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THE I-ALMOST CONSTANT
CONVERGENCE OF SEQUENCES OF

REAL FUNCTIONS

Abstract

Let T be an infinite set and I be a fixed ideal on T . We introduce and
study the notion of almost constant convergence of sequences {ft : t ∈ T}
of real functions with respect to the ideal I. This notion generalizes
discrete convergence, transfinite convergence, and ω2-convergence. In
particular, we consider the question when a given family of functions
(e.g., continuous, Baire class 1, Borel measurable, Lebesgue measurable,
or functions with the Baire property) is closed with respect to this kind
of convergence.

1 Notation

We will use the standard terminology and notation. In particular, ordinal num-
bers will be identified with the set of their predecessors and cardinal numbers
with the initial ordinals. Thus, the first infinite cardinal ω is identified with
the set of natural numbers. The cardinality of the set R of real numbers is
denoted by c. The cardinality of a set A is denoted by |A|. For any infinite
set X and a cardinal κ by [X]<κ we denote the family of all subsets of X of
the size less than κ. In a similar way we define sets [X]κ and [X]≤κ.

Let J be a σ-ideal of subsets of R. We shall denote by BJ the σ-algebra
generated by J and by the Borel sets B in R. The σ-ideals that are the most
interesting for us are the ideals N of Lebesgue measure zero subsets of R and
M of meager subsets of R. By J c we will denote the family of all sets of the
form R \ J , where J ∈ J . A σ-ideal J is c.c.c. when there is no uncountable
family of pairwise disjoint sets in BJ \ J .
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We will need also some cardinal numbers connected with an ideal I of
subsets of T :

add (I) = min{|I0| : I0 ⊂ I &
⋃
I0 6∈ I},

cov (I) = min{|I0| : I0 ⊂ I &
⋃
I0 = T},

non (I) = min{|T0| : T0 ⊂ T & T0 6∈ I}.
Let T be an infinite set and I be a proper ideal of subsets of T containing
all singletons. For {xt : t ∈ T} ⊂ R and x ∈ R we say that {xt : t ∈ T}
converges I-a.c. to x (I-converges, xt →I x) if {t ∈ T : xt 6= x} ∈ I. A
sequence {ft : t ∈ T} ⊂ RR I-converges to f ∈ RR (ft→If) if ft(x)→If(x)
for each x ∈ R. (The idea of such convergence has been suggested to us by
Dr. Kazimierz Wísniewski.)

Remark 1.1. (1) If xt→Ix and xt→Ix′, then x = x′.

(2) If ft→If and ft→If ′, then f = f ′.

(3) If I ⊂ J and ft→If , then ft→J f .

If T = κ, I is the ideal of all subsets of κ of size less than κ, and ft →I f ,
then we say that {fα : α < κ} κ-converges to f . The following examples of
κ-convergence of real functions have been considered in the bibliography.

• If κ = ω, then the ω-convergence is equivalent to the discrete conver-
gence. (See [CL].)

• If κ = ω1 , then ω1-a.c. convergence means the transfinite convergence.
(See [WS].)

• The ω2-convergence was considered in [PK].

Let F ⊂ RR. By LIM I(F) we denote the I-a.c. closure of F ; i.e., the
family of all I-a.e. limits of sequences of functions from F . In a similar way
we define the family LIM κ(F), i.e., the κ-closure of F . Following [JL] we will
use the following notation.

(1) F ⊂ RR is I-closed if LIM I(F) = F .

(2) {ft : t ∈ T} is I-almost constant if there is a I ∈ I such that ft = ft′ for
any t, t′ ∈ T \ I.

(3) F ∈ RR is strictly I-closed if for all {ft : t ∈ T} ⊂ F , if ft→If for some
f ∈ RR , then {ft : t ∈ T} is I-almost constant.

(4) A set D ⊂ R is determining for a family F ⊂ RR if for all f, g ∈ F , f = g
whenever f |D = g|D.
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2 Properties

Remark 2.1. (1) If {ft : t ∈ T} is I-almost constant, then it is I-convergent.

(2) If I ⊂ J and F is J -closed, then F is I-closed.

Lemma 2.2. Suppose ft→If and E ⊂ R.

(1) If |E| < add (I), then {ft|E : t ∈ T} is I-almost constant.

(2) If |E| < cov (I), then there is T0 6∈ I with ft|E = f |E for each t ∈ T0.

