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Abstract

Using fractal sets and Minkowski contents we extend the repertoire
of Lebesgue integrable functions to those with large singular sets. A
new method of constructing fractal sets is proposed, using a class of
absolutely continuous functions, called swarming functions. We obtain
bounds on Minkowski contents of fractals in terms of two natural param-
eters contained in [−∞,∞], called the upper and lower dispersions of the
fractal. Assuming that upper and lower box dimensions of a fractal are
equal, we show that if the difference of dispersions is sufficiently large,
then the set is not Minkowski measurable. Fractals with nondegen-
erate d-dimensional Minkowski contents (i.e., contained in (0,∞)) are
characterized as those with nondegenerate dispersions (i.e., contained in
(−∞,∞)). The Weierstrass function, a class of affine fractal functions
and a class of McMullen’s sets have nondegenerate Minkowski contents.
Also some classes of spirals of focus and limit cycle type in the plane are
shown to be Minkowski measurable. Using swarming functions we can
easily construct fractal sets with maximally separated lower and upper
box dimensions, and a pair of fractal sets with maximal instability of
lower box dimension with respect to union. We also study gauge func-
tions associated with fractals having degenerate Minkowski contents,
and obtain new integrability criteria for a class of singular integrals.
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1 Introduction.

Our motivation for this work is twofold. First, it has been noticed that es-
timates of Minkowski contents of fractal sets (more precisely, nondegeneracy
of Minkowski contents) are related to understanding the problem of asymp-
totics of eigenfrequencies of fractal strings and fractal drums (Weyl–Berry
conjecture), see Lapidus [12], [13], Lapidus and Pomerance [15], [16], Lapidus
and Maier [14], Falconer [5], He and Lapidus [10], Lapidus and van Franken-
huysen [17], and the references therein. We say that a Minkowski content is
nondegenerate if it is different from 0 and ∞. Second, Lebesgue integrable
functions with large singular sets on prescribed fractal sets can be generated
assuming precisely the same type of condition on Minkowski contents, see
Žubrinić [26]. We also have in mind applications to the study of singular
sets of Sobolev functions (see [24] and the references therein), and the fact
that Lebesgue and Sobolev spaces possess maximally singular functions in the
sense described in [27]. For analogous problems in Besov and Lizorkin-Triebel
spaces see [25]. Minkowski contents of graphs of rapidly oscillating solutions
of the one-dimensional p-Laplace equation are studied in Pašić and Županović
[21]. Applications to analysis of spiral trajectories of some planar vector fields
(Hopf-Takens bifurcation) can be seen in Žubrinić and Županović [28], see also
[29], and a review article [30] about fractal dimensions in dynamics.

Using fractal sets and Minkowski contents, in Section 3 we extend the
repertoire of Lebesgue integrable functions to those with large singular sets,
(see Theorems 4.2 and 4.4). We use functions of the form u(x) = d(x,A)−α

with α > 0, where d(·, A) is the Euclidean distance function from the set
A ⊂ RN , and u is defined on the Minkowski sausage Ar of the set A; that is,
on the open r-neighborhood of A. Assuming that the upper and lower box
dimensions of A are equal, the problem of integrability of u turns out to be
related to nondegeneracy condition on Minkowski contents of A.

Nondegeneracy of Minkowski contents is studied in Section 2, as a con-
tinuation of our previous work in [26] and [27]. The main result is stated in
Theorem 3.1, in which dispersion parameters D and D associated with A are
introduced, that enable us partial control over the Minkowski contents of A.
Assuming that the upper and lower box dimensions coincide, we show that the
corresponding Minkowski contents of A are nondegenerate if and only if both
dispersion parameters of A are nondegenerate; that is, different from ±∞, see
Theorem 3.2(c). As a consequence we obtain that the Weierstrass function,
the Knopp (or Takagi) function, a class of affine fractal functions, a class of
McMullen sets, and some other fractals, all have nondegenerate Minkowski
contents, see Theorem 3.5.
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The difference of upper and lower dispersions of a fractal set, called the
amplitude of the fractal, is shown to have effect on d-dimensional Minkowski
contents; if the amplitude of the fractal set is sufficiently large, then the
Minkowski contents are separated, (see Theorem 3.2(b)). Moreover, the quo-
tient of the upper and lower Minkowski contents of a fractal has at least
exponential growth with respect to its amplitude, see (22). We also find a
class of fractals enabling partial control over their Minkowski contents, (see
Corollaries 3.3 and 3.4).

