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Abstract

Wilczynski’s definition of the Lebesgue density point given in [W1]
opened the possibility of more subtle properties of the notion of density
point and the density topology, their various modifications and most
of all category analogues. In this paper we introduce a notion of an
Ad−density point of a measurable set on the real line. The notion is a
generalization of Lebesgue density and is based on the definition given
by Wilczyński. We prove that the Ad−density topology generated by
this notion is strictly finer than the Lebesgue density topology and we
examine several of its properties.

Let S be the σ-algebra of Lebesgue measurable subsets of the real line
R and I the σ-ideal of null sets. We shall say that the sets A, B ∈ S are
equivalent (A ∼ B), if and only if λ(A4B) = 0, where λ stands for Lebesgue
measure on the real line. Recall that the point x ∈ R is a density point of a
set A ∈ S, if and only if

lim
h→0

λ (A ∩ [x− h, x+ h])
2h

= 1

W. Wilczyński in [W1] introduced an equivalent definition of a density
point of a set A ∈ S, in terms of convergence of characteristic functions of
dilations of the set A.

A point x ∈ R is a density point of a set A ∈ S if and only if every sub-
sequence

{
χ

(nm·(A−x))∩[−1,1]

}
m∈N of

{
χ

(n·(A−x))∩[−1,1]

}
n∈N contains a subse-

quence
{
χ

(nmp ·(A−x))∩[−1,1]

}
p∈N

which converges to χ
[−1,1] I-almost every-

where on [−1, 1] (which means except on a set belonging to I).
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The above definition, as proved in [PWW2] (Corollary 1 p. 556), is equiv-
alent to the following one (for detailed discussion see [W2] pp. 680–681).

A point x ∈ R is a density point of a set A ∈ S if and only if, for any se-
quence of real numbers {tn}n∈N , decreasing to zero, there exists a subsequence

{tnm}m∈N, such that the sequence
{
χ 1
tnm
·(A−x)∩[−1,1]

}
m∈N

of characteristic

functions converges I-almost everywhere on [−1, 1] to χ[−1,1].
Wilczynski’s definition presented the opportunity for the study of more

subtle properties of the notion of density point and the density topology,
their various modifications and most of all category analogues (see [PWW1],
[PWW2], [CLO]).

Recently the notions of simple density point and complete density point
were introduced with associated Ts and Tc density topologies respectively, es-
sentially different from the density topology T (see [AW] and [WW]). Actually,
we have the following sequence of inclusions:

Tn & Tc & Ts& T ,

where Tn is the natural topology on the real line.
We shall follow this approach to consider some new generalization of den-

sity point, leading to a new density topology TAd that extends the sequence
of inclusions to

Tn & Tc& T s& T & T Ad .

We shall consider the following families of sets:
a) A[−1,1]— the family of subsets of the interval [−1, 1] of Lebesgue measure

two,
b) A[−α,α]— the family of measurable subsets of interval [−1, 1] of full mea-

sure on interval [−α, α], where 0 < α ≤ 1,
c) Ad— the family of measurable subsets of [−1, 1] that have Lebesgue

density one at 0.
We have A[−1,1] ⊂ A[−α,α] ⊂ Ad.

Definition 1. We shall say that x is an Ad-density point of A ∈ S if, for any
sequence of real numbers {tn}n∈N, decreasing to zero, there exists subsequence

{tnm}m∈N and a set B ∈ Ad, such that
{
χ 1
tnm
·(A−x)∩[−1,1]

}
m∈N

converges I-

almost everywhere on [−1, 1] to χB . (In other words, for any sequence of real
numbers {tn}n∈N , decreasing to zero, there is a subsequence {tnm}m∈N and a

set B ∈ Ad such that the sequence
{
χ 1
tnm
·(A−x)∩[−1,1]

}
m∈N

of characteristic

functions converges on [−1, 1] in measure to χB).
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By analogy, we define a notion of A[−α,α]-density point and A[−1,1]-density
point of A ∈ S. The family A[−1,1] corresponds precisely to the definition of
a Lebesgue density point. The set of all Ad-density points, A[−α,α]-density
points and Lebesgue density points of A ∈ S will be denoted by ΦAd (A),
ΦA[−α,α] (A) and Φ (A), respectively.