Proof. Let Ix = {t ∈ T : ft(x) 6= f(x)} for x ∈ E. Set I =
⋃
x∈E Ix. Then

ft|E = f |E for each t 6∈ I. Moreover, I ∈ I whenever add (I) > |E|, and
T0 = T \ I 6∈ I if cov (I) > |E|.

Corollary 2.3. If cov (I) > c, then each family F ⊂ RR is I-closed.

Theorem 2.4. If a family F has a determining set D with |D| < add (I),
then F is strictly I-closed.

Proof. Assume {ft : t ∈ T} ⊂ F , ft→If , D ⊂ R is a determining set for F
with |D| < add (I). By Lemma 2.2.1, there is a I ∈ I such that ft|D = ft′ |D
for t, t′ ∈ T \ I. Since D is determining, ft = ft′ and hence {ft : t ∈ T} is
I-almost constant.

Corollary 2.5. (1) If I is a σ-ideal and F is a family of functions having a
countable determining set, then F is strictly I-closed.

(2) The family C(R,R) of all continuous functions is strictly I-closed for any
proper σ-ideal I.

(3) Let I0 be the ideal of finite sets and T be uncountable. Then the family
C(R,R) is I0-closed.

Theorem 2.6. Assume F satisfies the condition

(∀g 6∈ F) (∃D ∈ [R]<cov (I)) (∀f ∈ F) f |D 6= g|D.

Then F is I-closed.

Proof. Suppose F is not I-closed. There exist {ft : t ∈ T} ⊂ F , g 6∈ F
such that ft→Ig. Since g 6∈ F , there is D ⊂ R such that |D| < cov (I) and
ft|D 6= g|D for every t ∈ T , contrary to Lemma 2.2.2.

Corollary 2.7. If cov (I) > ω, then the first class of Baire B1 is I-closed.



484 Tomasz Natkaniec

Proof. Suppose g 6∈ B1. Then there exist a non-empty perfect set P ⊂ R
and reals a < b such that the sets A = P ∩ [g < a] and B = P ∩ [g > b] are
both dense in P . Let D be a countable set such that both D ∩ A and D ∩ B
are dense in P . Then f |D has no continuity points for every f ∈ RR with
f |D = g|D; so f |D = g|D for no f ∈ B1. By Theorem 2.6, the class B1 is
I-closed.

Theorem 2.8. Suppose I is an ideal of subsets of T and F ⊂ RR.

(i) If add (I) = cov (I) = κ, then LIM I(F) ⊂ LIM κ(F).

(ii) If moreover I has a basis of size ≤ κ, then LIM I(F) = LIM κ(F).

Proof. Note that the assumption add (I) = cov (I) = κ implies that there is
a sequence {Iα : α < κ} ⊂ I such that Iα ⊂ Iβ for α < β < κ, Iα+1 \ Iα 6= ∅
for each α, and T =

⋃
α<κ Iα. If moreover I has a basis of size ≤ κ, then we

can assume that for each I ∈ I there is α < κ with I ⊂ Iα. (A basis of I is a
subfamily I0 ⊂ I such that for each I ∈ I there is I0 ∈ I0 with I ⊂ I0.)

(i) Let {ft : t ∈ T} ⊂ F and ft →I f . For each α < κ fix tα ∈ Iα+1 \ Iα.
Then {ftα : α < κ} κ-converges to f ; so f ∈ LIM κ(F). Indeed, for x ∈ R we
have ft(x) →I f(x). Thus I = {t ∈ T : ft(x) 6= f(x)} ∈ I. Consequently,
I ⊂ Iα for some α < κ and ftβ (x) = f(x) for β > α; so ftα →κ f(x).

(ii) Let f ∈ LIM κ(F). There exists {fα : α < κ} ⊂ F such that fα →κ f .
For t ∈ T define ft = fα for t ∈ Iα+1 \ Iα. Then ft →I f . In fact, for x ∈ R
there is α < κ with fβ(x) = f(x) for β > α. Thus {t ∈ T : ft(x) 6= f(x)} ⊂
Iα+1.

Theorem 2.9. Assume ω ≤ κ < |T | and Iκ = [T ]≤κ. If the family {ft : t ∈ T}
is Iκ-almost constant, then it possesses a determining set D with |D| ≤ κ.

