,10) (T2) + 1X(0,t1)($1)xf§
2

efsltil_l 1
X X(tg,00) (T2) + —s X(t1,00) (T1)tg X(0,8) (72)
1

—(s2+s 8171 5271
e~ (sats)gmi—lys

xilx§2 Xty ,00) (xl)x(tZaOO)(xQ)'

The necessity can now be obtained if we use the above test function in (4.2)
and follow the arguments similar to [15, Theorem 4.1].
In order to prove the sufficiency, take y; = x1t; and y2 = xats so that (4.2)

becomes
b1 b 1 1 %
Sup{/ / [eXp (/ / log g(x1t1, w2ta) dty dt2>}
h>0 0 0 o Jo
1

x w(zy, xa)h(x1, x2) dry dzs @ || x < 1}q (4.3)

b1 pb2 %
SC{/ / g(x1,22) dzq dacg} .
o Jo

By using the fact

1 » —(s1+s2-2)
<exp/ / logtgslfl)tésrl) dtq dtg) —e o
o Jo

and by Jensen’s inequality, the L.H.S. of (4.3) becomes

a

(s1+s2—2) b1 pb2 Lt (s1—1) (s2—1) !
e » sup{/ / {exp (/ / log(#17 ™ty 2~ g(x1t1, wata)) diy dtg)]
r>0 Lo Jo 0Jo
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1

q
x w(x1, x2)h(x1,x2) day das : ||h||x < 1}

s b1 b2
Se( 1+p2 2) sup{/ / (/ / t(él l)t(sz 1)
h>0

q
X g(z1t1, w2tz) diy dtz) w(zy, w2)h(w1, 22) dry day @ [|h]|x < 1}

by pba z
(s1+s2-2) P
= » iupo{/ / [/ / yi s gy, v2) dyn dyz}
>

w(zy, T
X %h(l’l,l@)dl‘l drs : ||h||X/ < 1}

P

(s1+82—2) by b s1—1 so— by 75” 7;2‘1
<e »r sup Yyt gy, v2) Lo
h>0 Y1 Y2

» 1
q P
X w(xy, xa)h(x1, z2) dry dxs @ ||| x < 1) dy dyg}
by ba 1
(s1450—2) ~ P
S B(81,S2){/ / 9(y1,y2) din dyz}
o Jo
and we are done. O

Theorem 4 extends a result of [14], [16] who proved it for X = L.
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