Proposition 1. For each A ∈ S, Φ (A) ⊂ ΦA[−α,α]
(A) ⊂ ΦAd (A).

Proof. Obvious.

Lemma 1. Let A ⊂ [0, 1] be a measurable set, {an}n∈N a sequence of pos-
itive numbers converging to 1, an < 3

2 . Then the sequence of characteristic
functions {χan·A}n∈N converges in measure to χA.

Proof. Let ε > 0, let F be a closed set and let G be an open set such that
F ⊂ A ⊂ G and λ (G \ F ) < ε

6 . The set G is a union of a family of open
intervals that is an open cover of the compact set F . Then, there is a finite
subcover of F with union H, such that λ (F 4H) < ε

6 . Since H is a finite
union of open intervals, we can find an n0 ∈ N, such that for n > n0,

λ ((an ·H)4H) <
ε

6
,

λ ((an ·A)4 (an ·H)) = λ (an · (A4H))) = anλ (A4H))

<
3
2
λ (A4H) ≤ 3

2
(λ (A4 F ) + λ (F 4H)) ≤ 3

2

( ε
6

+
ε

6

)
=
ε

2
,

and

λ ((an ·A)4A)
≤λ ((an ·A)4 (an ·H)) + λ ((an ·H)4H) + λ (H 4 F ) + λ (F 4A)

<
ε

2
+
ε

6
+
ε

6
+
ε

6
= ε, for n > n0.

Thus, the sequence {χan·A}n∈N of characteristic functions converges in mea-
sure to χA.

Lemma 2. Let A ⊂ [0, 1] be a measurable set, {an}n∈N a sequence of positive
numbers converging to 1, an < 3

2 , and {An}n∈N a sequence of measurable sets
convergent in measure to A. Then the sequence {χan·An}n∈N of characteristic
functions converges in measure to χA.
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Proof. The proof is a simple consequence of the above Lemma 1. Let ε > 0.
Since {An}n∈N is a sequence of measurable sets convergent in measure to A,
we can find n1 ∈ N such that λ (An 4A) < ε

3 , for n > n1. By the Lemma
1, we can find n2 ∈ N such that λ ((an ·A)4A) ≤ ε

2 for n > n2. Take
n0 = max (n1, n2).

For n > n0, we have

λ ((an ·An)4A) ≤ λ ((an ·An)4 (an ·A)) + λ ((an ·A)4A)
= λ (an · (An 4A)) + λ ((an ·A)4A)
= anλ ((An 4A)) + λ ((an ·A)4A)

≤ 3
2
λ ((An 4A)) + λ ((an ·A)4A) <

3
2
ε

3
+
ε

2
= ε.

Thus, the sequence {χan·An}n∈N of characteristic functions converges in mea-
sure to χA.

Proposition 2. There exists a set A such that Φ (A) $ ΦAd (A).

Proof. We start with the notion of the density from the right. We shall
define a set A such that:
1) 0 is not a density point of A from the right,
2) 0 is not a density point of R \A from the right,
3) 0 is a Ad-density point of A from the right.
Let D ∈ Ad be such that λ (D ∩ (0, 1)) < 1 (for example the interval

(
0, 1

2

)
);

and {cn}n∈N be an arbitrary sequence of real numbers decreasing to 0, c1 < 1,
such that limn→∞

cn+1
cn

= 0. We define a set A ∈ S as

A =
∞⋃
n=1

[(cn ·D) ∩ (cn+1, cn)] .

Now let {tn}n∈N be an arbitrary sequence of real numbers decreasing
to zero. We can find subsequences {tnr}r∈N and {cmr}r∈N of {tn}n∈N and
{cn}n∈N, respectively, such that cmr ≤ tnr , and there are no elements of
{tn}n∈N nor of {cn}n∈N between cmr and tnr .

Consider the sequence
{
cmr · 1

tnr

}
r∈N
⊂ (0, 1]. We can find a convergent

subsequence
{
cmrk ·

1
tnrk

}
k∈N

.

