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THE RELATIVE GROWTH OF
INFORMATION IN TWO-DIMENSIONAL

PARTITIONS

Abstract

Let x ∈ [0, 1)2. In this paper we find the rate at which knowledge
about the partition elements x lies in for one sequence of partitions
determines the partition elements it lies in for another sequence of par-
titions. This rate depends on the entropy of these partitions and the
geometry of their shapes, and gives a two-dimensional version of Lochs’
theorem.

1 Introduction.

Let x ∈ [0, 1) and suppose we are interested in two different number-theoretic
expansions of x. Given n digits in one of the expansions, how many digits are
determined in the other expansion?

In 1964, Lochs explored this question when comparing the decimal and
continued fraction expansions of x. Let x ∈ [0, 1) be irrational with decimal
expansion

x = .d1d2d3 . . .
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and continued fraction expansion

x =
1

a1 + 1
a2+

1
a3+···

= [0; a1, a2, a3, . . .].

If only the first n decimals of x are known, then x lies in the decimal cylinder
[y, z] where y = .d1d2 . . . dn and z = .d1d2 . . . dn + 10−n. In order to find
the number of digits in the continued fraction expansion thus determined,
let y = [0; b1, b2, . . . , bl] and z = [0; c1, c2, . . . , ck] be their continued fraction
expansion. Then

m(n, x) = max {i ≤ min(l, k) : bj = cj for all j ≤ i}

is the number of digits determined. In other words, m(n, x) is the largest
integer such that bn(x) ⊂ cm(n,x)(x), where bn(x) is the decimal cylinder
of order n containing x, denoted [y, z] above, and cm(n,x)(x) is the continued
fraction cylinder of order m(n, x) containing x. Lochs [Lo] proved the following
theorem.

Theorem 1.1. Let λ denote Lebesgue measure on [0, 1). Then for λ-a.e.
x ∈ [0, 1),

lim
n→∞

m(n, x)
n

=
6 ln 2 ln 10

π2
.

In 1999, Bosma, Dajani, and Kraaikamp [BDK] noticed that this problem
could be rephrased in terms of dynamical systems. Define the maps S : [0, 1)→
[0, 1) and T : [0, 1)→ [0, 1) by

Sx = 10x(mod 1) and Tx =


1
x (mod 1) if x 6= 0,

0 if x = 0.

Then ([0, 1),B, λ, S) and ([0, 1),B, µ, T ) are dynamical systems, where B is
the Borel σ-algebra on [0, 1) and µ is the Gauss measure on [0, 1). Let the
partitions P and Q be given by

P =
([

0,
1
10

)
,
[ 1

10
,

2
10

)
, . . . ,

[ 9
10
, 1
))
, Q =

(
. . . ,

(1
4
,

1
3

]
,
(1

3
,

1
2

]
,
(1

2
, 1
))
.

If we label P by (p0, p1, . . . , p9) and Q by (. . . , q3, q2, q1), then the decimal
expansion of x is achieved by iterating x by S and letting di = k iff Si−1x ∈ pk.
Similarly, the continued fraction expansion of x is found by iterating x by T
and setting ci = k iff T i−1x ∈ qk. Thus the expansions are actually the
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itineraries of x for a certain partition in a certain dynamical system, and the
intervals determined by the first k terms of the expansion are the cylinder sets
in the induced partitions

∨k−1
i=0 S

−iP ,
∨k−1
i=0 T

−iQ.
By using the Shannon-McMillan-Breiman Theorem [B] and the refinement

of the partitions under application of their associated maps, Bosma, Dajani,
and Kraaikamp generalized Theorem 1.1 to a wider class of transformations.
In particular, it follows from their generalization that

lim
n→∞

m(n, x)
n

=
hλ(S)
hµ(T )

,

where hλ(S) and hµ(T ) denote the entropy of the dynamical systems ([0, 1),
B, λ, S) and ([0, 1),B, µ, T ). Their proof assumes a certain regularity in the
induced partitions, an assumption that was then dropped in the work of Dajani
and Fieldsteel [DF], where it is proved that Lochs’ theorem is true for any
two sequences of interval partitions on [0, 1) satisfying the conclusion of the
Shannon-McMillan-Breiman Theorem. This result of Dajani and Fieldsteel
can be immediately generalized to higher dimensional actions on [0, 1), using a
theorem of Lindenstrauss [Li] to yield a Shannon-McMillan-Breiman Theorem
in this setting and then noting that the arguments in [DF] do not rely on the
one-dimensionality of the action. Moreover, it is easy to see that the result of
[DF] can be generalized to sequences of higher dimensional product partitions
for which the projections of these partitions on each coordinate consist of
intervals (see Final Remarks 2).

