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A MINIMAX FORMULA FOR THE BEST
NATURAL C([0,1))-APPROXIMATE BY
NONDECREASING FUNCTIONS

Abstract
Let f be a function in C([0,1]). We denote by f, the best approxi-
mant to f in L,([0,1]) by nondecreasing functions. It is well known that
the limit f. := lim,_. fp exists and f. is a best approximant to f in
C([0,1]) by nondecreasing functions. In this paper we show an explicit
formula for the function f. and we prove some additional minimization
properties of f..

1 Introduction.

Set S := {(a,b) € [0,1]* : a < b}. For f € L,([0,1]), (a,b) € S and 1 <
p < 00, we denote by mg(a,b) = my(a,b) the unique constant which is the
best L,([a, b])-approximant to f by constant functions. We note that m,, is
characterized by the equality

b
/ ep(f — my(a,b))dz =0, (1)

where ¢, (y) := |y|[P~sign(y). Similarly, for f € C([0,1]) we define m/_(a,b) =
Moo (a,b) replacing the space L, ([0, 1]) by the space C([0,1]) in the previous
definition. In this case, we have

moo(av b) = 1

2<maxf+minf>.

[a,b] [a,b]
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It is easy to show that m, : S — R is continuous for 1 < p < co. If I = [a, D]
we write m,(I) := my(a,b).
For 1 < p < oo and z € (0,1), we will consider the following functions.

fp(x) := sup inf my(a,d)
a<z b>x

fP(x) := inf supmy(a,b)
b>x a<lx
We will need the followings elementary properties.
Theorem 1.1. For 1 < p < oo, we have
1. fp, f? are a nondecreasing functions.
2. fp < fP forallxz € (0,1).
Proor. If z,y € (0,1) with = < y, then

sup inf m,(a, b) < sup inf m,(a,b) < sup inf m,(a,b).
a<2b><77 o(a )_a<gb>y ol )_a<2b>y p(a:0)

Therefore, f,(x) < f,(y). Analogously, we can prove that f? is a nondecreas-
ing function.

In order to prove 2, we consider z € (0,1). Since my(a,b) > inf.~, my(a, c)
for every a < x < b, we have

sup mp(a,b) > sup inf my(a,c) = fp(z).

a<z a<xz C>T
Consequently,
fP(x) = inf supm,(a,b) > fp(x).
b>z g<z
The proof of Theorem 1.1 is now complete. O

Since fp, fP are nondecreasing and bounded functions, we can extend con-
tinuously these functions to the points 0 and 1. Henceforth, we assume f,, f¥
are defined on [0, 1].

We also consider the sets

Fp={z€(0,1) : my(a,z) < my(z,b), Ya € [0,2) and Vb € (z,1]}.

It is easily seen that for 1 < p < oo and 0 < a < b < 1, the sets F, N [a, b] are
compact subsets of [0, 1].
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Let (a,b) € S. As is usual, we say that a nondecreasing function g €
L,([a,b]) is a best L,([a,b])-approximant to f € L,([a,b]) by nondecreasing

functions iff
b b
[ 1r-gras < [ (15 -npas

for every nondecreasing function h € L,([a,b]). Analogously, we say that a
nondecreasing function g is a best C([a, b])-approximant to f € C([a,b]) by
nondecreasing functions iff

—ql < —h
afgggblf ngargggblf |

for every nondecreasing function i (we note that a best C(][0, 1])-approximant
is not assumed to be continuous). Existence of best approximants by non-
decreasing functions has been proven in [9, 14]. Moreover, best L,([0, 1])-
aproximants by nondecreasing functions are unique when 1 < p < oo (see [9]).
However, uniqueness is not even true in C([0,1]) (see [14]).

The problem of best approximation by monotone functions has been stud-
ied extensively in the literature. For example, in nonparametric regression it is
considered the problem of isotonic regression. That means regression by non-
decreasing functions defined on a finite and partially ordered set (see [2, 13]).
Locally isotonic regression was applied in [1, 12] to signal and video process-
ing. Best approximation by monotone functions defined on a set {2 C R™ was
considered by several authors (see [7, 10, 14] for Q C R a interval, [3, 5, 6, §]
for Q = (0,1)™ and [11] for  C R™ an open and bounded set).

It was proved in [4] that for f € C([0,1]) the best L,([0, 1])-approximants
to f by nondecreasing functions converge uniformly as p — oo to f., a best
C([0, 1])-approximant to f by nondecreasing functions. The first goal of this
paper is to show that f, = foo = f°°. In the discrete case, this type of results
were obtained using others techniques by V. Ubhaya in [15]. The second
objective is to prove that the best approximant f., has an extra minimization
property. More precisely, we will show that fo.(z) = f(z) for every z € Fo,
and that if a,b € F with a < b, then f is a best C([a, b])-approximant to f
by nondecreasing functions. We call f,, the best natural C([0, 1])-approximant
to f by nondecreasing functions.

2 Minimax Formulas for Best Natural Nondecreasing Ap-
proximants.

We start by proving a minimax formula for best L,-approximants, 1 < p < oo.
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Theorem 2.1. Let f € L,([0,1]) for 1 <p < oo. Then f, = fP a.e. and f,
is the best L,([0, 1])-approzimant to f by nondecreasing functions.

