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CONSTRUCTING NOWHERE
DIFFERENTIABLE FUNCTIONS FROM

CONVEX FUNCTIONS

Abstract

We find an easy way to construct a continuous nowhere differen-
tiable function from any nondecreasing convex function mapping the
unit interval onto itself. We give a number of examples of nowhere
differentiable functions constructed this way.

Examples of continuous nowhere differentiable real valued functions have
been of interest in real analysis since the nineteenth century. In most such
examples this function is expressed as the sum of a series of differentiable
functions. (See, for example, [1], [3], [4], and [5].) In this note we show how a
large class of nowhere differentiable functions can be so constructed where each
summand is a convex function on certain intervals. We conclude with several
concrete examples of nowhere differentiable functions we construct in this way.
(For material on nowhere differentiable functions, consult the references in [1]
and [3].)

We say that the real function f is convex on the interval J if whenever
a < b in J and 0 < t < 1, we have f(ta+ (1− t)b) ≥ tf(a) + (1− t)f(b); i.e.,
the graph of f on [a, b] is never below the line joining the points (a, f(a)) and
(b, f(b)). It follows that necessarily

f(ta+ (1− t)b)− f(a)
ta+ (1− t)b− a

≥ f(b)− f(a)
b− a

.

We say that f is concave on J if −f is convex on J .
We offer the following assertion.

Theorem 1. Let (an) be a sequence of nonnegative real numbers such that
Σn an <∞. Let (bn) be a strictly increasing sequence of integers such that bn
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divides bn+1 for each n, and the sequence (anbn) does not converge to 0. For
each index j ≥ 1, let fj be a continuous function mapping the real line onto
the interval [0, 1] such that fj = 0 at each even integer and fj = 1 at each odd
integer. For each integer k and each index j, let fj be convex on the interval
(2k, 2k+ 2). Then the continuous function

∑∞
j=1 ajfj(bjx) has a finite left or

right derivative at no point.

Proof. Assume that F has a finite right derivative F ′(x) at the point x.
Because the sequence (anbn) does not converge to 0, we have lim sup anbn > 0.
Select ε > 0 so that 11ε < sup anbn. Let p be a positive number such that if
0 < y − x < p, then |(F (y)− F (x))(y − x)−1 − F ′(x)| < ε. Let N be an index
such that aNbN > 11ε and consecutive zeros of fN (bNx) differ by less than p

2 ;
in other words b−1

N < p
4 . Let x1 and x3 be consecutive zeros of fN (bNx) such

that x < x1 < x3, x1 − x ≤ x3 − x1 <
p
2 and let x2 be the midpoint of the

interval (x1, x3) Then x1 − x < x2 − x < x3 − x < p and moreover

x1 − x ≤ 2(x2 − x1), x2 − x ≤ 3(x2 − x1) (1)

Let r1, r2, and r3 be the real numbers for which

(F (x2)− F (x1))(x2 − x1)−1 = F ′(x) + r3,

(F (x2)− F (x))(x2 − x)−1 = F ′(x) + r2,

(F (x1)− F (x))(x1 − x)−1 = F ′(x) + r1.

Then |r2| < ε and |r1| < ε. We have

(F ′(x) + r2)(x2 − x)−(F ′(x) + r1)(x1 − x)
=(F (x2)− F (x))− (F (x1)− (F (x))
=F (x2)− F (x1) = (F ′(x) + r3)(x2 − x1)
=(F ′(x) + r3)(x2 − x)− (F ′(x) + r3)(x1 − x)

and hence r2(x2 − x) − r1(x1 − x) = r3(x2 − x1). But from (1) we deduce
(x2 − x)(x2 − x1)−1 ≤ 3 and (x1 − x)(x2 − x1)−1 ≤ 2. So

|r3| ≤ |r2|(x2 − x)(x2 − x1)−1 + |r1|(x1 − x)(x2 − x1)−1 ≤ 3ε+ 2ε

and it follows that

|(F (x2)− F (x1))(x2 − x1)−1 − F ′(x)| ≤ 5ε. (2)

The same argument with x3 in place of x2 (starting with (1)) shows that

|(F (x3)− F (x1))(x3 − x1)−1 − F ′(x)| ≤ 5ε. (3)
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From (2) and (3) we obtain

|(F (x2)− F (x1))(x2 − x1)−1 − (F (x3)− F (x1))(x3 − x1)−1| ≤ 10ε. (4)

