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THE Z-ALMOST CONSTANT
CONVERGENCE OF SEQUENCES OF
REAL FUNCTIONS

Abstract

Let T be an infinite set and Z be a fixed ideal on 7". We introduce and
study the notion of almost constant convergence of sequences {f:: t € T'}
of real functions with respect to the ideal Z. This notion generalizes
discrete convergence, transfinite convergence, and ws-convergence. In
particular, we consider the question when a given family of functions
(e.g., continuous, Baire class 1, Borel measurable, Lebesgue measurable,
or functions with the Baire property) is closed with respect to this kind
of convergence.

1 Notation

We will use the standard terminology and notation. In particular, ordinal num-
bers will be identified with the set of their predecessors and cardinal numbers
with the initial ordinals. Thus, the first infinite cardinal w is identified with
the set of natural numbers. The cardinality of the set R of real numbers is
denoted by ¢. The cardinality of a set A is denoted by |A|. For any infinite
set X and a cardinal s by [X]<" we denote the family of all subsets of X of
the size less than . In a similar way we define sets [X]* and [X]<".

Let J be a o-ideal of subsets of R. We shall denote by B the o-algebra
generated by J and by the Borel sets B in R. The o-ideals that are the most
interesting for us are the ideals A of Lebesgue measure zero subsets of R and
M of meager subsets of R. By J¢ we will denote the family of all sets of the
form R\ J, where J € J. A o-ideal J is c.c.c. when there is no uncountable
family of pairwise disjoint sets in By \ J.
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We will need also some cardinal numbers connected with an ideal Z of
subsets of T

add (Z) = mln{|IO| IoCT & UZO QZ},

cov(Z)=min{|Zp|: Zo CT & UZo =T},

non (Z) = min{|To|: To C T & To ¢ I}.
Let T be an infinite set and Z be a proper ideal of subsets of T' containing
all singletons. For {x;:t € T} C R and = € R we say that {z;: t € T}
converges Z-a.c. to x (Z-converges, x; —7 x) if {t € T: 2y # 2} € T. A
sequence {f;: t € T} C RE Z-converges to f € R® (fy—zf) if fi(z)—zf(2)
for each € R. (The idea of such convergence has been suggested to us by
Dr. Kazimierz Wisniewski.)

Remark 1.1. (1) If 2;—zx and a;—za’, then x = 2.
(2) If fi—zf and fi—zf', then f = f".
(3) fZ C J and fi—zf, then fi—7f.

If T = k, T is the ideal of all subsets of k of size less than k, and f; —7 f,
then we say that {f,: @ < k} k-converges to f. The following examples of
k-convergence of real functions have been considered in the bibliography.

e If kK = w, then the w-convergence is equivalent to the discrete conver-
gence. (See [CL].)

e If Kk = wq , then wi-a.c. convergence means the transfinite convergence.

(See [WS].)
e The wy-convergence was considered in [PK].

Let F C RE. By LIMz(F) we denote the Z-a.c. closure of F; i.e., the
family of all Z-a.e. limits of sequences of functions from F. In a similar way
we define the family LIM . (F), i.e., the x-closure of F. Following [JL] we will
use the following notation.

(1) F c RR is Z-closed if LIM 7(F) = F.

(2) {f:: t € T} is Z-almost constant if there is a I € T such that f; = fp for
any t,t' € T\ I.

(3) F € RE is strictly Z-closed if for all {f;: t € T} C F, if fy—zf for some
f €RR then {f;: t € T} is Z-almost constant.

(4) A set D C R is determining for a family 7 C R if forall f,g€ F, f =g
whenever f|D = g|D.
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2 Properties

Remark 2.1. (1) If {f;: t € T} is Z-almost constant, then it is Z-convergent.
(2) Z C J and F is J-closed, then F is Z-closed.

Lemma 2.2. Suppose fi—7zf and E C R.

(1) If |E| < add (Z), then {f¢|E: t € T} is T-almost constant.

(2) If |E| < cov(Z), then there is Ty ¢ T with fi|E = f|E for each t € Ty.