Proof. Fix I ∈ Iκ with ft = ft′ for t, t′ 6∈ I. If I = ∅, then each set
D is determining for {ft : t ∈ T}. If I 6= ∅, fix t0 ∈ T \ I. For every pair
(t, t′) ∈ (I ∪ {t0})2 such that ft 6= ft′ choose x(t,t′) ∈ R such that ft(x(t,t′)) 6=
ft′(x(t,t′)). Let D be the set of all such x(t,t′). Then |D| ≤ κ2 = κ and D is
determining for {ft : t ∈ T}.

Corollary 2.10. Suppose κ is a cardinal number such that ω ≤ κ < |T |. A
family F ⊂ RR is strictly Iκ-closed iff each Iκ-convergent subfamily {ft : t ∈
T} has a determining set D such that |D| ≤ κ.

Proof. The implication “⇒” follows from Theorem 2.9. The implication
“⇐” is a consequence of Theorem 2.4, because add (Iκ) = κ+.
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Theorem 2.11. Suppose c is a regular cardinal. A family F is c-closed iff

(∀g 6∈ F) (∃D ∈ [R]<c) (∀f ∈ F) f |D 6= g|D

Proof. “⇐” is a consequence of Theorem 2.6, because cov ([c]<c) = c.
“⇒” Assume g ∈ RR and for each D ∈ [R]<c there is f ∈ F such that

f |D = g|D. Let R = {xξ : ξ < c}, Dα = {xξ : ξ < α} for α < c, and T = c.
For each α < c we can choose an fα ∈ F such that fα|Dα = g|Dα. Then
{fα : α < c}→cg and therefore g ∈ F .

3 Approximately Continuous Functions and Derivatives

In this and the next section we will need the following notations. Let T
be an uncountable set and let I be an ideal on T . We say that the family
{At : t ∈ T} ⊂ P(R) is point-I disjoint if {t ∈ T : x ∈ At} ∈ I for each x ∈ R
(cf. [DF], p. 7).

Fix an ideal J of subsets of R. Following [CiL] (cf. [RZ]), we shall say that
a set D ⊂ T ×R is a 0-1 set provided Dy ∈ I for every y ∈ R and R \Dt ∈ J
for every t ∈ T . We will consider the following statements.

SI,J : There exists a 0-1 set in T × R.

TI,J : No family {At : t ∈ T} ⊂ J c is point-I disjoint.

T ∗I,J : No family {At : t ∈ T} ⊂ BJ \ J is point-I disjoint.

Lemma 3.1. The following properties are equivalent:

(i) TI,J ;

(ii) ¬SI,J ;

(iii) for any family {At : t ∈ T} ⊂ J c there is T0 ⊂ P(T )\I with
⋂
t∈T0

At 6=
∅.

(iv) there is no family {Jt : t ∈ T} ⊂ J such that
⋃
t∈T0

Jt = R for each
T0 6∈ J .

Proof. The equivalence (i)⇔ (ii) follows from [RZ, Proposition 1.5]. (ii)⇔
(iii) and (iii)⇔ (iv) are obvious.

Given a semigroup G of Borel functions from R to R and an ideal J on R
we say that J is G-invariant if g−1(J) ∈ J for any g ∈ G and J ∈ J ; and
J is G-ergodic when

⋃
g∈G g

−1(A) ∈ J c for every A ∈ BJ \ J . Note that
the σ-ideals N and M are invariant and ergodic under the group of rational
translations.



486 Tomasz Natkaniec

Lemma 3.2. Suppose J is a σ-ideal on R which is invariant and ergodic under
some countable semigroup G. Then statements TI,J and T ∗I,J are equivalent.

Proof. (Cf. [RZ, Lemma 2.8].) The implication “⇐” is clear. To prove
“⇒” fix {At : t ∈ T} ⊂ BJ \ J . For t ∈ T put Bt =

⋃
g∈G g(At). Then

{Bt : t ∈ T} ⊂ J c; so there is T0 ∈ P(T ) \ J such that
⋂
t∈T0

Bt 6= ∅.
Fix x ∈

⋂
t∈T0

Bt. For each t ∈ T0 there is gt ∈ G with x ∈ gt(At). Let
Tg = {t ∈ T0 : gt = g}. Since T0 6∈ J , J is a σ-ideal and G is countable,
there is g ∈ G such that Tg 6∈ J . Then x ∈ g(

⋂
t∈Tg At); so

⋂
t∈Tg At is

non-empty.

We say that a family F ⊂ B1 is J -regular when:

(1) for each J ∈ J and for every Baire 1 function f : R → R there exists
f̃ ∈ F with f |J = f̃ |J ;

(2) for each f0, f1 ∈ F , if [f0 6= f1] ∈ J , then f0 = f1.

