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HENSTOCK-KURZWEIL INTEGRALS

WITH RESPECT TO ABSTRACT
DERIVATION BASES IN RIESZ SPACES

Abstract

The Ward and Perron integrals, with respect to abstract derivation
bases, for Riesz-space-valued functions are introduced. It is shown that
they are equivalent to the respectively defined Henstock-Kurzweil inte-
gral.

1 Introduction.

The Henstock-Kurzweil integral for Riesz-space-valued functions was investi-
gated in numerous papers (see, for example, [10, 14, 16, 17, 1, 15]). In [2] a
version of this integral with respect to a wide class of derivation bases was
considered. The Henstock-Kurzweil approach to integration is closely related
to the one of Ward (see [21]). In fact the Henstock theory of integration arose
from investigation of the Ward integral (see [6, 7, 8]). In the real-valued case,
the Ward integral is equivalent to the Henstock-Kurzweil integral and both are
known to be equivalent to the Perron integral (see [5, 12]). In this paper we
consider suitable extensions to the Riesz-space-valued case of the Ward and
Perron integral with respect to a derivation basis. A definition of the Ward-
type integral is no problem and the definition we are introducing in Section
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3 is a direct generalization of the corresponding definition for real functions,
giving an integral equivalent to the Henstock-Kurzweil integral (with respect
to the same basis). The situation is more delicate with the definition of the
Perron-type integral. The problem is that the most natural extension of the
definition based on the notion of the pointwise upper and lower derivatives
does not suit the purpose. So we must use derivatives of another type, so
called (g)-derivatives, which are defined by a kind of “global” differentiation
procedure. With so-defined upper and lower (g)-derivatives, we obtain in Sec-
tion 4 well defined Perron-type integral and prove that it is equivalent to the
Ward integral (with respect to the same derivation basis) and hence to the
respective Henstock-Kurzweil integral.

Note that this type of integrals can be applied to the problem of recov-
ering, by generalized Fourier formulae, the Riesz-space-valued coefficients of
orthogonal series (see [3]).

2 Preliminaries.

A derivation basis (or simply a basis) B in a measure space (X,M, µ) is a filter
base on the product space I ×X, where I is a family of measurable subsets
of X having positive measure µ and called generalized intervals or B-intervals.
That is, B is a nonempty collection of subsets of I ×X so that each β ∈ B is
a set of pairs (I, x), where I ∈ I, x ∈ X, and B has the filter base property:
∅ 6∈ B and for every β1, β2 ∈ B there exists β ∈ B such that β ⊂ β1 ∩ β2. So
each basis is an ordered directed set and the order is given by the “reversed”
inclusion. We shall refer to the elements β of B as basis sets. In this paper
we shall always suppose that µ(X) < +∞, µ(I) > 0 whenever I ∈ I and that
(I, x) ∈ β implies x ∈ I, although it is not the case in the general theory (see
[11, 12, 18]). For a set L ⊂ X and β ∈ B we write

β(L) = {(I, x) ∈ β : I ⊂ L} and β[L] = {(I, x) ∈ β : x ∈ L}.

We shall assume that for any two basis sets β1, β2 ∈ B and for any disjoint
sets L1, L2 there exists β ∈ B such that β[L1 ∪ L2] ⊂ β1[L1] ∪ β2[L2].

We shall suppose in this paper that a basis B ignores no point; i.e., β[{x}] 6=
∅ for any β ∈ B and any x ∈ X. In the case of a topological space X an
example of a basis B which ignores no point is a Vitali basis, i.e. such a basis
that for any x, for each neighborhood U(x) of x and for every β ∈ B the set
{(I, x) ∈ β, I ⊂ U(x)} is nonempty. The simplest Vitali derivation basis in
Rm is the full interval basis. In this case, I is the set of all m-dimensional
intervals in Rm and each basis set is defined by a positive function δ on Rm
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called gage as

βδ = {(I, x) : I ∈ I, x ∈ I ⊂ U(x, δ(x))},

where U(x, δ(x)) is the ball of center x and radius δ(x). So the full interval
basis is the family (βδ)δ where δ runs over the set of all possible gages.