Fix j < N . Because bj divides bN , necessarily x1 and x3 lie between consec-
utive zeroes of fj(bjx). Thus fj(bjx) is convex on the interval (x1, x3) and
hence

aj

(
fj(bjx2)− fj(bjx1)

)
x2 − x1

−aj

(
fj(bjx3)− fj(bjx1)

)
x3 − x1

≥ 0 (j < N). (5)

Now fix j > N . The points x1 and x3 are zeros of fj(bjx) because bN
divides bj . Moreover 0 = fj(bjx1) = fj(bjx3) ≤ fj(bjx2) and hence

aj

(
fj(bjx2)− fj(bjx1)

)
x2 − x1

−
aj

(
fj(bjx3)− fj(bjx1)

)
x3 − x1

≥ 0 (j > N). (6)

By the choice of the index N ,
aN

(
fN (bNx2)− fN (bNx1)

)
x2 − x1

= aNbN > 11ε and

fN (bNx3) = fN (bNx1) = 0. So,

aN

(
fN (bNx2)− fN (bNx1)

)
x2 − x1

−
aN

(
fN (bNx3)− fN (bNx1)

)
x3 − x1

> 11ε. (7)

We sum (5), (6) and (7) to obtain

(F (x2)− F (x1))(x2 − x1)−1 − (F (x3)− F (x1))(x3 − x1)−1 > 11ε. (8)

Finally (8) is inconsistent with (4), and it follows that F has no finite right
derivatives at any point. Because F is an even function, F has no left derivative
at any point either.

We have a similar result for concave functions.

Corollary 1. Let the sequences (an) and (bn) and the functions fj be as in
Theorem 1. Let gj = 1 − fj for each index j. Then the continuous function
G(x) =

∑∞
j=1 ajgj(bjx) has a finite left or right derivative at no point.

Proof. Observe that G(x) =
∑∞

j=1 aj − F (x) and use Theorem 1.

Note that for any index j and any integer k, the function gj is concave on
the interval (2k, 2k + 2) in Corollary 1.

From any convex nondecreasing function f mapping [0, 1] onto [0, 1] we
can construct a nowhere differentiable function as follows. Extend f to [0, 2]
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be reflecting the graph of f in the line x = 1; that is, f(x) = f(2 − x) for
1 < x ≤ 2. Extend f to the real line by making it periodic with period 2.
Then F (x) =

∑∞
j=1 2−jf(2jx) suffices.

We conclude with some concrete examples of nowhere differentiable func-
tions disclosed by our work. In what follows m − 1 is a nonnegative real
number and b − 2 is a nonnegative integer. We denote j factorial by j! and
ey by exp(y). For any real number x, let K0(x) denote the distance from x to
the nearest even integer, and let K1(x) = 1−K0(x).

Example 1.
∑∞

j=1(K1(bjx))m/(bj),
∑∞

j=1(K1(j!x))m/(j!).

Example 2.
∑∞

j=1(K0(bjx))1/m/(bj),
∑∞

j=1(K0(j!x))1/m/(j!).

Example 3.
∑∞

j=1 exp(K1(bjx))/(bj),
∑∞

j=1 exp(K1(j!x))/(j!).
Put fj(x) = [−1 + exp(K1(x))]/(e− 1).

Example 4.
∑∞

j=1(tan(K1(bjx)))/(bj),
∑∞

j=1(tan(K1(j!x)))/(j!)
Put fj(x) = (tan(K1(x)))/(tan 1).

Example 5.
∑∞

j=1(sin(K0(bjx)))/(bj),
∑∞

j=1(sin(K0(j!x)))/(j!)
Put fj(x) = (sin(K0(x)))/(sin 1).

Example 6.
∑∞

j=1(arctan(K0(bjx)))/(bj),
∑∞

j=1(arctan(K0(j!x)))/(j!)

Example 7.
∑∞

j=1(arcsin(K1(bjx)))/(bj),
∑∞

j=1(arcsin(K1(j!x)))/(j!)

Example 8.
∑∞

j=1(K0(rjx))/2j),
∑∞

j=1(K0(sjx))/j!),
where rj = 2j and sj = j! if j is a prime integer and rj = sj = 0 otherwise.

Example 9.
∑∞

j=1(K0(2jx))/((2 + 5j−1)j),
∑∞

j=1(K1(2jx))j/2j)
Use ((2 + 5j−1)j) = 2j((1 + (5/2)j−1)j).

Example 10.
∑∞

j=1(K0(2jx)1/3)/(2j) +
∑∞

j=1(K0(2jx)1/5)/(2j)
Put fj(x) = (K0(x)1/3 +K0(x)1/5))/2.
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