Motivated by the problem of integrability of the above function u (and by
He, Lapidus [10]), in Section 4 we study natural gauge functions associated
with fractals having degenerate Minkowski contents, (see Theorem 5.1). In
Theorem 5.2 we also show that the Minkowski content condition is indeed
essential in order to have the natural characterization of integrability as stated
in Theorem 4.3. In Section 5 we study two classes of spirals in the plane,
and show that they are Minkowski measurable, see Theorems 6.1 and 6.2.
In the proof we use excision property of the upper Minkowski content, see
Lemma 6.6(a).

In introductory Section 1 we propose a new method of defining fractal
sets, using appropriate absolutely continuous functions related to the loga-
rithmic scale of the box counting function of A, called swarming functions,
(see Lemma 2.1). It enables us to view fractals almost like their swarming
functions. Using zigzagging swarming functions we construct a class of fractal
sets with maximally separated lower and upper box dimensions, (see Theo-
rem 2.2 simplifying known examples, see Tricot [23, example on p. 29], Mattila
[19, examples on p. 77]), and a pair of fractal sets with maximal instability of
lower box dimension with respect to union, (see Theorem 2.4 improving and
simplifying Tricot [23, examples on pp. 30 and 123]).

The paper is organized as follows:

2. Generating fractal sets using swarming functions;

3. Bounds and separation of Minkowski contents;

4. Minkowski contents and the Lebesgue integral;

5. Gauge functions for Minkowski contents;

6. Minkowski measurable spirals in the plane.

2 Generating Fractal Sets Using Swarming Functions.

Let A be a bounded set in RN , N ≥ 1. Let us fix the base b = 2 and for any
integer n ≥ 1 we consider the natural 2−n-grid in RN , which divides the space
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into closed cubes of sides 2−n with at most overlapping faces. By ωn(A) we
denote the number of cubes containing at least one point of A. Note that a
point of A can be contained in at most 2N cubes. Let us define a sequence

sn := log2 ωn(A), (1)

that we call the swarming sequence of the set A. Here and in the sequel we
use the notation loga b := log b/ log a. It is well known that we can express the
upper and lower box dimensions of A as

dimBA = lim sup
n→∞

sn

n
, dimBA = lim inf

n→∞

sn

n
, (2)

(see Falconer [4, p. 41] or Tricot [23, p. 24]). The sequence sn associated with
the set A will be of greatest importance in this paper. We will use it for
defining fractal sets (in a nonunique way) and for studying their properties.
More precisely, we will try to define a class of swarming sequences σn in
advance, for which one can generate the corresponding collections of fractal
sets A such that σn ∼ log2 ωn(A) as n → ∞. (We say that an ∼ bn if
an/bn → 1.) Loosely speaking, this will enable us to identify fractal sets with
their swarming sequences. See Lemma 2.1 for precise formulation.

Let A be a given bounded, infinite subset of [0, 1]N ⊂ RN . The overall
number of cubes of 2−n-grid in [0, 1]N is equal to 2Nn. We have ωn+1(A) ≤
2Nωn(A) since each cube of the 2−n-grid, containing a point of A, is the
union of 2N subcubes of the 2−(n+1)-grid. Hence, the corresponding swarming
sequence sn defined by (1) has the following basic properties: sn is nondecreasing, sn →∞ as n→∞,

0 ≤ s1 ≤ (log2 3)N ,
sn+1 ≤ sn +N .

(3)

Remark 2.1. If we require the set A to be bounded only, then we can change
initial condition on s1 in (3) to s1 ≥ 0.

Conversely, compact fractal sets in [0, 1]N can be generated (in a nonunique
way) using a sequence σn given in advance and satisfying the properties listed
in (3), so that σn ∼ log2 ωn(A). Before stating the general result, we illustrate
the idea in the case of N = 1.

Example 2.1. Let a sequence (σn) with elements contained in N ∪ {0} =
{0, 1, 2, . . . } be given such that the following conditions are satisfied: σn is nondecreasing, σn →∞ as n→∞,

σ1 ∈ {0, 1},
σn+1 ≤ σn + 1.