A finite collection π ⊂ β is called a β-partition if, for any distinct elements
(I ′, x′) and (I ′′, x′′) in π, the B-intervals I ′ and I ′′ are non-overlapping (i.e.,
their intersection is a set of measure µ zero). If a partition π = {(Ii, xi)} ⊂
β(I) for some I ∈ I is such that ∪iIi = I, then we say that π is a β-partition
of I. We denote by the symbol Π(β; I) the totality of all β-partitions of a
generic B-interval I. We say that a basis B has the partitioning property if
the following conditions hold: (i) for each finite collection I0, I1, . . . , In of B-
intervals with I1, . . . , In ⊂ I0 the difference I0 \ ∪n

i=1Ii can be expressed as
a finite union of pairwise non-overlapping B-intervals; (ii) for each B-interval
I and for any β ∈ B there exists π ∈ Π(β; I). In the particular case of the
full interval basis on R, this property has long been known as the Cousin
lemma. For the full interval basis in Rm, the partitioning property can also
be established without difficulty. But for some bases this property was proved
only recently (see [4]), and there are bases for which it is not valid at all or
holds true only in some weaker sense as it is in the case of the symmetric
approximate basis (see [13, 20]).

We denote by R a Dedekind complete Riesz space (see [9]). We add to
R two extra elements, +∞ and −∞, extending ordering and operations in a
natural way (see [2]) and denote R = R

⋃
{+∞,−∞}. A nonempty set T ⊂ R

is said to be upper bounded if there exists s1 ∈ R such that s1 ≥ t for all t ∈ T ,
lower bounded if there exists s2 ∈ R such that s2 ≤ t for all t ∈ T , bounded
if it is both upper and lower bounded. By convention, we will say that the
supremum of any not upper bounded nonempty subset of R is +∞ and the
infimum of any not lower bounded nonempty subset of R is −∞. Given a net
(rη)η∈Λ in R, where (Λ,≥) 6= ∅ is a directed set, we set

lim sup
η

rη = inf
η

[sup
ζ≥η

rζ ] and lim inf
η

rη = sup
η

[ inf
ζ≥η

rζ ].

We say that (rη)η order converges (or simply (o)-converges) to r ∈ R if r =
lim supη rη = lim infη rη, and we write (o) limη∈Λ rη = r. An (o)-net (rη)η∈Λ

is a monotone decreasing net of elements of R, such that infη∈Λ rη = 0. As a
particular case of the above definitions we get the notion of (o)-convergence of
a sequence in R and the notion of (o)-sequence. Let τ : I → R be a B-interval
function with R being a Dedekind complete Riesz space.
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We say that τ is subadditive [superadditive or additive ] if τ(I ′
⋃

I ′′) ≤
[respectively,≥ or =]τ(I ′) + τ(I ′′) whenever I ′ and I ′′ are any two non-
overlapping B-intervals.

3 The Ward Integral.

In this section we introduce the Ward integral with respect to a basis B
for Riesz-space-valued functions, and we prove that it is equivalent to the
Henstock-Kurzweil integral. From now on, we fix a measure space (X,M, µ)
and a basis B in it having the partitioning property. We shall always suppose
that all the suprema and the sums “along the empty set” are equal to zero.

We recall the definition of the Henstock-Kurzweil integral with respect to
a basis introduced in [2, Definition 3.2], (for the real case, see [19, 12]). If I is
a fixed B-interval, f : I → R and π ≡ {(Ji, ξi) : i = 1, . . . , n} is a partition of

I, we will call the quantity
n∑

i=1

µ(Ji) f(ξi) the Riemann sum associated with

π and will denote it by the symbol S(f, π).

Definition 3.1. Let R be a Dedekind complete Riesz space and L ⊂ X be
a B-interval. We say that f : L → R is Henstock-Kurzweil integrable with
respect to B ( simply, HB-integrable) on L if there exists an element Y ∈ R
such that

inf
β∈B

(sup {|S(f, π)− Y | : π ∈ Π(β;L)}) = 0. (1)

In this case we write (HB)
∫

L

f = Y.

It is easy to see that the element Y in (1) is uniquely determined. The fol-
lowing properties of the integral can be easily established (see [2, Propositions
3.5 and 3.6]).

Proposition 3.2. If L = I ∪ J where L, I, J are B-intervals, I and J are
non-overlapping and f is HB-integrable on I and on J , then f is HB-integrable
on L, too, and

(HB)
∫

L

f = (HB)
∫

I

f + (HB)
∫

J

f.

Proposition 3.3. If f is HB-integrable on a B-interval L and J ⊂ L is a
B-interval, then f is HB-integrable on J , too.
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It follows from Propositions 3.2 and 3.3 that for any HB-integrable function
f : L → R, defined in a B-interval L, the indefinite HB-integral is defined as
an additive R-valued B-interval function on the family of all B-intervals I in
L. We shall denote it by

F (I) = (HB)
∫

I

f.