Note that the families Cd of all approximately continuous functions and D of
all derivatives are N -regular. (See e.g., [MD, Theorems 3 and 4].)

Theorem 3.3. Suppose F ⊂ B1 is J -regular and I is an ideal on T . Then
T ∗I,J ⇒ LIM I(F) = F .

Proof. Suppose {ft : t ∈ T} ⊂ F , ft →I f . For each T ∈ T put At = [ft 6=
f ]. By Corollary 2.7, f ∈ B1; so {At : t ∈ T} ⊂ BJ .

First, note that T0 = {t ∈ T : At ∈ J } 6∈ I. In fact, suppose T0 ∈ I. For
any t ∈ T set Bt = R if t ∈ T0 and Bt = At for t 6∈ T0. By T ∗I,J , there exists
T1 ∈ P(T ) \I such that

⋂
t∈T1

Bt 6= ∅. Then T2 = T1 \T0 6∈ I and
⋂
t∈T2

At =⋂
t∈T1

Bt 6= ∅. Fix x ∈
⋂
t∈T2

At. Then T2 ⊂ {t ∈ T : ft(x) 6= f(x)} 6∈ I,
contrary to ft→If .

Thus T0 6∈ I and for any t0, t1 ∈ T0 we have [ft0 6= ft1 ] ⊂ [ft0 6= f ]∪ [ft1 6=
f ] ∈ I; so ft0 = ft1 . This implies that f = ft for every t ∈ T0; so f ∈ F .

Theorem 3.4. Suppose F ⊂ B1 is J -regular and I is an ideal on T . Then
¬TI,J ⇒ LIM I(F) = B1.

Proof. Assume ¬TI,J . Then there exists a point-I disjoint family {At : t ∈
T} ⊂ J c. This means that Ix = {t ∈ T : x ∈ At} ∈ I for each x ∈ R. Put
Act = R\At for any t ∈ T . Corollary 2.7 implies LIM I(F) ⊂ B1; so we have to
show that B1 ⊂ LIM I(F). Fix f ∈ B1. For any t ∈ T there exists ft ∈ F with
ft|Act = f |Act . Then ft→If . Indeed, for any x ∈ R, if t 6∈ Ix, then x ∈ Act ; so
f(x) = ft(x), and therefore {t : ft(x) 6= f(t)} ⊂ Ix ∈ I.
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Corollary 3.5. Suppose J is a σ-ideal on R which is invariant and ergodic
under some countable semigroup G, and F ⊂ RR is J -regular. Then for any
σ-ideal I on T we have:

• LIM I(F) = F if TI,J holds;

• LIM I(F) = B1 if TI,J does not hold.

In particular, for families of approximately continuous functions and deriva-
tives we have the following results.

Corollary 3.6. For any σ-ideal I on T we have:

• LIM I(Cd) = Cd and LIM I(D) = D if TI,N holds;

• LIM I(Cd) = LIM I(D) = B1 if TI,N does not hold.

Theorem 3.7. Suppose |T | > ω and I = [T ]<ω. Then T ∗I,J holds for every
c.c.c. σ-ideal J on R.

Proof. This is a consequence of [DF, Lemma 1E(b)].

Corollary 3.8. Suppose |T | > ω and I = [T ]<ω. Then both families Cd and
D are I-closed.

Now assume that ω ≤ λ < |T | < c and Iλ = [T ]≤λ. Then I is a σ-ideal
and we again have only two possibilities.

• LIM Iλ(Cd) = Cd and LIM Iλ(D) = D if TIλ,N holds;

• LIM Iλ(Cd) = LIM Iλ(D) = B1 if TIλ,N does not hold.

In particular, if λ = ω, then both possibilities may happen. (See [MD] in
the case T = ω1.) First, it is easy to observe that

• if cov (N ) > ω1, then TIω,N holds.

(See [RZ, Lemma 2.7], or [DF, Lemma 1E(c)].) Now,

• If cov (N ) = ω1 = |T |, then TIω,N does not hold.

Indeed, in this case R =
⋃
α<ω1

Nα, where Nα ∈ N for α < ω1 and Nα ⊂ Nβ
if α ≤ β. Then the family of complements of Nα’s is a counterexample for
TIω,N . The statement TIω,N may does not hold also when |T | > ω1. This is
a consequence of the following result. (Recall that a set L ⊂ R is a Lusin set
if |L ∩M | ≤ ω for M ∈M.)
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Theorem 3.9. (I. Rec law) Suppose ω ≤ λ < |T | ≤ c. If there exists a Lusin
set L of the size |T |, then SIλ,N holds.

