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(5800) Ŕıo Cuarto, Argentina. email: fmazzone@exa.unrc.edu.ar
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A MINIMAX FORMULA FOR THE BEST
NATURAL C([0, 1])-APPROXIMATE BY

NONDECREASING FUNCTIONS

Abstract

Let f be a function in C([0, 1]). We denote by fp the best approxi-
mant to f in Lp([0, 1]) by nondecreasing functions. It is well known that
the limit f∗ := limp→∞ fp exists and f∗ is a best approximant to f in
C([0, 1]) by nondecreasing functions. In this paper we show an explicit
formula for the function f∗ and we prove some additional minimization
properties of f∗.

1 Introduction.

Set S := {(a, b) ∈ [0, 1]2 : a < b}. For f ∈ Lp([0, 1]), (a, b) ∈ S and 1 <
p < ∞, we denote by mf

p(a, b) = mp(a, b) the unique constant which is the
best Lp([a, b])-approximant to f by constant functions. We note that mp is
characterized by the equality∫ b

a

ϕp(f −mp(a, b))dx = 0, (1)

where ϕp(y) := |y|p−1sign(y). Similarly, for f ∈ C([0, 1]) we define mf
∞(a, b) =

m∞(a, b) replacing the space Lp([0, 1]) by the space C([0, 1]) in the previous
definition. In this case, we have

m∞(a, b) =
1
2

(
max
[a,b]

f + min
[a,b]

f

)
.
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It is easy to show that mp : S → R is continuous for 1 < p ≤ ∞. If I = [a, b]
we write mp(I) := mp(a, b).

For 1 < p ≤ ∞ and x ∈ (0, 1), we will consider the following functions.

fp(x) := sup
a<x

inf
b>x

mp(a, b)

fp(x) := inf
b>x

sup
a<x

mp(a, b)

We will need the followings elementary properties.

Theorem 1.1. For 1 < p ≤ ∞, we have

1. fp, f
p are a nondecreasing functions.

2. fp ≤ fp for all x ∈ (0, 1).

Proof. If x, y ∈ (0, 1) with x < y, then

sup
a<x

inf
b>x

mp(a, b) ≤ sup
a<x

inf
b>y

mp(a, b) ≤ sup
a<y

inf
b>y

mp(a, b).

Therefore, fp(x) ≤ fp(y). Analogously, we can prove that fp is a nondecreas-
ing function.

In order to prove 2, we consider x ∈ (0, 1). Since mp(a, b) ≥ infc>x mp(a, c)
for every a < x < b, we have

sup
a<x

mp(a, b) ≥ sup
a<x

inf
c>x

mp(a, c) = fp(x).

Consequently,
fp(x) = inf

b>x
sup
a<x

mp(a, b) ≥ fp(x).

The proof of Theorem 1.1 is now complete.

Since fp, f
p are nondecreasing and bounded functions, we can extend con-

tinuously these functions to the points 0 and 1. Henceforth, we assume fp, f
p

are defined on [0, 1].
We also consider the sets

Fp = {x ∈ (0, 1) : mp(a, x) ≤ mp(x, b), ∀a ∈ [0, x) and ∀b ∈ (x, 1]}.

It is easily seen that for 1 < p ≤ ∞ and 0 < a < b < 1, the sets Fp ∩ [a, b] are
compact subsets of [0, 1].
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Let (a, b) ∈ S. As is usual, we say that a nondecreasing function g ∈
Lp([a, b]) is a best Lp([a, b])-approximant to f ∈ Lp([a, b]) by nondecreasing
functions iff ∫ b

a

|f − g|pdx ≤
∫ b

a

|f − h|pdx

for every nondecreasing function h ∈ Lp([a, b]). Analogously, we say that a
nondecreasing function g is a best C([a, b])-approximant to f ∈ C([a, b]) by
nondecreasing functions iff

max
a≤x≤b

|f − g| ≤ max
a≤x≤b

|f − h|

for every nondecreasing function h (we note that a best C([0, 1])-approximant
is not assumed to be continuous). Existence of best approximants by non-
decreasing functions has been proven in [9, 14]. Moreover, best Lp([0, 1])-
aproximants by nondecreasing functions are unique when 1 < p < ∞ (see [9]).
However, uniqueness is not even true in C([0, 1]) (see [14]).