There are two possibilities.
a) limk→∞

(
cmrk ·

1
tnrk

)
= a 6= 0; i.e., limk→∞

(
cmrk ·

1
atnrk

)
= 1.
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In this case, by Lemma 2
{
χ
cmrk
atnrk

·
„
cmrk

+1
cmrk

,1

«}
k∈N

converges in measure to

χ
[0,1], and

{
χ
cmrk
atnrk

·
»„

cmrk
+1

cmrk
,1

«
∩D
–}

k∈N
converges in measure to χD on [0, 1].

Equivalently,
{
χ 1
atnrk

·[(cmrk+1,cmrk )∩(cmrk ·D)]
}
k∈N

converges in measure to

χ
D on [0, 1]. Thus, since(

cmrk+1, cmrk

)
∩
(
cmrk ·D

)
=
(
cmrk+1, cmrk

)
∩A,

the sequence χ„
1

a·tnrk
·A
«
∩[0,1]

converges in measure to χD on [0, 1], and, con-

sequently, χ„
1

tnrk
·A
«
∩[0,a]

converges in measure to χ(a·D)∩[0,a] on [0, a].

We can find one more subsequence
{
cmrkp

· 1
tnrkp

}
p∈N

, such that

χ 
1

tnrkp

·A
!
∩[0,a]

converges to χ
(a·D)∩[0,a] I-almost everywhere on [0, a], and

we obtain B on [0, a] as

B ∩ [0, a] = (a ·D) ∩ [0, a] .

If a = 1, the proof is complete; B = D ∩ [0, 1] has density 1 at 0 from the
right. If a < 1, we have to determine B on (a, 1] as well. By definition of

{cn}n∈N, we have limp→∞
cmrkp

−1

tnrkp
=∞. on the other hand

lim
p→∞

cmrkp−1

tnrkp
= lim
p→∞

(
cmrkp−1

tnrkp
·
cmrkp
cmrkp

)

= lim
p→∞

(
cmrkp−1

cmrkp
·
cmrkp
tnrkp

)
= a · lim

p→∞

cmrkp−1

cmrkp
=∞.

Hence, as D has density 1 at 0 from the right, we have

lim
p→∞

λ

[(
1

tnrkp
·A

)
∩ (a, 1]

]
= 1− a,

and we can find a subsequence
{
tnrkpl

}
l∈N

, such that χ 
1

tnrkpl

·A
!
∩(a,1]

con-

verges to χ(a,1], I-almost everywhere on (a, 1], and we determine B on [0, 1]
as

B ∩ [0, a] = (a ·D) ∩ [0, a] and B ∩ (a, 1] = (a, 1].
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b) limk→∞

(
cmrk ·

1
tnrk

)
= 0.

In this case, we have two possible situations again.
b1) The sequence

{
cmrk−1

tnrk

}
k∈N

is bounded from above.

We take a subsequence
{
cmrkp

−1

tnrkp

}
p∈N

, such that limp→∞
cmrkp

−1

tnrkp
= b <

∞, and proceed similarly to the argument in a). We have b ≥ 1, and
χ„

1
tnrkp

·A
«
∩[0,1]

converges in measure to χ(b·D)∩[0,1], on [0, 1], and we can find

a subsequence χ 
1

tnrkpl

·A
!
∩[0,1]

convergent to χ(b·D)∩[0,1] I-almost everywhere

on [0, b], and obtain B on [0, 1] as

B ∩ [0, 1] = (b ·D) ∩ [0, 1] .

b2) The sequence
{
cmrk−1

tnrk

}
k∈N

is not bounded from above.

We take a subsequence
{
cmrkp

−1

tnrkp

}
p∈N

such that limp→∞
cmrkp

−1

tnrkp
=∞. As

D has density 1 at 0 from the right and limk→∞

(
cmrk ·

1
tnrk

)
= 0, we have

lim
k→∞

λ

[(
1

tnrkp
·A

)
∩ (0, 1]

]
= 1,

and we can find a subsequence
{
tnrkpl

}
l∈N

, such that χ 
1

tnrkpl

·A
!
∩[0,1]

con-

verges to χ
[0,1] I-almost everywhere on [0, 1], and we determine B on [0, 1]

as
B ∩ [0, 1] = [0, 1]

and B has density 1 at 0 from the right.
Finally, 0 is a ΦAd -density point of −A ∪ A but not a Φ-density point of

−A ∪A nor of R \ (−A ∪A).