In this paper we consider the unit square [0, 1)2. We prove a version of
Lochs’ theorem for any two sequences of partitions of [0, 1)2 satisfying certain
geometric conditions and the conclusion of the Shannon-McMillan-Breiman
Theorem. In the next section we will discuss our assumptions on the shapes of
the partitions. In one dimension, all partition elements were intervals. In two
dimensions, the variety of partition shapes seen can be much greater and the
geometry of these shapes will play a role in the result. In Section 3 we state
and prove a two-dimensional version of Lochs’ theorem. We conclude with
some final remarks about general partitions and about some special partitions
in higher dimensions.

2 Partitions.

We are interested in pairs of sequences of partitions, P = {Pn}, Q = {Qn},
of [0, 1)2. We denote the elements of partition Pn by pin and Qn by qin. We
denote by λ Lebesgue measure on [0, 1)2. There are certain criteria that we
will assume about these partitions.
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Assumptions A

A1. For every n, Pn consists of squares.

A2. For every n, Qn consists of convex polygons.

A3. There exist constants R, S > 0 and β ≥ 2 such that for every n and
every i,

Rλ(qin) ≤ (diameter of qin )β ≤ S λ(qin).

Assumption A3 restricts the type of convex polygons that can be seen in
Qn. Since a convex polygon qin is contained in a square of side length equal to
the diameter of qin, we have that λ(qin) ≤ (diameter of qin)2, so the form seen
in A3 is natural. In order to get both sides of the inequality, it is not usually
possible to use β = 2. Under a very mild condition the following two lemmas
tell us why we must have β ≥ 2 and why, if β exists, it is unique.

Lemma 2.1. Let {An} be a sequence of partitions of [0, 1)2. Let α < 2.
Suppose that for every ε > 0, there exist n and i with λ(ain) < ε. Then there
is no S > 0 such that for every n and i, (diameter of ain)α ≤ S λ(ain).

Proof. It is always true that λ(ain) ≤ (diameter of ain)2. Now suppose that
for every n and i, (diameter of ain)α ≤ Sλ(ain). We then have

λ(ain) ≤
(
(diameter of ain)α

) 2
α ≤ S 2

αλ(ain)
2
α .

Hence S−
2
α ≤ λ(ain)

2
α−1, and thus S−

2
α ≤ ε

2
α−1 for every ε > 0, which yields

a contradiction.

Lemma 2.2. Let {An} be a sequence of partitions of [0, 1)2 and suppose that
for every ε > 0, there exist n and i with λ(ain) < ε. Then there is at most one
β ≥ 2 for which there exist constants R,S > 0 such that for every n and i,

Rλ(ain) ≤ (diameter of ain)β ≤ S λ(ain).

Proof. Suppose we have, for every n and i,

Rλ(ain) ≤ (diameter of ain)β ≤ S λ(ain). (2.1)

Suppose it is also the case that there exist positive constants E and ς such
that, for every n and i,

E λ(ain) ≤ (diameter of ain)β+ς
. (2.2)
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Then from the right hand side of (2.1) we have

(diameter of ain)β+ς ≤ S
β+ς
β λ(ain)

β+ς
β ,

and hence from (2.2), E ≤ S
β+ς
β λ(ain)

ς
β . By assumption, we then get for

arbitrary ε > 0, E ≤ S
β+ς
β ε

ς
β and we have a contradiction.

Similarly, suppose it is also the case that there exists a constant F such
that, for every n and i,

(diameter of ain)β−ς ≤ Fλ(ain), (2.3)

where ς > 0 is such that β − ς > 0. Then from the left hand side of (2.1) we
have

R
β−ς
β λ(ain)

β−ς
β ≤ (diameter of ain)β−ς ,

and hence from (2.3), R
β−ς
β ≤ Fλ(ain)

ς
β . As before, this implies R

β−ς
β ≤ Fε

ς
β

for arbitrary ε > 0, yielding a contradiction.

Recall that the partitions Qn consist of convex polygons qin. We will be
interested in the set of points in the polygons lying close to the boundary,
defined as follows.