PROOF. Let I, = {t € T: fi(x) # f(x)} for x € E. Set I = J,cp .. Then
fit|E = f|E for each t ¢ I. Moreover, I € Z whenever add (Z) > |E|, and
To=T\I&TZifcov(Z)>|E| O

Corollary 2.3. If cov(Z) > c, then each family F C R® is T-closed.

Theorem 2.4. If a family F has a determining set D with |D| < add (Z),
then F is strictly Z-closed.

PrROOF. Assume {f;:t € T} C F, fi—zf, D C R is a determining set for F
with |D| < add (Z). By Lemma 2.2.1, there is a I € 7 such that f;|D = fu|D
for t,t € T\ I. Since D is determining, f; = fv and hence {f;: t € T} is
Z-almost constant. O

Corollary 2.5. (1) IfZ is a o-ideal and F is a family of functions having a
countable determining set, then F is strictly Z-closed.

(2) The family C(R,R) of all continuous functions is strictly Z-closed for any
proper o-ideal I.

(3) Let Iy be the ideal of finite sets and T be uncountable. Then the family
C(R,R) is Zyp-closed.

Theorem 2.6. Assume F satisfies the condition
(Yg & F) (3D € RISV ) (Vf € F) f|D # g|D.
Then F is I-closed.

PROOF. Suppose F is not Z-closed. There exist {fi:t € T} C F, g ¢ F
such that f;—zg. Since g & F, there is D C R such that |D| < cov (Z) and
ft|D # g|D for every t € T, contrary to Lemma 2.2.2. O

Corollary 2.7. If cov (Z) > w, then the first class of Baire By is I-closed.
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PROOF. Suppose g € By. Then there exist a non-empty perfect set P C R
and reals a < b such that the sets A = PN[g < a] and B = PN[g > b] are
both dense in P. Let D be a countable set such that both DN A and DN B
are dense in P. Then f|D has no continuity points for every f € R with
fID = g|D; so f|D = g|D for no f € B;. By Theorem 2.6, the class B; is
Z-closed. O

Theorem 2.8. Suppose T is an ideal of subsets of T and F C RE,
(1) Ifadd (Z) = cov (Z) = &, then LIM z(F) C LIM .(F).
(il) If moreover I has a basis of size < k, then LIM z(F) = LIM ,(F).

PROOF. Note that the assumption add (Z) = cov (Z) = « implies that there is
a sequence {I,: a < r} C Z such that I, C I for a < 8 <k, Int1 \ In # 0
for each a, and T'= |, Io- If moreover 7 has a basis of size < k, then we
can assume that for each I € 7 there is o < k with I C I,,. (A basis of 7 is a
subfamily Zy C Z such that for each I € Z there is Iy € Zy with I C Ij.)

(i) Let {f;: t €T} C F and f; —1 f. For each o < & fix to € Int1 \ La-
Then {f: : a < k} k-converges to f;so f € LIM ,(F). Indeed, for z € R we
have fi(z) —z f(z). Thus I = {t € T: fi(x) # f(x)} € Z. Consequently,
I C I, for some o < & and fi,(x) = f(x) for B> a;s0 fi, —, f(x).

(ii) Let f € LIM . (F). There exists {fo: « < k} C F such that f, — f.
For t € T define f; = f, for t € In41 \ Io. Then f; —7 f. In fact, for x € R
there is o < k with fg(z) = f(z) for 8 > a. Thus {t € T: fi(z) # f(z)} C
Toy. O

Theorem 2.9. Assumew < k < |T| and Z,, = [T|=F. If the family {f,: t € T}
is Zi.-almost constant, then it possesses a determining set D with |D| < k.

Proor. Fix I € I, with f; = fy for t,t' ¢ I. If I = (), then each set
D is determining for {f;: ¢t € T}. If I # (), fix to € T\ I. For every pair
(t,t") € (I U{to})? such that f; # fi choose x(; 4 € R such that fi(z (1)) #
fo(z@y). Let D be the set of all such x(; 4. Then |D| < k? = k and D is
determining for {f;: t € T'}. O

Corollary 2.10. Suppose k is a cardinal number such that w < k < |T|. A
family F C R® is strictly T,.-closed iff each I,.-convergent subfamily {fi: t €
T} has a determining set D such that |D| < k.