We now introduce the Ward integral with respect to the basis B for functions
with values in a Dedekind complete Riesz space.

Definition 3.4. Let L ⊂ X be a B-interval and let f : L → R. A superaddi-
tive function H : I → R is called a major function of f if

3.4.1) there exists β ∈ B such that µ(I) f(x) ≤ H(I) whenever (I, x) ∈ β.

A subadditive function K : I → R is said to be a minor function of f if

3.4.2) there exists β ∈ B such that µ(I) f(x) ≥ K(I) whenever (I, x) ∈ β.

The following property is essential for the definition of the integral.

Lemma 3.5. If H is a major function of f and K is a minor function of f ,
then H(I) ≥ K(I) for each I ∈ I, I ⊂ L.

Proof. If H and K are a major and a minor function of f and β1, β2 satisfy
3.4.1), 3.4.2) respectively, then β ⊂ β1 ∩ β2 satisfies both 3.4.1) and 3.4.2).
This implies

H(J) ≥ K(J) (2)

whenever J ∈ I and x ∈ L are such that (J, x) ∈ β.
Fix arbitrary I ∈ I, I ⊂ L, and let π ≡ {(Ji, ξi) : i = 1, . . . , n} ∈ Π(β; I).

From (2), superadditivity of H and subadditivity of K we get

H(I) ≥
n∑

i=1

H(Ji) ≥
n∑

i=1

K(Ji) ≥ K(I).

The above property of the major and minor functions opens the way to
the following definition.
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Definition 3.6. A function f : L → R is said to be Ward integrable with
respect to B (or simply WB-integrable) on L if f has both major and minor
functions and

inf{H(L)} = sup{K(L)} ∈ R, (3)

where the involved infima and suprema are taken with respect to all major
functions H and all minor functions K of f respectively. The common value

Z in (3) we call the WB-integral of f , and we write (WB)
∫

L

f = Z.

We shall prove now that HB-integral and WB-integral are equivalent.

Theorem 3.7. For any function f : L → R the following are equivalent:

3.7.1) f is HB-integrable on L;

3.7.2) f is WB-integrable on L.

Moreover, in this case we have (WB)
∫

L

f = (HB)
∫

L

f .

Proof. 3.7.1) =⇒ 3.7.2) By hypothesis, f is HB-integrable. By virtue of the
Saks-Henstock Lemma (see [2, Lemma 3.9]) there exists an (o)-net (pβ)β∈B
such that for each β ∈ B

n∑
i=1

∣∣∣∣µ(Ji) f(ξi)− (HB)
∫

Ji

f

∣∣∣∣ ≤ pβ

for each π = {(Ji, ξi) : i = 1, . . . , n} ∈ Π(β;L).
For every β ∈ B, define χ

β : I → R by setting

χ
β(I) ≡ sup

{
n∑

i=1

∣∣∣∣µ(Ji) f(ξi)− (HB)
∫

Ji

f

∣∣∣∣ : (4)

{(Ji, ξi) : i = 1, . . . , n} ∈ Π(β; I)}, I ∈ I.

It is easy to check that χ
β is nondecreasing (with respect to inclusion) and

χ
β(L) ≤ pβ .

Let F be the indefinite HB-integral of f . It is easy to show that F + χ
β is

a major function and F − χ
β is a minor function of f . Thus, by Lemma 3.5,

for each β ∈ B we get

F (L)− pβ ≤ F (L)− χ
β(L) ≤ sup{K(L) : K is a minor function of f}

≤ inf{H(L) : H is a major function of f} ≤ F (L) + χ
β(L) ≤ F (L) + pβ .
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By arbitrariness of β we obtain

inf{H(L) : H is amajor function of f}
= sup{K(L) : K is aminor function of f}

=F (L) = (HB)
∫

L

f.

This completes the first part of the proof.
3.7.2) =⇒ 3.7.1) By WB-integrability of f , for every β ∈ B there exist a

major function Hβ and a minor function Kβ such that

0 ≤ Hβ(L)−Kβ(L) ≤ pβ . (5)

Pick arbitrarily π ≡ {(Ji, ξi) : i = 1, . . . , n} ∈ Π(β;L). We have

Kβ(L) ≤
n∑

i=1

Kβ(Ji) ≤ S(f,E) ≤
n∑

i=1

Hβ(Ji) ≤ Hβ(L),

where S(f, π) ≡
n∑

i=1

µ(Ji) f(ξi) is the involved Riemann sum. Taking the

suprema and the infima, we get

Kβ(L) ≤ inf{S(f, π) : π ∈ Π(β;L)}
≤ sup{S(f, π) : π ∈ Π(β;L)} ≤ Hβ(L).