Definition 2.3. Let q be a convex polygon in [0, 1)2. The frame of q of
width δ is the set

F(q, δ) = {x : x ∈ q and d(x, ∂q) ≤ δ},

where ∂q is the boundary of q and d indicates Euclidean distance on the plane.

The proportion of q taken up by its frame is small when δ is small. The
next lemma provides a bound that will be useful in the next section.

Lemma 2.4. Let q be a convex polygon in [0, 1)2, such that

(diameter of q)β ≤ S λ(q)

for some constants S and β. Then the proportion of q taken up by its frame

of width δ is bounded above by
4S

1
β δ

λ(q)
β−1
β

.

Proof. We are interested in λ(F(q,δ))
λ(q) . Note that

λ(F(q, δ)) ≤ (perimeter of q) · δ.
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As already observed before, the polygon q is easily seen to be contained in a
square of side length equal to the diameter of q and thus

(perimeter of q) ≤ 4 · (diameter of q),

which gives us

λ(F(q, δ)) ≤ 4 · (diameter of q) · δ ≤ 4δS
1
β λ(q)

1
β

which can be plugged into the above to yield the result.

Note that if q is a convex polygon, then the diameter is given by the largest
length of the line segments connecting the vertices of q. This may be the length
of a side of q or the length of a line segment in the interior of q (see figure
below).
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Note that a line segment in q whose length equals the diameter of q is in
general not unique. Let σ be the diameter of q and let rσ be the minimal
rectangle containing q with sides parallel (or perpendicular) to a line segment
in q of length σ. Finally, let hσ be the height of rσ (see figure below).
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Then, hσ · σ = λ(rσ) ≤ 2λ(q). We refer to rσ as a “diameter rectangle of q”
of height hσ.

The following obvious observation will be used in the next section.

Lemma 2.5. Let p be a square of side length x and r be a rectangle of height
h. If x > h, then p is not contained in r.
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We end this section with additional criteria for the partition sequences
P = {Pn} and Q = {Qn}. In the sequel, log x (x > 0) always means the
logarithm of x with respect to base 2. Denote by pn(x) the element of partition
Pn which contains x, and by qm(x), the element of partition Qm which contains
x. The following definition is inspired by the Shannon-McMillan-Breiman
Theorem.

Definition 2.6. Let P = {Pn} be a sequence of partitions. Let c ≥ 0. We
say that P has entropy c a.e. with respect to λ if

− log λ(pn(x))
n

→ c for λ-a.e. x.

Assumptions B
Let P = {Pn} and Q = {Qn} be sequences of partitions of [0, 1)2 such that

B1. For some constant c > 0, P has entropy c a.e. with respect to λ, and

B2. For some constant d > 0, Q has entropy d a.e. with respect to λ.

If the sequence of partitions Q satisfies assumption B2, it follows directly
from Lemma 2.1 and Lemma 2.2 that there exists at most one β ≥ 2 for which
assumption A3 holds. For ease of notation we will call pn(x) (respectively
qn(x)) (n, η)-good if

2−n(c+η) ≤ λ(pn(x)) ≤ 2−n(c−η)

(respectively 2−n(d+η) ≤ λ(qn(x)) ≤ 2−n(d−η)).

3 Main Theorem.

As before, λ denotes the Lebesgue measure on [0, 1)2. Let P = {Pn} and
Q = {Qn} be sequences of partitions of [0, 1)2 satisfying assumptions A and
B from Section 2. For each n ∈ N and x ∈ [0, 1)2, let

mP,Q(n, x) = sup {m : pn(x) ⊂ qm(x)}.

Theorem 3.1. For λ-a.e. x ∈ [0, 1)2,

mP,Q(n, x)
n

→ β

2(β − 1)
c

d
,

where β ≥ 2 is the constant from assumption A3 and c, d are the constants
from the assumptions B1 and B2.
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The proof is in two parts. We will first show that

lim inf
n→∞

mP,Q(n, x)
n

≥ β

2(β − 1)
c

d
for λ-a.e. x, (3.1)

and then

lim sup
n→∞

mP,Q(n, x)
n

≤ β

2(β − 1)
c

d
for λ-a.e. x. (3.2)

Together these give the result.