PrROOF. The implication “=" follows from Theorem 2.9. The implication
“<” is a consequence of Theorem 2.4, because add (Z,;) = r™. O
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Theorem 2.11. Suppose ¢ is a reqular cardinal. A family F is c-closed iff
(Vg ¢ F) 3D € [R]~) (Vf € F) fID # g|D

PROOF. “<” is a consequence of Theorem 2.6, because cov ([¢]<°) = c.

“=” Assume g € RR and for each D € [R]< there is f € F such that
fID =g|D. Let R = {x¢: £ < ¢}, Dy = {xe: §{ < a}f fora <, and T = c.
For each a@ < ¢ we can choose an f, € F such that f,|D, = g|Ds. Then
{fa: @ < ¢}—.g and therefore g € F. O

3 Approximately Continuous Functions and Derivatives

In this and the next section we will need the following notations. Let T
be an uncountable set and let Z be an ideal on T. We say that the family
{A;: t € T} C P(R) is point-Z disjoint if {t € T: x € A;} € T for each z € R
(cf. [DF], p. 7).

Fix an ideal J of subsets of R. Following [CiL] (cf. [RZ]), we shall say that
aset D C T xRis a0-1 set provided DY € T for every y € R and R\ D; € J
for every t € T. We will consider the following statements.

Sz,7: There exists a 0-1 set in T x R.
Tz g: No family {A;: t € T} C J€ is point-Z disjoint.
T7 7+ No family {A;: t € T} C By \ J is point-Z disjoint.
Lemma 3.1. The following properties are equivalent:
(i) Tr,g;
(it) =S51,7;
(iii) for any family {A¢:t € T} C J€ there is Ty C P(T)\Z with (;ep, At #
0.

(i) there is no family {J;:t € T} C J such that U,cp, Ji = R for each

Tog J.
PROOF. The equivalence (i) < (i) follows from [RZ, Proposition 1.5]. (ii) <
(#91) and (i4i) < (iv) are obvious. O

Given a semigroup G of Borel functions from R to R and an ideal 7 on R
we say that J is G-invariant if g=!(J) € J for any g € G and J € J; and
J is G-ergodic when {J e 97" (A) € J€ for every A € By \ J. Note that
the o-ideals N/ and M are invariant and ergodic under the group of rational
translations.
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Lemma 3.2. Suppose J is a o-ideal on R which is invariant and ergodic under
some countable semigroup G. Then statements Tz, 7 and T7 ; are equivalent.

Proor. (Cf. [RZ, Lemma 2.8].) The implication “«<” is clear. To prove
‘=7 fix {42t € T} C By \J. Fort € T put By = J e 9(At). Then
{Bi:t € T} C J¢ so there is Ty € P(T)\ J such that (", Br # 0.
Fix z € ﬂtGTo B;. For each t € Ty there is g € G with z € ¢;(A;). Let
Ty ={t € Ty: gr = g}. Since Ty ¢ J, J is a o-ideal and G is countable,
there is g € G such that Ty ¢ J. Then = € g(,er, At); s0 [Ner, At is
non-empty. O

We say that a family F C B; is J-regular when:

(1) for each J € J and for every Baire 1 function f: R — R there exists
f € F with f|J = f|J;

(2) for each fo, f1 € F, if [fo # f1] € T, then fo = fi.

Note that the families C;4 of all approximately continuous functions and D of
all derivatives are N-regular. (See e.g., [MD, Theorems 3 and 4].)

Theorem 3.3. Suppose F C By is J-reqular and T is an ideal on T. Then
17 7 = LIMz(F)=F.

PROOF. Suppose {fi:t €T} CF, fy -7 f. Foreach T € T put A; = [f; #
f]- By Corollary 2.7, f € By;s0 {4;:t €T} C By.