PROOF. Let g be the best L,([0, 1])-approximant to f by nondecreasing func-
tions. The function g is defined almost everywhere. Let € (0,1) be a con-
tinuity point of g and we put o = g(x). We take 6 > 0. From [11, Theorem
3.2], we obtain

op(f —a+08)dz >0 (2)

{g2a—5}N(0,b)
for every b > . Since ¢, is strictly increasing, for 1 < p < oo, inequality (2)
and equation (1) imply that m,({g > o — 46} N (0,b)) > a — 9 for every b > z.
Therefore infy~., mp({g > a—3d}N(0,b)) > a— 6. We observe that {g > a—4}
is an interval with left end point less than x. Hence,

fp(x) = sup inf m,(a,b) > g(z) — 4.

a<x b>x

Since § is a positive and arbitrary point and g is continuous a.e., we obtain
g(x) < fp(z) a.e.. In a similar way, we can prove that fP(z) < g(x) a.e.. This
completes the proof. O

Lemma 2.2. Let f € C([0,1]). Then
lim my(a,b) = mo(a,b), (3)

p‘)OO
uniformly in 0 <a <b< 1.

PROOF. The equality (3) is a well known result when a and b are fixed num-
bers. We will prove that the limit is uniform in e and b. Suppose to the
contrary that there exist € > 0, a sequence p; tending to co, and sequences
ag < bg such that

m, (ak, by) — mi(ar, by)| > e (4)

We define the functions fi(x) := f(ar + (bx — ax)x). We observe that
mg(ak, br) = mgf"' (0,1) (5)

for every 1 < p < oo. Since f is a uniformly continuous and bounded function,
{fx} is an equicontinuous and bounded sequence. From the Arzela-Ascoli
Theorem, we get a function g € C([0,1]) and a subsequence of {f} which
converges to g in C([0,1]). For the sake of simplicity, we assume that fi
converges to g in C([0, 1]). We take k such that

sup |frx — gl < S and Im3, (0, 1) —=m? (0,1)] < < (6)
2€[0,1] 3 3
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It is easy to check that the first inequality in (6) implies
€
Imd*(0,1) — mg(0,1)] < 3 (7)

for every 1 < p < co. Now (4), (5), (7) and the second inequality in (6) lead
to a contradiction. O

We now establish our first main result.

Theorem 2.3. Let f € C([0,1]). Then > = fo = lim, .o fp, where the
limit is considered in the C([0, 1]) norm, and fo is a best C([0, 1])-approzimant
to f by nondecreasing functions.

ProoF. The equality f* = fo = lim, . fp is a consequence of Lemma 2.2,
the minimax formulae for f? and f,, and Theorem 2.1. Using the results in
[4], and Theorem 2.1 again, we conclude that f. is a best approximant to f
by nondecreasing functions. O

Corollary 2.4. The function foo = limy_.oc fp is continuous when f is con-
tinuous.

PROOF. It is an immediate consequence of [4, Corollary 2]. O

3 A Minimization Property of f..

We shall need the following elementary observation, which can be easily proved.
If feC([0,1])) and 0 < a <z < b <1, then

min{mes(a, ), Moo (2, 0)} < moo(a,b) < max{mes(a,z), moo(z,0)}.  (8)
The following is our second main theorem.

Theorem 3.1. Let f € C([0,1]). Then
1. f(x) = fool) for every x € Fu.

2. if a and B are in Foo with o < 3 then f* is the best natural C([o, B])-
approrimant to f by nondecreasing functions.

3. f° is constant in each connected component of (0,1) \ Feo.
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PRrROOF. We have infys, moo(2,0) < f(x) < sup,., Mos(a,x) for z € (0,1)
and infys, meo(2,0) < foo(z) < f®(x) < sup,., m(a,z) for € (0,1).
Since z € Fuo, SUPgey Moola, ) = infpsy moo(x,b). Therefore, 1 is true.
In order to prove 2, we take o, € F, with @ < (3, and z € («, ).
We consider a,b € (0,1) such that a < & < b. Suppose a < «, then, as
a € Foo, (8) implies moo(a,b) < moo(a,b). Therefore, sup, ., moo(a,b) =
SUPy <<z Moo (@, b). Similarly, we can prove that infys, SUp <., Moo(a,b) =
inf 5550 SUP 4 < g <x Moo(@, b). Thus, the restriction of £ to the interval [a, 3]
is the function f° relative to [a, 3]. Hence, applying Theorem 2.3 to this
interval, we obtain 2. We now prove 3. Let I be a connected component of
(0,1) \ Foo- Since the set Fo, is relatively closed in (0,1), I = (ag,by) with
0 < ap < by < 1. We suppose that f°° is not constant on (ag,by). Then there
exists m € N such that f° is not constant on [ag + =,bo — =]. Let {p,} be

a sequence with p, — oo when n — oo. Since fP~ convergeén to f*°, we can
suppose that fP~ is not constant on [ag + %, by — %n] Then, for each n there
exists some «;, € R such that the left end point of the interval {fP» > a,}
falls in the interval [ag+ -, bo — ]. We call this point z,,. From [11, Theorem

3.2] we get

Tn

b
/ ©p, (f —an)dz >0 and/ ©p, (f —an)dr <0

for every a € [0,z,) and every b € (x,,1]. The previous inequalities and
equality (1) imply that m,, (a,2,) < a, < m,, (2,,b) for all a € [0,,,) and
all b € (zp,1]. Therefore, z,, € F,,. Let x be an accumulation point of the
sequence z,. Using Lemma 2.2 and the continuity of the function m, we get
that € Foo N (ag, bp) which is a contradiction with the fact that (ag,bo) is a
connected component of (0,1) \ Fu. O
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