Theorem 1. The mapping ΦAd : S → 2R has the following properties:
(1) For each A ∈ S, ΦAd (A) ∈ S.
(2) For each A ∈ S, A ∼ ΦAd (A).
(3) For each A,B ∈ S, if A ∼ B, then ΦAd (A) = ΦAd (B).
(4) ΦAd (∅) = ∅, ΦAd (R) = R.
(5) For each A,B ∈ S, ΦAd (A ∩B) = ΦAd (A) ∩ ΦAd (B).
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Proof. (1) From Proposition 1, ΦAd (A) = Φ (A) ∪ (ΦAd (A) \ Φ (A)). The
set (ΦAd (A) \ Φ (A)) is a subset of R \ ((Φ (A) ∪ Φ (R \A))), a set of measure
zero. Then ΦAd (A) is an union of a measurable set Φ (A) and a null set;
hence, a measurable set.

(2) is clear in view of A ∼ Φ (A) and of the fact that ΦAd (A) and Φ (A)
differ by a null set.

(3) is a simple consequence of the fact that I-almost everywhere conver-
gence is involved in the definition of ΦAd (A).

(4) Obvious.
(5) Observe first that if A ⊂ B, A, B ∈ S, then ΦAd (A) ⊂ ΦAd (B),

so ΦAd (A ∩B) ⊂ ΦAd (A) ∩ ΦAd (B). To prove the opposite inclusion, as-
sume x ∈ ΦAd (A) ∩ ΦAd (B). Let {tn}n∈N be an arbitrary sequence of
real numbers decreasing to zero. From x ∈ ΦAd (A), by definition, there
exist a subsequence {tnm}m∈N and a set A1 ∈ Ad, such that the sequence{
χ 1
tnm
·(A−x)∩[−1,1]

}
m∈N

of characteristic functions converges I-almost every-

where on [−1, 1] to χ
A1∩[−1,1] . Similarly, for {tnm}m∈N from x ∈ ΦAd (B),

by definition, there exists a subsequence
{
tnmk

}
k∈N

and a set B1 ∈ Ad such

that the sequence
{
χ 1
tnmk

·(A−x)∩[−1,1]

}
k∈N

of characteristic functions con-

verges I-almost everywhere on [−1, 1] to χ
B1∩[−1,1] . It is clear that the se-

quence
{
χ 1
tnmk

·((A∩B)−x)∩[−1,1]

}
k∈N

converges I-almost everywhere on [−1, 1]

to χ(A1∩B1)∩[−1,1]; i.e., x is a ΦAd−density point of A ∩B.

Proposition 3. If 0 is an Ad-density point of a set A, then

lim inf
h→0+

λ (A ∩ [−h, 0])
h

> 0 and lim inf
h→0+

λ (A ∩ [0, h])
h

> 0.

Proof. The assertion is a simple consequence of Definition 1.

Remark 1. It is an immediate consequence of (1), (2) and (3) of Theo-
rem 1 that ΦAd is idempotent; i.e., ΦAd (A) = ΦAd (ΦAd (A)). We have also
ΦAd (A) ∩ ΦAd (R \A) = ∅.

Theorem 2. The family TAd = {A ∈ S : A ⊂ ΦAd (A)} is a stronger topology
than the density topology T .

Proof. From Theorem 1, (4) ∅ and R ∈ TAd , and the family is closed under
finite intersections by (5). To prove that TAd is closed under arbitrary unions,
observe that from Theorem 1, ΦAd (A) \ A is a null set for each A ∈ S, and
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then apply the proof in [W2]. Take a family {At}t∈T ⊂ TAd . We have At ⊂
ΦAd (At) for each t. Choose a sequence {tn}n∈N, such that for each t ∈ T , we
have λ (At \

⋃∞
n=1Atn) = 0. It is possible by the CCC property of (S, I) . Then

ΦAd (At) = ΦAd ((At ∩
⋃∞
n=1Atn) ∪ (At −

⋃∞
n=1Atn)) ⊂ ΦAd (

⋃∞
n=1Atn) , for

each t ∈ T . Hence,
∞⋃
n=1

Atn ⊂
⋃
t∈T

At ⊂
⋃
t∈T

ΦAd (At) ⊂ ΦAd

( ∞⋃
n=1

Atn

)
.