First, note that To = {t € T: A, € J} € Z. In fact, suppose Ty € Z. For
any t € T'set By =R if t € Ty and B; = A, for t € Ty. By 17 7, there exists
Ty € P(T)\ T such that (,cp, By # 0. Then Ty = Ty \To ¢ Z and (,cp,, At =
Nier, Bt # 0. Fix € Nyep, Ae- Then T C {t € T: fi(z) # f(x)} ¢ T,
contrary to fi—zf.

Thus Ty € Z and for any to, ¢, € To we have [fi, # fi,] C [fto # [1U[ft, #
fl € Z; so fiy = ft,. This implies that f = f; for every t € Tp; so f € F. O

Theorem 3.4. Suppose F C By is J-reqular and T is an ideal on T. Then
—|TI“7 = LIMI(]:) = Bj.

PRrROOF. Assume —T7 7. Then there exists a point-Z disjoint family {A,: ¢t €
T} C J° This means that I, = {t € T: z € A;} € T for each z € R. Put
Af =R\ A, for any t € T. Corollary 2.7 implies LIM 7(F) C Bjy; so we have to
show that By C LIM z(F). Fix f € By. For any t € T there exists f; € F with
fi|A¢ = f|A¢. Then fi—zf. Indeed, for any z € R, if t € I, then z € Af; so
f(z) = fi(z), and therefore {t: fi(z) # f(t)} C I, € T. O
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Corollary 3.5. Suppose J is a o-ideal on R which is invariant and ergodic
under some countable semigroup G, and F C R¥ is J-reqular. Then for any
o-ideal T on T we have:

o LIM(F) = F if Iz, 7 holds;
o LIM£(F) = By if T7,7 does not hold.

In particular, for families of approximately continuous functions and deriva-
tives we have the following results.

Corollary 3.6. For any o-ideal Z on T we have:
o LIM£(Cq) = Cq and LIM z(D) = D if Tz n holds;
o LIM 7(Cy) = LIM £(D) = By if Tz does not hold.

Theorem 3.7. Suppose |T| > w and T = [T]=“. Then T7 ; holds for every
c.c.c. o-ideal J on R.

PRrROOF. This is a consequence of [DF, Lemma 1E(b)]. O

Corollary 3.8. Suppose |T| > w and T = [T|<%. Then both families Cq and
D are I-closed.

Now assume that w < A < |T| < ¢ and Z, = [T]=*. Then 7 is a o-ideal
and we again have only two possibilities.

o LIM 7, (Cy) = Cq and LIM 7, (D) = D if Tz, a holds;
o LIM 7, (Cq4) = LIM 7, (D) = B; if T7, » does not hold.

In particular, if A = w, then both possibilities may happen. (See [MD] in
the case T' = wy.) First, it is easy to observe that

e if cov (N) > wy, then Tr, o holds.
(See [RZ, Lemma 2.7], or [DF, Lemma 1E(c)].) Now,
e If cov (N) =w;y = |T, then Tz, s does not hold.

Indeed, in this case R = Ua<w1 N,, where N, € N for o < wy and N, C Ng
if @ < . Then the family of complements of N,’s is a counterexample for
Tz, n- The statement Tr, n may does not hold also when |T'| > w;. This is
a consequence of the following result. (Recall that a set L C R is a Lusin set
if LN M| <w for M € M.)
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Theorem 3.9. (I. Reclaw) Suppose w < X\ < |T'| < c. If there exists a Lusin
set L of the size |T|, then Sz, nr holds.

PRroor. Fix a partition R=GUH, HNG =0, G € M and H € N. Let
L be a Lusin set and |L| = |T| = k. Set B = {(z,y): v € L& yex+ H}.
Then B, € N for all z € L and for each y € R we have BY = {z € L: x €
y—H} e [L]s¥ C ). Thus L x R\ Bis a 0-1set in L x R. O

Note that it is consistent that ¢ > w; and there exists a Lusin set of the
size continuum. (Indeed, the generic set of reals in a Cohen extension is a

Lusin set. See e.g., [AM], p. 205.)