(4)
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Let us construct a set A ⊆ [0, 1] such that log2 ωn(A) ∼ σn as n→∞. First,
it is easy to verify that there exists a unique set S ⊆ N such that

#(S ∩ {1, 2, . . . , n}) = σn, ∀n ∈ N, (5)

where # denotes the cardinal number of a set. We can construct the set S
inductively as follows. Assume that n = 1. If σ1 = 0, then we let 1 /∈ S, while
for σ1 = 1 we let 1 ∈ S. Assume that n ≥ 2. If σn = σn−1, then we let n /∈ S,
while for σn = σn−1 + 1 we let n ∈ S. It is easy to see that (5) holds.

Now using the sequence σn we construct a subset A of [0, 1] by representing
its elements in base b = 2. It consists of all numbers x = 0.x1x2x3 · · · :=∑∞

i=1 xi2−i such that xi ∈ {0, 1} if i ∈ S, while xi = 0 if i /∈ S (or more
generally, for i /∈ S we can let xi have any fixed, prescribed value, 0 or 1). It
is easy to see that

2σn ≤ ωn(A) ≤ 3 · 2σn . (6)

Indeed, let us define a closed interval

Ix1...xn
:= {x = 0.x1 . . . xnxn+1 . . . : xi ∈ {0, 1} for i ≥ n+ 1},

where we require that x1, . . . , xn satisfy conditions in the definition of A.
Clearly, there are 2σn such intervals, see (6), each of them belongs to 2−n-grid,
and their union An contains A. Note that the family of sets An is decreasing
and A = ∩nAn. Each interval Ix1...xn

meets A, therefore ωn(A) ≥ 2σn . On the
other hand, each point of A is in at least of one of intervals Ix1...xn

, which meets
2−n-grid in at most three intervals, and we conclude that ωn(A) ≤ 3 · 2σn .

From (6) we see that log2 ωn(A) ∼ σn, and therefore, dimBA = lim infn
σn

n

and dimBA = lim supn
σn

n , see (2). Compare with Bishop [1, Chapter 1,
Example 2.2].

In the following lemma we say that a compact set A in RN is constructive
if it is representable as the intersection of a decreasing family of sets An such
that each An can be constructed by effective procedure as a finite union of
closed cubes of 2−n-grid. For given x ∈ R by bxc we denote the greatest
integer part of x.

Lemma 2.1. (Swarming functions) Let f : [1,∞) → [0,∞) be an absolutely
continuous function such that

f(1) ∈ [0, N + 1), f ′(t) ∈ [0, N ] for a.e. t. (7)

Then the sequence σn := bf(n)c is such that σn is nondecreasing, 0 ≤ σ1 ≤ N ,
and σn+1 ≤ σn +N . There exists a constructive subset A of [0, 1]N such that

σn ≤ log2 ωn(A) ≤ σn +N log2 3. (8)
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In particular, σn ∼ log2 ωn(A) as n→∞ and

dimBA = lim sup
n→∞

f(n)
n

, dimBA = lim inf
n→∞

f(n)
n

. (9)

Proof. Monotonicity of σn is clear since f is nondecreasing. We have f(n+
1)− f(n) =

∫ n+1

n
f ′(t) dt ≤ N , so that

σn+1 = bf(n+ 1)c ≤ bf(n) +Nc = bf(n)c+N = σn +N. (10)

We construct inductively a decreasing sequence of compact subsets An of
[0, 1]N as follows. Each An will be a union of 2σn closed cubes with dis-
joint interiors, belonging to the 2−n-grid. For n = 1 define A1 as the union of
2σ1 cubes in [0, 1]N with disjoint interiors, belonging to the 2−1-grid.

Assume that An−1 has been constructed as a union of 2σn−1 cubes with
disjoint interiors, belonging to the 2−(n−1)-grid. Define An as a subset of An−1

obtained in two steps.
(a) Change each 2−(n−1)-cube of An−1 by an arbitrary subcube belonging

to the 2−n-grid. Their union A′n makes 2σn−1 cubes of the 2−n-grid with
disjoint interiors.

(b) Note that An−1 contains precisely 2N2σn−1 subcubes of the 2−n-grid.
Since 2σn ≤ 2N2σn−1 , (see (10)), it is possible to define the union A′′n of
2σn − 2σn−1 arbitrarily chosen subcubes with disjoint interiors, contained in
An−1 \ intA′ and belonging to the 2−n-grid.