(6)

Thus, by (5) and (6), we obtain

0 ≤ sup{S(f, π) : π ∈ Π(β;L)} − inf{S(f, π) : π ∈ Π(β;L)}
≤ Hβ(L)−Kβ(L) ≤ pβ .

(7)

Moreover, we observe that

(o) lim
β∈B

[sup{S(f, π) : π ∈ Π(β;L)} − inf{S(f, π) : π ∈ Π(β;L)}]

= inf
β∈B

[sup{S(f, π) : π ∈ Π(β;L)}]− sup
β∈B

[inf{S(f, π) : π ∈ Π(β;L)}] = 0,

by virtue of (7). Let

Y ≡ inf
β∈B

[sup{S(f, π) : π ∈ Π(β;L)}] = sup
β∈B

[inf{S(f, π) : π ∈ Π(β;L)}]

= (o) lim
β∈B

[sup{S(f, π) : π ∈ Π(β;L)}] = (o) lim
β∈B

[inf{S(f, π) : π ∈ Π(β;L)}].
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There exists an (o)-net (wβ)β∈B such that ∀β ∈ B we have

|S(f, π)− Y | ≤ wβ for allπ ∈ Π(β;L),

and hence
sup{|S(f, π)− Y | : π ∈ Π(β;L)} ≤ wβ .

Thus f is HB-integrable on L. Then, as it is already proved in the first part,
the integrals coincide.

4 The Perron Integral.

The Perron integral for real-valued functions is defined by means of the point-
wise upper and lower derivatives. In the case of a Riesz-space-valued B-interval
function τ those derivatives with respect to a basis B at a fixed point x can
be defined respectively as

τ ′(x) = inf
β∈B

[
sup

{
τ(I)
µ(I)

: (I, x) ∈ β[{x}]
}]

and

τ ′(x) = sup
β∈B

[
inf
{

τ(I)
µ(I)

: (I, x) ∈ β[{x}]
}]

.

Since β[{x}] 6= ∅ by the assumption imposed on B, we have τ ′(x) ≥ τ ′(x)
and we can define the derivative τ ′(x) of the function τ at x with respect to
B as the common value τ ′(x) = τ ′(x) if this equality holds. Unfortunately
derivatives defined in this fashion cannot be used in the definition of a Perron-
type integral in this case. The reason is that even in the case of the usual full
interval basis, there exists a function τ defined on the family of all intervals
of the real line with values in the space L0([0, 1]) for which the condition
τ ′(x) = 0 everywhere on an interval I = [0, 1] does not imply that τ(I) = 0.
This follows from an example given in [1, Remark 3.15].

However a Perron-type integral can be defined for the Riesz-space-valued
case if we use another type of derivatives in place of the pointwise ones.
Namely, the notions of upper and lower (g)-derivatives will suit our purpose.
From now on, let L be a fixed B-interval.

Definition 4.1. We say that a B-interval function τ : I → R is (g)-differen-
tiable in L (with respect to the basis B) if there exists a function Dτ : L → R
such that

inf
β∈B

[
sup

{ ∣∣∣∣ τ(I)
µ(I)

−Dτ(x)
∣∣∣∣ : (I, x) ∈ β[L]

}]
= 0, (8)
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or, equivalently, if there exist a function Dτ : L → R and an (o)-net (pβ)β∈B
such that, for all β ∈ B and for every (I, x) ∈ β[L], we get

|τ(I)− µ(I) Dτ(x)| ≤ µ(I) pβ .

The function Dτ in (8) is called the (g)-derivative of τ in L.