4 Measurable Functions

Let J be a c.c.c. o-ideal. Throughout this section 9t will denote the family
of all Bs measurable functions.
For an ideal J set

shr (7) =min{\: (VA€ J) (A0 CA) (Ao € T & |Ap| < N}
non;(J) =min{\: (VAeBs\J) (4o C A) (Ao € T & |Ag] < N)}
covi(J)=min{|Z|: TcJT)&UZeBs\T)}

Note that for each ideal J (containing all singletons) we have add (J) <
non (J) < non(J) < shr(J7) and add (J) < cov(J) < cov (T). (See [RZ].)

Lemma 4.1. ([RZ, Theorem 2.16, Claim 2]) For any g € RE\9 7 there exists
a set Dy C R such that |Dy| < shr(J) and f|Dy = g|Dy for no f € M.

Theorem 4.2. If shr(J) < cov (Z), then the family M 7 is I-closed.
PRrROOF. This is an easy consequence of Lemmas 1.2 and 4.1. O
Theorem 4.3. =17 7 = LIM (M) =RE

PRrROOF. Let {J;: t € T} C J be a counterexample on Tz, 7; 80 (e, (R\J;) =
0 for each Ty € P(T) \ Z. Fix f € R¥ and define the function f; for t € T by
the formula f;|J; = f|J; and f; =0 on R\ J;. Then f; € M7 and fr—zf. O

Theorem 4.4. If add (J) = cov (J) = add (Z) = cov (Z), then the condition
T7,7 does not hold.

PRrROOF. Let add (J) = k. There exist sequences {I,: a < k} CZ, {Jy: a <
k} C J such that I, C Ig and J, C Jg for a < B, and T' = {J,,, 1o,
R=Uq,cpJa- Then B =, Io x (R\ Jy) is a 0-1 set.

a<k
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Theorem 4.5. Assume a o-ideal J satisfies the condition (x) every B € By
contains a subset S & By. If add (J) = cov (Z), then the family M7 is not
Z-closed.

PrOOF. Let cov(Z) = &, T = Upyep Lo, 1o € T, and sets I, are pairwise
disjoint. Since add (J) = k, there exists a sequence {J,: @ < K} C J such
that J, C Jgifa < B and S =, . Ja € J. By (%), we can assume that
S & By. Let f; be the characteristic function of the set J, for t € I,. Then
feeMy fort € T, and {f;: t € T} Z-converges to the characteristic function
of S; so the limit is not B s-measurable. O

Lemma 4.6. ([RZ, Lemma 2.4.(i)]) There exists a set D C R such that |D| <
non(J) and DN B #( for every Be Bs\ J.

Theorem 4.7. Suppose {fi:t €T} C My, fi—sf.

(1) Ifnon;(J) < add (Z), then there exists I € T such that [fi # fv] € T for
each t,t' € T\ I.

(2) If non;(J) < cov(Z) and moreover f € My, then {t € T: [fr # f] €
JeT.

PROOF. Let D be as in Lemma 4.6, i.e., |D| < non;(J) and D meets each set
B € B7\J. Observe that if f|D = g|D for some f,g € M, then [f # g] € T.
Now, to prove (1) apply Lemma 2.2.(1) to find a I € Z such that f;|D = fyv|D
for each ¢,¢ & I. Thus for ¢,t' ¢ I we have [f; # fv] € J.

To prove (2) use Lemma 2.2.(2) and observe that Tp = {t € T: f|D =
fID} €Z;s0 [ft # f]l € J for all t € Ty. O

Corollary 4.8. Suppose {fi:t € T} C My, fi—zf. If shr(J) < cov(Z),
then{teT:[fi #fle T} ¢Z.

Proor. This is a consequence of Theorems 4.2 and 4.7.2 (and the inequality
non,;(J) < shr (7)). O

We will say that a o-ideal is separable, if there exists a countable family
D C By \ J such that for each B € By \ J thereis D € D with D\ B € J.
Note that the ideal M is separable.

Theorem 4.9. Assume {f;:t €T} € My, f € My and J is a separable o-
ideal such that cov((J) > shr (Z). If fi—zf, then{t € T: [fi # f] €T} €.