The first and the last set in the above sequence of inclusions differ by a null set
and both are measurable, so

⋃
t∈T At ∈ S. Also,

⋃
t∈T At ⊂ ΦAd

(⋃
t∈T At

)
,

by central inclusion and the monotonicity of ΦAd , so finally
⋃∞
t∈T At ∈ TAd .

The set (−A ∪A) ∪ {0}, where A is defined in Proposition 2, with D
additionally open, belongs to TAd but not to T topology.

Remark 2. Like the density topology, the Ad-density topology can be de-
scribed in the form TAd = {ΦAd (A) \ P : A ∈ S and P ∈ I}, for if A ⊂ TAd ,
then A ⊂ ΦAd (A). Consequently, A = ΦAd (A) \ (ΦAd (A) \A) and we take
P = ΦAd (A) \ A ∈ I. Now, if B = ΦAd (A) \ P , for some A ∈ S and P ∈ I,
then

ΦAd (B) = ΦAd (ΦAd (A) \ P ) = ΦAd (ΦAd (A))
= ΦAd (A) ⊃ ΦAd (A) \ P = B

from Theorem 1 (2), (3) and the above observation.

The Ad−density topology has properties similar to the density topology.

Theorem 3. For an arbitrary set A ⊂ R

IntTAd (A) = A ∩ ΦAd (B) ,

where B is a measurable kernel of A.

Proof. We can follow the proof of Theorem 2.5 from [W2], with Φ replaced
by ΦAd .

Theorem 4. A set A ∈ TAd is TAd-regular open if and only if A = ΦAd (A).

Proof. We can adopt here the proof of Theorem 2.6 from [W2]. The inclusion
ΦAd (A) ⊂ ClAd (A), in the first part of the proof, can now be verified as
follows.

ClAd (A) = R \ IntTAd (R \A)

= R \ ((R \A) ∩ ΦAd (R \A))
= A ∪ (R \ ΦAd (R \A)) ⊃ A ∪ ΦAd (A) ,
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since ΦAd (A) ⊂ R \ ΦAd (R \A).

Theorem 5.

I = {A ⊂ R : A is TAd-nowhere dense set}
= {A ⊂ R : A is TAd-first category set}
= {A ⊂ R : A is TAd-closed TAd-discrete set} .

Proof. We can follow here the proof of Theorem 2.8 from [W2].

Theorem 6. The σ-algebra of TAd-Borel sets coincides with S.
If E ⊂ R is a TAd-compact set, then E is finite.
The space (R, TAd) is neither first countable, nor second countable, nor Lin-
delöf, nor separable.
(R, TAd) is a Baire space.

Proof. We can follow here the proofs of Theorems 2.9-2.12 from [W2].

Remark 3. In the proofs of the above theorems, we used a classical argument
referring only to the results for Lebesgue density topology from [W1]. However,
since TAd ⊂ S and ΦAd is a closed lower density operator (i.e., ΦAd (A) ∈ S),
we could rely on more recent results from [RJH] given in more general settings.
Namely, the idempotency of the operator ΦAd was shown to hold even for non-
closed lower density operators on page 312 of [RJH]. The proof that TAd is a
topology was shown in a different way in Theorem 9 of [RJH]. Theorem 4 is
Corollary 6.3 of [RJH] and Theorem 5 is Corollary 8.1 of [RJH]. Theorem 6
is a combination of results from Theorem 7 and Corollary 8.2 of [RJH].

Acknowledgment. The author thanks both referees for highly helpful edi-
torial comments. In particular for pointing out the relations of the presented
topology with the more general results of [RJH].
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[WW] W. Wilczyński and W. Wojdowski, Complete Density Topology, in
preparation.