Proof. Fix a partition R = G ∪ H, H ∩ G = ∅, G ∈ M and H ∈ N . Let
L be a Lusin set and |L| = |T | = κ. Set B = {(x, y) : x ∈ L & y ∈ x + H}.
Then Bx ∈ N for all x ∈ L and for each y ∈ R we have By = {x ∈ L : x ∈
y −H} ∈ [L]≤ω ⊂ Iλ. Thus L× R \B is a 0-1 set in L× R.

Note that it is consistent that c > ω1 and there exists a Lusin set of the
size continuum. (Indeed, the generic set of reals in a Cohen extension is a
Lusin set. See e.g., [AM], p. 205.)

4 Measurable Functions

Let J be a c.c.c. σ-ideal. Throughout this section MJ will denote the family
of all BJ measurable functions.

For an ideal J set

shr (J ) = min {λ : (∀A 6∈ J ) (∃A0 ⊂ A) (A0 6∈ J & |A0| ≤ λ)}

non l(J ) = min {λ : (∀A ∈ BJ \ J ) (∃A0 ⊂ A) (A0 6∈ J & |A0| ≤ λ)}

cov l(J ) = min {|I| : (I ⊂ J ) & (
⋃
I ∈ BJ \ J )}

Note that for each ideal J (containing all singletons) we have add (J ) ≤
non (J ) ≤ non l(J ) ≤ shr (J ) and add (J ) ≤ cov l(J ) ≤ cov (J ). (See [RZ].)

Lemma 4.1. ([RZ, Theorem 2.16, Claim 2]) For any g ∈ RR\MJ there exists
a set Dg ⊂ R such that |Dg| ≤ shr (J ) and f |Dg = g|Dg for no f ∈MJ .

Theorem 4.2. If shr (J ) < cov (I), then the family MJ is I-closed.

Proof. This is an easy consequence of Lemmas 1.2 and 4.1.

Theorem 4.3. ¬TI,J ⇒ LIM I(MJ ) = RR

Proof. Let {Jt : t ∈ T} ⊂ J be a counterexample on TI,J ; so
⋂
t∈T0

(R\Jt) =
∅ for each T0 ∈ P(T ) \ I. Fix f ∈ RR and define the function ft for t ∈ T by
the formula ft|Jt = f |Jt and ft = 0 on R\Jt. Then ft ∈MJ and ft→If .

Theorem 4.4. If add (J ) = cov (J ) = add (I) = cov (I), then the condition
TI,J does not hold.

Proof. Let add (J ) = κ. There exist sequences {Iα : α < κ} ⊂ I, {Jα : α <
κ} ⊂ J such that Iα ⊂ Iβ and Jα ⊂ Jβ for α < β, and T =

⋃
α<κ Iα,

R =
⋃
α<κ Jα. Then B =

⋃
α<κ Iα × (R \ Jα) is a 0-1 set.
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Theorem 4.5. Assume a σ-ideal J satisfies the condition (∗) every B ∈ BJ
contains a subset S 6∈ BJ . If add (J ) = cov (I), then the family MJ is not
I-closed.

Proof. Let cov (I) = κ, T =
⋃
α<κ Iα, Iα ∈ I, and sets Iα are pairwise

disjoint. Since add (J ) = κ, there exists a sequence {Jα : α < κ} ⊂ J such
that Jα ⊂ Jβ if α < β and S =

⋃
α<κ Jα 6∈ J . By (∗), we can assume that

S 6∈ BJ . Let ft be the characteristic function of the set Jα for t ∈ Iα. Then
ft ∈MJ for t ∈ T , and {ft : t ∈ T} I-converges to the characteristic function
of S; so the limit is not BJ -measurable.

Lemma 4.6. ([RZ, Lemma 2.4.(i)]) There exists a set D ⊂ R such that |D| ≤
non l(J ) and D ∩B 6= ∅ for every B ∈ BJ \ J .

Theorem 4.7. Suppose {ft : t ∈ T} ⊂MJ , ft→J f .

(1) If non l(J ) < add (I), then there exists I ∈ I such that [ft 6= ft′ ] ∈ J for
each t, t′ ∈ T \ I.

(2) If non l(J ) < cov (I) and moreover f ∈ MJ , then {t ∈ T : [ft 6= f ] ∈
J } 6∈ I.