PROOF. Suppose Ty = {t € T: [ft # f] € T} ¢ Z. Choose Ty C Ty,
|Ty| < shr(Z), Ty € Z. Fix t € Ty. Since fi, f € My, there is D; € D such
that Dy \ [f: # f] € J. By the countability of D, there exists a set D € D
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such that Ty = {t € T1: D; = D} ¢ Z. Since |Ty| < shr(Z) < cov(J), A =
D\ User,[ft = f1 € J. Thus for z € A we have Ty C {t: fi(z) # f(2)} € T,
contrary to fy—zf. O

5 Problems

Fix an infinite set T'. Let Zy denote the ideal of finite subsets of T'.

Theorem 5.1. For any o-algebra A the family M 4 of all A-measurable func-
tions is Zy-closed.

PROOF. Let {f;: t € T} C M4, f—1,f. Fix a one-to-one sequence {t,: n <
w} C T. Then the sequence (f:, ), converges discretely (so, pointwise con-
verges) to f. Thus f is 9 4-measurable. O

Corollary 5.2. (1) The families: B-of all Borel functions, M pq-of all func-
tions having the Baire property, Mnr-of all Lebesgue measurable func-
tions are Ig-closed.

(2) For each a < wy, if f is the Zy-limit of a sequence {f;: t € T} C B,, then
f € Bag1.

Observe that if T is countable, then no Baire class « is Zp-closed. (See
[CL].) But if |T'| > w, then by Corollary 2.5.3, C(R,R) is Zy-closed, and by
Corollary 2.7, B; is Zy-closed.

Theorem 5.3. It is consistent that T = ¢ = wy and the class By is Ty-closed.

PRrROOF. This is a consequence of [PK, Theorem 5], where is shown that it
is consistent that ¢ = wy and the class By is ws-closed. Indeed, we have
B, C LIM 1,(B2) C LIM ,, (B2) = Bos. O

Problem 1. Suppose T is uncountable and « > 1. Is the class B, Zp-closed?

Now, consider the ideal Z,, of countable sets and the family B of all Borel
functions. It is easy to observe that if |T'| = w; then LIM 7, (B) = RE. We
don’t know what happens when w; < |T| < ¢. Notice that this problem is
equivalent to the following one.

Problem 2. Does there exist B C T x R with the following properties:
(1) B, € BforeachteT,

(2) for each y € R, either BY € 7, or R\ BY € Z,,.

3) {yeR: BYe1,} ¢B?

Problem 3. Suppose that w < A\ < At <k < ¢, |T| = k and I, = [T]=N.
Are the classes B, By, o > 1, Zy-closed?



THE Z-ALMOST CONSTANT CONVERGENCE OF SEQUENCES 491

References

[CiL]

[CL]

[MD]

[DF]

[PK]

[JL]

[AM]

[RZ]

[WS]

K. Ciesielski, M. Laczkovich, Strong Fubini properties for measure and
category, preprint.

A. Csészar, M. Laczkovich, Some remarks on discrete Baire classes,
Acta Math. Acad. Sci. Hungar., 33 (1979), 51-70.

M. Dindos, Limits of transfinite convergent sequences of derivatives,
Real Anal. Exchange, 22 (1996-97), 338-345.

D. H. Fremlin, Measure-additive coverings and measurable selectors, Dis-
sertationes Math. 260 (1987).

P. Komjath, Limits of transfinite sequences of Baire-2 functions, Real
Anal. Exchange, 24 (1998-99), 497-502.

J. Lipinski, On transfinite sequences of approximately continuous func-
tions, Bull. Polish Acad. Sci. Math., 21 (1973), 817-821.

A. W. Miller, Special subsets of the real line, in: Handbook of Set-
Theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland
(1984), 201-233.

I. Recltaw, P. Zakrzewski, Strong Fubini properties of ideals, Fund.
Math., 159 (1999), 135-152.

W. Sierpinski, Sur les suites transfinies convergentes de fonctions de

Baire, Fund. Math., 1 (1920), 134-141.