Proof. To prove (3.1), let 0 < ε < 1. For each n, let

m̃(n) = b(1− ε) β

2(β − 1)
c

d
nc,

where bxc denotes the largest integer less than or equal to x. Choose η > 0 so
small that ζ := ε c2 − η( c

2d (1− ε) + 1
2 ) > 0. Consider the set of points

Dn(η) =

 x :
pn(x) is (n, η)-good,
qm̃(n)(x) is (m̃(n), η)-good, and
pn(x) 6⊂ qm̃(n)(x)

 .

If x ∈ Dn(η), then x lies in an element of Pn that intersects at least 2 elements
of Qm̃(n). Thus x must lie in the frame of qm̃(n)(x) of width δ, where δ is
the diameter of pn(x). Since pn(x) is a square, we know its diameter δ is√

2[λ(pn(x)]
1
2 . Since pn(x) is (n, η)-good, λ(pn(x)) ≤ 2−n(c−η); thus we know

x must lie in the frame of qm̃(n)(x) of width
√

2 2−
n
2 (c−η). We can thus bound

the measure of Dn(η) by the sum of all the frames of the (m̃(n), η)-good
elements of Qm̃(n), of width

√
2 2−

n
2 (c−η).

From Lemma 2.4, we know the proportion of an element qm̃(n) of the
partition Qm̃(n) taken up by its frame of width

√
2 2−

n
2 (c−η) is bounded above

by
4
√

2 S
1
β 2−

n
2 (c−η)

λ(qm̃(n))
β−1
β

,

where S is from assumption A3. Since qm̃(n) is (m̃(n), η)-good, we have that

λ(qm̃(n))
β−1
β ≥ 2−m̃(n) β−1

β (d+η).

Hence
λ(qm̃(n))

β−1
β ≥ 2−(1−ε) cd

n
2 (d+η).
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Plugging this into the above, we see that the proportion of qm̃(n) taken up
by its frame is bounded above by

4
√

2 S
1
β 2−

n
2 (c−η)

2−(1−ε) cd
n
2 (d+η)

= 4
√

2 S
1
β 2[(1−ε) cd

n
2 (d+η)−n2 (c−η)]

= 4
√

2 S
1
β 2−n[ε c2−η((1−ε)

c
2d+ 1

2 )] = 4
√

2 S
1
β 2−nζ ,

by the definition of ζ above. Thus the area of the frame of an (m̃(n), η)-good
qm̃(n) is bounded above by 4

√
2 S

1
β 2−nζλ(qm̃(n)), and thus

λ(Dn(η)) ≤ 4
√

2 S
1
β 2−nζ .

Then
∑∞
n=1 λ(Dn(η)) < ∞, which implies λ({x : x ∈ Dn(η) infinitely often})

= 0.
Since m̃(n) goes to infinity as n does, it follows that for λ-a.e. x ∈ [0, 1)2,

there exists an N = N(x) ∈ N such that for all n ≥ N , pn(x) is (n, η)-good and
qm̃(n)(x) is (m̃(n), η)-good and x 6∈ Dn(η). But knowing that pn(x) ⊂ qm̃(n)(x)
means that mP,Q(n, x) ≥ m̃(n). Thus for λ-a.e. x ∈ [0, 1)2,

lim inf
n→∞

mP,Q(n, x)
n

≥ lim inf
n→∞

m̃(n)
n

= (1− ε) β

2(β − 1)
c

d
.

Since ε was arbitrary, this gives the first part of our proof.

To prove (3.2), let ε > 0. It is sufficient to show, for λ-a.e. x, that

lim sup
n→∞

mP,Q(n, x)
n

≤ β

2(β − 1)
c

d
(1 + ε).

Choose 0 < η < d so small that ζ := ε c2 − η( c
2d (1 + ε) + 1

2 ) > 0. Take x from
the set of full measure on which the assumptions B hold. Let

m̂(n) = d β

2(β − 1)
n
c

d
(1 + ε)e,

where dxe is the smallest integer larger than or equal to x.
Take N = N(x) so large that

• for all n ≥ N , λ(pn(x)) ≥ 2−n(c+η),

• for all m ≥ m̂(N), λ(qm(x)) ≤ 2−m(d−η), and

• N >
− log 1

2R
1
β

ζ .
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We want to show that pn(x) 6⊂ qm̂(n)+l(x), for all l ≥ 0 and n ≥ N . Let
l ≥ 0 and n ≥ N , and let h be the height of a diameter rectangle of qm̂(n)+l.
According to Lemma 2.5, it is sufficient to show that the length of a side of
the square pn(x) is larger than h. We know

h ≤
2λ(qm̂(n)+l(x))

diam(qm̂(n)+l(x))
≤ 2

R
1
β

λ(qm̂(n)+l(x))
β−1
β

≤ 2

R
1
β

2−(m̂(n)+l)(d−η) β−1
β ≤ 2

R
1
β

2−m̂(n)(d−η) β−1
β ≤ 2

R
1
β

2−
n
2
c
d (1+ε)(d−η).