The problem of best approximation by monotone functions has been stud-
ied extensively in the literature. For example, in nonparametric regression it is
considered the problem of isotonic regression. That means regression by non-
decreasing functions defined on a finite and partially ordered set (see [2, 13]).
Locally isotonic regression was applied in [1, 12] to signal and video process-
ing. Best approximation by monotone functions defined on a set Ω ⊂ Rn was
considered by several authors (see [7, 10, 14] for Ω ⊆ R a interval, [3, 5, 6, 8]
for Ω = (0, 1)n and [11] for Ω ⊂ Rn an open and bounded set).

It was proved in [4] that for f ∈ C([0, 1]) the best Lp([0, 1])-approximants
to f by nondecreasing functions converge uniformly as p → ∞ to f∗, a best
C([0, 1])-approximant to f by nondecreasing functions. The first goal of this
paper is to show that f∗ = f∞ = f∞. In the discrete case, this type of results
were obtained using others techniques by V. Ubhaya in [15]. The second
objective is to prove that the best approximant f∞ has an extra minimization
property. More precisely, we will show that f∞(x) = f(x) for every x ∈ F∞,
and that if a, b ∈ F∞ with a < b, then f∞ is a best C([a, b])-approximant to f
by nondecreasing functions. We call f∞ the best natural C([0, 1])-approximant
to f by nondecreasing functions.

2 Minimax Formulas for Best Natural Nondecreasing Ap-
proximants.

We start by proving a minimax formula for best Lp-approximants, 1 < p < ∞.



174 F. Mazzone and E. Schwindt

Theorem 2.1. Let f ∈ Lp([0, 1]) for 1 < p < ∞. Then fp = fp a.e. and fp

is the best Lp([0, 1])-approximant to f by nondecreasing functions.

Proof. Let g be the best Lp([0, 1])-approximant to f by nondecreasing func-
tions. The function g is defined almost everywhere. Let x ∈ (0, 1) be a con-
tinuity point of g and we put α = g(x). We take δ > 0. From [11, Theorem
3.2], we obtain ∫

{g≥α−δ}∩(0,b)

ϕp(f − α + δ)dx ≥ 0 (2)

for every b > x. Since ϕp is strictly increasing, for 1 < p < ∞, inequality (2)
and equation (1) imply that mp({g ≥ α− δ} ∩ (0, b)) ≥ α− δ for every b > x.
Therefore infb>x mp({g ≥ α−δ}∩ (0, b)) ≥ α−δ. We observe that {g ≥ α−δ}
is an interval with left end point less than x. Hence,

fp(x) = sup
a<x

inf
b>x

mp(a, b) ≥ g(x)− δ.

Since δ is a positive and arbitrary point and g is continuous a.e., we obtain
g(x) ≤ fp(x) a.e.. In a similar way, we can prove that fp(x) ≤ g(x) a.e.. This
completes the proof.

Lemma 2.2. Let f ∈ C([0, 1]). Then

lim
p→∞

mp(a, b) = m∞(a, b), (3)

uniformly in 0 ≤ a < b ≤ 1.

Proof. The equality (3) is a well known result when a and b are fixed num-
bers. We will prove that the limit is uniform in a and b. Suppose to the
contrary that there exist ε > 0, a sequence pk tending to ∞, and sequences
ak < bk such that

|mf
pk

(ak, bk)−mf
∞(ak, bk)| ≥ ε. (4)

We define the functions fk(x) := f(ak + (bk − ak)x). We observe that

mf
p(ak, bk) = mfk

p (0, 1) (5)

for every 1 < p ≤ ∞. Since f is a uniformly continuous and bounded function,
{fk} is an equicontinuous and bounded sequence. From the Arzela-Ascoli
Theorem, we get a function g ∈ C([0, 1]) and a subsequence of {fk} which
converges to g in C([0, 1]). For the sake of simplicity, we assume that fk

converges to g in C([0, 1]). We take k such that

sup
x∈[0,1]

|fk − g| < ε

3
and |mg

pk
(0, 1)−mg

∞(0, 1)| < ε

3
. (6)
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It is easy to check that the first inequality in (6) implies

|mfk
p (0, 1)−mg

p(0, 1)| < ε

3
(7)

for every 1 < p ≤ ∞. Now (4), (5), (7) and the second inequality in (6) lead
to a contradiction.