Define An = A′n ∪ A′′n. The set A = ∩nAn has desired properties since
2σn ≤ ωn(A) ≤ 3N2σn . �

Remark 2.2. The construction of approximating sets An described in the
proof of Lemma 2.1 is to be interpreted as the process of “swarming” of the
fractal A, thinking of n as time. The analogue of Lemma 2.1 can be stated
for any base b > 2 instead of base b = 2.

Remark 2.3. It is easy to see that for any infinite set A in [0, 1]N there exists
an absolutely continuous function f(t), t ≥ 1, having properties (7), such that
ωn(A) = 2f(n). Indeed, the function f : N → R defined by f(n) := log2 ωn(A)
can be extended to a piecewise linear and continuous function f : [1,∞) → R
satisfying properties (7). The function f(t) in Lemma 2.1, satisfying conditions
(7), will be called a swarming function of the set A. A swarming function
defines the set A up to the choice of 2f(n) among 2nN cubes of the 2−n-grid
in [0, 1]N for each n.
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Remark 2.4. If in Lemma 2.1 we want A to be only a bounded set in RN

(not necessarily contained in [0, 1]N ), then we can relax the condition on f(1)
in (7) to f(1) ≥ 0. The initial set A1 containing A will be the union of 2bf(1)c

closed cubes of 2−1-grid in RN .

Remark 2.5. It is easy to see that (9) holds also in the form

dimBA = lim sup
t→∞

f(t)
t
, dimBA = lim inf

t→∞

f(t)
t
. (11)

To show this, it suffices to note that for any t ≥ 1 there exists a unique
n ∈ N such that n ≤ t < n + 1; hence, f(n)

n+1 ≤
f(t)

t ≤ f(n+1)
n , and the claim

follows from the fact that lim supn(anbn) = lim supn an limn bn, provided bn
is convergent (take an := f(n)/(n + 1)), bn := (n + 1)/n, and then an :=
f(n+ 1)/n, bn := n/(n+ 1)), and analogously for lim inf.

The following result is known, (see Mattila [19, p. 77]). The novelty is in
the construction of fractal sets with separated box dimensions, based on the
use of (zigzagging) swarming functions. We hope this construction is more
transparent than those based on the use of modified Cantor sets. Here we do
not study Hausdorff’s dimension of fractal sets.

Theorem 2.2. (Separation of box dimensions) For any prescribed pair of
values d ≤ d in [0, N ] there exists a constructive subset A of [0, 1]N , generated
by an explicit swarming function, such that

dimBA = d and dimBA = d.

In particular, there exists a set A with maximally separated box dimensions
dimBA = 0 and dimBA = N .

Proof. (a) Let us first consider the case when d, d ∈ (0, 1). We use Lemma 2.1.
Let a set A be generated by a swarming function f(t) defined in the following
way. If d = d =: d we let f(t) = d · t. If d < d we first define two auxiliary
functions f1(t) := d · t and f2(t) := d · t, t ≥ 1. Now it is easy to construct
a piecewise linear, continuous function f(t) such that f ′(t) = 0 or N a.e.,
f1(t) ≤ f(t) ≤ f2(t) for all t ≥ t0 where t0 is sufficiently large, and there exist
two monotone, divergent sequences t′n and t′′n in [t0,∞) such that for all n,

f(t′n) = f1(t′n) and f(t′′n) = f2(t′′n).

From this we get dimBA = lim supn f(t)/t = lim supn f(t′′n)/t′′n = d, and
analogously for dimBA. The graph of the function f can be constructed by
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drawing a line from the origin O to arbitrarily chosen point P ′1 on the graph
of f1, then we take the line with the slope N from P ′1 to the point P ′′1 on the
graph of f2, then continue with horizontal line to the point P ′2 on the graph
of f1, then take again the line with the slope N to the point P ′′2 on the graph
of f2, and so on. The zigzagging function f constructed in this way satisfies
the assumptions of Lemma 2.1, and the claim follows from (9).

(b) Consider the case d = 0 and d = N . Now we define auxiliary functions
f1(t) =

√
t and f2(t) = Nt −

√
t. We construct a piecewise linear, absolutely

continuous function f(t) analogously as in (a). Using Lemma 1 again, the
corresponding set A in [0, 1]N satisfies the desired properties.