Definition 4.2. Let τ be a B-interval function. The function Dτ : L → R is
said to be upper (g)-derivative of τ in L (with respect to the basis B) if there
exists an (o)-net (pβ)β∈B such that for each β ∈ B and x ∈ L we have

0 ≤ sup
{

τ(I)
µ(I)

: (I, x) ∈ β

}
−Dτ(x) ≤ pβ . (9)

Similarly, the function Dτ : L → R is said to be lower (g)-derivative of τ in
L (with respect to the basis B) if there exists an (o)-net (qβ)β∈B such that for
each β ∈ B and x ∈ L we have

0 ≤ Dτ(x)− inf
{

τ(I)
µ(I)

: (I, x) ∈ β

}
≤ qβ . (10)

Remark 4.3. Note that for any β ∈ B and x ∈ L we get

Dτ(x)− qβ ≤ inf
{

τ(I)
µ(I)

: (I, x) ∈ β

}
≤ sup

{
τ(I)
µ(I)

: (I, x) ∈ β

}
≤ Dτ(x) + pβ .

So from arbitrariness of β ∈ B it follows that Dτ(x) ≤ Dτ(x) for all x ∈ L.
Moreover, it is easy to see that the (g)-derivative and the upper and lower
(g)-derivatives are defined uniquely.

Theorem 4.4. A function τ : I → R is (g)-differentiable in L if and only if

Dτ(x) = Dτ(x) for all x ∈ L, (11)

and in this case we get

Dτ(x) = Dτ(x) = Dτ(x), x ∈ L.
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Proof. If τ is (g)-differentiable in L, then there exists an (o)-net (wβ)β∈B
such that, for each β ∈ B, x ∈ L and (I, x) ∈ β, we have

−wβ ≤
τ(I)
µ(I)

−Dτ(x) ≤ wβ (12)

and hence, for each β ∈ B and x ∈ L,

−wβ + Dτ(x) ≤ sup
{

τ(I)
µ(I)

: (I, x) ∈ β

}
(13)

and

inf
{

τ(I)
µ(I)

: (I, x) ∈ β

}
≤ wβ + Dτ(x).

Taking in (13) the (o)-limit as β varies in B, we get

Dτ(x) ≤ (o) lim
β∈B

[
sup

{
τ(I)
µ(I)

: (I, x) ∈ β

}]
= inf

β∈B

[
sup

{
τ(I)
µ(I)

: (I, x) ∈ β

}]
.

Hence, for all x ∈ L, we obtain

Dτ(x) ≤ sup
{

τ(I)
µ(I)

: (I, x) ∈ β

}
. (14)

From (12) we get also

sup
{

τ(I)
µ(I)

: (I, x) ∈ β

}
−Dτ(x) ≤ wβ for eachβ ∈ B, for all x ∈ L. (15)

From (14), (15) and 4.2 it follows that Dτ(x) = Dτ(x) for all x ∈ L. Similarly,
it is possible to check that Dτ(x) = Dτ(x) for all x ∈ L.

Conversely, suppose that (11) holds, and let Dτ(x) be the common value
in (11). Let (pβ)β∈B and (qβ)β∈B be the nets in the definitions of upper and
lower (g)-derivatives (see (9) and (10)) respectively, and put vβ ≡ pβ + qβ

for every β ∈ B, so that (vβ)β∈B is an (o)-net. Then, whenever x ∈ L and
(I, x) ∈ β, we have

τ(I)
µ(I)

−Dτ(x) ≤ vβ and
τ(I)
µ(I)

−Dτ(x) ≥ −vβ .

Hence,
∣∣∣ τ(I)
µ(I) −Dτ(x)

∣∣∣ ≤ vβ , whenever x ∈ L, (I, x) ∈ β. So, τ is (g)-
differentiable in L, with Dτ being its (g)-derivative.
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Theorem 4.5. A function τ : [a, b] → R is (g)-differentiable in L if and only
if the following Cauchy-type condition holds:

(o) lim
β∈B

[
sup
x∈L

(
sup

(I,x)∈β

τ(I)
µ(I)

− inf
(I′,x)∈β

τ(I ′)
µ(I ′)

)]

= inf
β∈B

[
sup
x∈L

(
sup

(I,x)∈β

τ(I)
µ(I)

− inf
(I′,x)∈β

τ(I ′)
µ(I ′)

)]
= 0.

Proof. Suppose that τ is (g)-differentiable in L. Then, by Theorem 4.4,
Dτ coincides with Dτ and Dτ . So, by the definitions of upper and lower
derivatives, there exist two (o)-nets (pβ)β∈B, (qβ)β∈B such that, for every
β ∈ B and x ∈ L, we have

sup
{

τ(I)
µ(I)

: (I, x) ∈ β

}
− inf

{
τ(I ′)
µ(I ′)

: (I ′, x) ∈ β

}
≤Dτ(x) + pβ −Dτ(x) + qβ = pβ + qβ .