Proof. Let D be as in Lemma 4.6, i.e., |D| ≤ non l(J ) and D meets each set
B ∈ BJ \J . Observe that if f |D = g|D for some f, g ∈MJ , then [f 6= g] ∈ J .
Now, to prove (1) apply Lemma 2.2.(1) to find a I ∈ I such that ft|D = ft′ |D
for each t, t′ 6∈ I. Thus for t, t′ 6∈ I we have [ft 6= ft′ ] ∈ J .

To prove (2) use Lemma 2.2.(2) and observe that T0 = {t ∈ T : ft|D =
f |D} 6∈ I; so [ft 6= f ] ∈ J for all t ∈ T0.

Corollary 4.8. Suppose {ft : t ∈ T} ⊂ MJ , ft→If . If shr (J ) < cov (I),
then {t ∈ T : [ft 6= f ] ∈ J } 6∈ I.

Proof. This is a consequence of Theorems 4.2 and 4.7.2 (and the inequality
non l(J ) ≤ shr (J )).

We will say that a σ-ideal is separable, if there exists a countable family
D ⊂ BJ \ J such that for each B ∈ BJ \ J there is D ∈ D with D \ B ∈ J .
Note that the ideal M is separable.

Theorem 4.9. Assume {ft : t ∈ T} ∈MJ , f ∈MJ and J is a separable σ-
ideal such that cov l(J ) > shr (I). If ft→If , then {t ∈ T : [ft 6= f ] 6∈ J } ∈ I.

Proof. Suppose T0 = {t ∈ T : [ft 6= f ] 6∈ J } 6∈ I. Choose T1 ⊂ T0,
|T1| ≤ shr (I), T1 6∈ I. Fix t ∈ T1. Since ft, f ∈ MJ , there is Dt ∈ D such
that Dt \ [ft 6= f ] ∈ J . By the countability of D, there exists a set D ∈ D
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such that T2 = {t ∈ T1 : Dt = D} 6∈ I. Since |T2| ≤ shr (I) < cov l(J ), A =
D \

⋃
t∈T2

[ft = f ] 6∈ J . Thus for x ∈ A we have T2 ⊂ {t : ft(x) 6= f(x)} 6∈ I,
contrary to ft→If .

5 Problems

Fix an infinite set T . Let I0 denote the ideal of finite subsets of T .

Theorem 5.1. For any σ-algebra A the family MA of all A-measurable func-
tions is I0-closed.

Proof. Let {ft : t ∈ T} ⊂MA, f→I0f . Fix a one-to-one sequence {tn : n <
ω} ⊂ T . Then the sequence (ftn)n converges discretely (so, pointwise con-
verges) to f . Thus f is MA-measurable.

Corollary 5.2. (1) The families: B-of all Borel functions, MM-of all func-
tions having the Baire property, MN -of all Lebesgue measurable func-
tions are I0-closed.

(2) For each α < ω1, if f is the I0-limit of a sequence {ft : t ∈ T} ⊂ Bα, then
f ∈ Bα+1.

Observe that if T is countable, then no Baire class α is I0-closed. (See
[CL].) But if |T | > ω, then by Corollary 2.5.3, C(R,R) is I0-closed, and by
Corollary 2.7, B1 is I0-closed.

Theorem 5.3. It is consistent that T = c = ω2 and the class B2 is I0-closed.

Proof. This is a consequence of [PK, Theorem 5], where is shown that it
is consistent that c = ω2 and the class B2 is ω2-closed. Indeed, we have
B2 ⊂ LIM I0(B2) ⊂ LIM ω2(B2) = B2.

Problem 1. Suppose T is uncountable and α > 1. Is the class Bα I0-closed?

Now, consider the ideal Iω of countable sets and the family B of all Borel
functions. It is easy to observe that if |T | = ω1 then LIM Iω (B) = RR. We
don’t know what happens when ω1 < |T | ≤ c. Notice that this problem is
equivalent to the following one.

Problem 2. Does there exist B ⊂ T × R with the following properties:

(1) Bt ∈ B for each t ∈ T ;

(2) for each y ∈ R, either By ∈ Iω or R \By ∈ Iω.

(3) {y ∈ R : By ∈ Iω} 6∈ B?

Problem 3. Suppose that ω ≤ λ < λ+ < κ ≤ c, |T | = κ and Iλ = [T ]≤λ.
Are the classes B, Bα, α > 1, Iλ-closed?
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