We now establish our first main result.

Theorem 2.3. Let f ∈ C([0, 1]). Then f∞ = f∞ = limp→∞ fp, where the
limit is considered in the C([0, 1]) norm, and f∞ is a best C([0, 1])-approximant
to f by nondecreasing functions.

Proof. The equality f∞ = f∞ = limp→∞ fp is a consequence of Lemma 2.2,
the minimax formulae for fp and fp, and Theorem 2.1. Using the results in
[4], and Theorem 2.1 again, we conclude that f∞ is a best approximant to f
by nondecreasing functions.

Corollary 2.4. The function f∞ = limp→∞ fp is continuous when f is con-
tinuous.

Proof. It is an immediate consequence of [4, Corollary 2].

3 A Minimization Property of f∞.

We shall need the following elementary observation, which can be easily proved.
If f ∈ C([0, 1]) and 0 ≤ a < x < b ≤ 1, then

min{m∞(a, x),m∞(x, b)} ≤ m∞(a, b) ≤ max{m∞(a, x),m∞(x, b)}. (8)

The following is our second main theorem.

Theorem 3.1. Let f ∈ C([0, 1]). Then

1. f(x) = f∞(x) for every x ∈ F∞.

2. if α and β are in F∞ with α < β then f∞ is the best natural C([α, β])-
approximant to f by nondecreasing functions.

3. f∞ is constant in each connected component of (0, 1) \ F∞.
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Proof. We have infb>x m∞(x, b) ≤ f(x) ≤ supa<x m∞(a, x) for x ∈ (0, 1)
and infb>x m∞(x, b) ≤ f∞(x) ≤ f∞(x) ≤ supa<x m∞(a, x) for x ∈ (0, 1).
Since x ∈ F∞, supa<x m∞(a, x) = infb>x m∞(x, b). Therefore, 1 is true.
In order to prove 2, we take α, β ∈ F∞, with α < β, and x ∈ (α, β).
We consider a, b ∈ (0, 1) such that a < x < b. Suppose a < α, then, as
α ∈ F∞, (8) implies m∞(a, b) ≤ m∞(α, b). Therefore, supa<x m∞(a, b) =
supα≤a<x m∞(a, b). Similarly, we can prove that infb>x supα≤a<x m∞(a, b) =
infβ≥b>x supα≤a<x m∞(a, b). Thus, the restriction of f∞ to the interval [α, β]
is the function f∞ relative to [α, β]. Hence, applying Theorem 2.3 to this
interval, we obtain 2. We now prove 3. Let I be a connected component of
(0, 1) \ F∞. Since the set F∞ is relatively closed in (0, 1), I = (a0, b0) with
0 ≤ a0 < b0 ≤ 1. We suppose that f∞ is not constant on (a0, b0). Then there
exists m ∈ N such that f∞ is not constant on [a0 + 1

m , b0 − 1
m ]. Let {pn} be

a sequence with pn → ∞ when n → ∞. Since fpn converges to f∞, we can
suppose that fpn is not constant on [a0 + 1

m , b0 − 1
m ]. Then, for each n there

exists some αn ∈ R such that the left end point of the interval {fpn ≥ αn}
falls in the interval [a0 + 1

m , b0− 1
m ]. We call this point xn. From [11, Theorem

3.2] we get ∫ b

xn

ϕpn
(f − αn)dx ≥ 0 and

∫ xn

a

ϕpn
(f − αn)dx ≤ 0

for every a ∈ [0, xn) and every b ∈ (xn, 1]. The previous inequalities and
equality (1) imply that mpn

(a, xn) ≤ αn ≤ mpn
(xn, b) for all a ∈ [0, xn) and

all b ∈ (xn, 1]. Therefore, xn ∈ Fpn
. Let x be an accumulation point of the

sequence xn. Using Lemma 2.2 and the continuity of the function mp we get
that x ∈ F∞ ∩ (a0, b0) which is a contradiction with the fact that (a0, b0) is a
connected component of (0, 1) \ F∞.
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