On the other hand, the side length of pn(x) is λ(pn(x))
1
2 , which is bounded

below by 2−
n
2 (c+η). We want to show that

side of pn(x) ≥ 2−
n
2 (c+η) >

2

R
1
β

2−
n
2
c
d (1+ε)(d−η),

which is an upper bound for h. But 2−
n
2 (c+η) > 2

R
1
β

2−
n
2
c
d (1+ε)(d−η) can be

rewritten as 1
2R

1
β > 2−nζ , and we see that N was chosen large enough so

this would be true. Hence, mP,Q(n, x) < m̂(n) for n ≥ N(x) and part (3.2)
follows.

We end this paper with some remarks, concerning sequences of partitions
P = {Pn} and Q = {Qn} of [0, 1)D, where D is an arbitrary positive integer.
For ease of notation, we denote by λ the Lebesgue measure on [0, 1) as well as
the Lebesgue measure on [0, 1)D. Furthermore, we let x = (x1, . . . , xD).

Final Remarks.
1. Suppose the sequences of partitions P and Q satisfy the assumptions

B1 and B2. It follows from the proof of Theorem 4 in [DF] that for λ-a.e. x,
the inequality

lim sup
n→∞

mP,Q(n, x)
n

≤ c

d

holds without imposing further conditions on the partition elements, where c
and d refer to the values in assumptions B1 and B2.

2. Suppose that for each n, Pn and Qn are product partitions consisting
of rectangles:

Pn = P 1
n × · · · × PDn , Qn = Q1

n × · · · ×QDn ,

where P in and Qin, 1 ≤ i ≤ D, are interval partitions. Assume that for
1 ≤ i ≤ D, the sequences of partitions Pi = {P in} and Qi = {Qin} have
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positive entropy ci, respectively di, a.e. with respect to λ. Furthermore,
assume that Qn+1 refines Qn for each n. In general, the sequence of partitions
Q does not satisfy assumption A3. However, Theorem 4 in [DF] states that
for 1 ≤ i ≤ D,

mPi,Qi(n, xi)
n

→ ci
di

for λ-a.e. xi.

Since for each n, Qn+1 refines Qn, we have that

mP,Q(n, x) = min
1≤i≤D

mPi,Qi(n, xi).

Hence, for λ-a.e. x,
mP,Q(n, x)

n
→ min

1≤i≤D
{ ci
di
}.

The condition in the previous remark stating that Qn+1 refines Qn for
each n is not necessary as the following example shows. This example also
illustrates the fact that for all β ≥ 2 and c, d > 0, there exist sequences of
partitions P and Q satisfying the assumptions A and B.

Example. Let β ≥ 2 and c, d > 0 be given. Define the partition elements of
Qn by

q(i,j)n =

[
i

b2
d(β−1)n

β c
,

i+ 1

b2
d(β−1)n

β c

)
×

[
j

b2
dn
β c

,
j + 1

b2
dn
β c

)
,

0 ≤ i ≤ b2
d(β−1)n

β c−1, 0 ≤ j ≤ b2
dn
β c−1, and define the partitions Q1

n and Q2
n

by the relation Qn = Q1
n ×Q2

n. One easily verifies that {Q1
n} and {Q2

n} have
entropy d1 = d(β−1)

β and d2 = d
β , respectively, a.e. with respect to λ. Define

the partition Pn = P 1
n × P 2

n simply by partitioning [0, 1)2 into b2 cn2 c × b2 cn2 c
squares of equal side length and note that {P 1

n} and {P 2
n} have entropy c1 = c

2
and c2 = c

2 , respectively, a.e. with respect to λ. It is straightforward to show
that the assumptions A and B are all satisfied. It follows from Theorem 3.1,
that for λ-a.e. x,

mP,Q(n, x)
n

→ β

2(β − 1)
c

d
= min{ c1

d1
,
c2
d2
}.

However, if for instance d1 or d2 is small enough, Qn+1 does not refine Qn for
infinitely many n.
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