So the result follows by arbitrariness of β ∈ B and x ∈ L.
Conversely, let the Cauchy-type condition be satisfied. Put

τ∗(x) = sup
{

τ(I)
µ(I)

: (I, x) ∈ β

}
,

τ∗(x) = inf
{

τ(I ′)
µ(I ′)

: (I, x) ∈ β

}
, x ∈ L.

So, there exists an (o)-net (pβ)β∈B such that for each β ∈ B we get

0 ≤ sup
x∈L

(τ∗(x)− τ∗(x)) = sup
x∈L

(
τ∗(x)− inf

{
τ(I ′)
µ(I ′)

: (I, x) ∈ β

})
≤ pβ .

Thus, τ∗(x) = Dτ(x) for all x ∈ L. Analogously, we get that τ∗(x) = Dτ(x)
for all x ∈ L. So, Dτ(x) = Dτ(x) for all x ∈ L. Hence, by Theorem 4.4, it
follows that τ is (g)-differentiable in L.

Definition 4.6. Let f : L → R. A superadditive function H : I → R is called
a (P )-major function of f if

4.6.1) DH(x) ≥ f(x) for every x ∈ L.

A subadditive map K : I → R is said to be a (P )-minor function of f if
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4.6.2) DK(x) ≤ f(x) for each x ∈ L.

Definition 4.7. A function f : L → R is said to be Perron integrable with
respect to B (or briefly PB-integrable) on L if f has both (P )-major and (P )-
minor functions and

inf{H(L)} = sup{K(L)} ∈ R, (16)

where the involved infima and suprema are taken with respect to all (P )-
major functions H and all (P )-minor functions K of f respectively. The
common value Yp in (16) will be called the PB-integral of f , and we write

(PB)
∫

L

f = Yp.

Remark 4.8. We note that, if H is a (P )-major function of f and K is a
(P )-minor function of f , then H(I) ≥ K(I) for each I ∈ I, I ⊂ L. Indeed,
let I ∈ I, I ⊂ L, and π ≡ {(Ji, ξi) : i = 1, . . . , n} ∈ Π(β; I). There exists an
(o)-net (pβ)β∈B such that, for each β ∈ B and whenever x ∈ L, (I, x) ∈ β we
have

K(I)
µ(I)

− pβ ≤ sup
{

K(I)
µ(I)

: (I, x) ∈ β

}
− pβ ≤ f(x)

≤ inf
{

H(I)
µ(I)

: (I, x) ∈ β

}
+ pβ ≤

H(I)
µ(I)

+ pβ .

Having applied this inequality to each Ji we get

K(I)− µ(X)pβ ≤
n∑

i=1

K(Ji)− µ(X)pβ

≤
n∑

i=1

H(Ji) + µ(X)pβ ≤ H(I) + µ(X)pβ ,

and so K(I) ≤ H(I)+2µ(X) pβ for each β. Hence K(I) ≤ H(I), by arbitrari-
ness of β.

We now prove the equivalence between the Henstock-Kurzweil, Perron and
Ward integrals. In order to do this, it is enough to prove the following.

Theorem 4.9. A function f : L → R is WB-integrable if and only if it is
PB-integrable, and in this case the two integrals coincide.
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Proof. First of all, we note that any major function H is a (P )-major func-
tion too, because f(x) ≤ H(I)

µ(I) for any (I, x) ∈ β implies

f(x) ≤ inf
{

H(I)
µ(I)

: (I, x) ∈ β

}
≤ DH(x) (x ∈ L).

Similarly, any minor function is a (P )-minor function. So, we obtain that
Ward integrability implies Perron integrability, with the same integral value.
Conversely, if H is a (P )-major function with

f(x) ≤ inf
{

H(I)
µ(I)

: (I, x) ∈ β

}
+ pβ ,

then the map I 7→ H(I) + pβµ(I) is a major function. In the same way, it is
possible to check that, if K is a (P )-minor function, then I 7→ K(I)−pβµ(I) is
a minor function. It follows from this that Perron integrability implies Ward
integrability.

Combining Theorem 4.9 with Theorem 3.7 we finally get the final assertion
of the paper.

Theorem 4.10. Henstock-Kurzweil, Ward and Perron integrals, with respect
to a basis B, are equivalent on the class of the Riesz-space-valued functions.
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[15] B. Riečan and T. Neubrunn, Integral, Measure and Ordering, (1997),
Kluwer Acad. Publ.
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