(c) The remaining cases where either d = 0 and d ∈ [0, N), or d = N and
d ∈ (0, N ], can be treated similarly. �

It is well known that Hausdorff’s dimension is countably stable, (see Fal-
coner [4, p 29]), while the upper box dimension is only finitely stable. There
are known examples showing that lower box dimension is unstable with re-
spect to finite unions; that is, there are subsets A and B of [0, 1] such that

dimB(A ∪B) > max{dimBA,dimBB},

(see e.g. Tricot [23, pp. 30 and 123]). Here we provide a simple construction
of subsets achieving maximal instability of lower box dimension with respect
to union. We shall first state a simple result about box dimensions of unions
and Cartesian products of sets.

Lemma 2.3. Let A and B be two bounded subsets of RN . We have

dimB(A ∪B) = lim inf
n→∞

max{sn(A), sn(B)}
n

,

dimB(A×B) = lim inf
n→∞

sn(A) + sn(B)
n

,

and analogously for the upper box dimension, where sn(·) is defined by (1). In
particular, if sn(A) ∼ bfA(n)c and sn(B) ∼ bfB(n)c as n→∞, where fA and
fB are swarming functions of A and B, see Lemma 2.1, then

dimB(A ∪B) = lim inf
n→∞

max{fA(n), fB(n)}
n

,

dimB(A×B) = lim inf
n→∞

fA(n) + fB(n)
n

,

and analogously for the upper box dimension.
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Proof. Using

2max{sn(A),sn(B)} = max{ωn(A), ωn(B)} ≤ ωn(A ∪B) ≤ ωn(A) + ωn(B)

= 2sn(A) + 2sn(B) ≤ 2 · 2max{sn(A),sn(B)}.

we get the following estimate for sn(A ∪B) := log2 ωn(A ∪B):

max{sn(A), sn(B)} ≤ sn(A ∪B) ≤ 1 + max{sn(A), sn(B)}.

The claim about box dimension of union follows immediately. The claim for
Cartesian products follows easily from ωn(A×B) = ωn(A) · ωn(B). �

Theorem 2.4. (Instability of lower box dimension) There exist two con-
structive subsets A and B in [0, 1]N such that dimBA = dimBB = 0, while
dimB(A ∪ B) = N . Furthermore, there exist constructive subsets A and B
of [0, 1]N such that dimBA = dimBB = 0, while dimB(A × B) = N and
dimBA = dimBB = N , dimB(A×B) = N .

Proof. (a) Let f1(t) =
√
t and f2(t) = Nt−

√
t, t ≥ 1. The idea is to construct

sets A and B with swarming functions fa and fb such that max{fa(t), fb(t)} =
f2(t), and such that fa(t′n) = f1(t′n) for odd n, and fb(t′n) = f1(t′n) for even
n, where t′n →∞ as n→∞.

Let P ′n and P ′′n be sequences of points on the graphs of functions f1 and
f2 respectively, constructed analogously as in the proof of Theorem 2.2 while
constructing the zigzagging function f there. Using these points we define
an absolutely continuous function fa(t) as follows. Its graph starts from the
origin O along the graph of f1 to the point P ′1 chosen below the graph of f2,
then proceed with the line with the slope N to the point P ′′1 on the graph of
f2, then continues along the graph of f2 until P ′′2 (note that we skipped P ′2),
next along the horizontal line to the point P ′3 on the graph of f1, then along
the line with the slope N to the point P ′′3 on the graph of f2, now along the
graph of f2 to P ′′4 (we skipped P ′4), and then along horizontal line to P ′5, and
so on.

We construct the function fb(t) which is in a sense complementary to fa.
We define its graph to be the same as f2 from the origin to P ′′1 (we skipped
P ′1), and then go horizontally to the point P ′2 on the graph of f1, then along
line with slope N to the point P ′′2 on the graph of f2, and now along the graph
of f2 to the point P ′′3 (we skipped P ′3), then horizontally to P ′4, then along the
line with slope N until P ′′4 , and so on.

Let A and B be two sets generated by swarming functions fa and fb,
(see Lemma 2.1). It is clear from the construction that max{fa(n), fb(n)} =
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Nn−
√
n. Using Lemma 2.3 we conclude that

dimB(A ∪B) = lim
n→∞

max{fa(n), fb(n)}
n

= N.

On the other hand, fa(t′n) =
√
t′n for infinitely many n’s and the same for fb,

and using (11) we obtain that dimBA = dimBB = 0.
(b) We construct piecewise linear, continuous functions fa(t) and fb(t),

t ≥ 1, as follows. Let us start with auxiliary functions f1(t) =
√
t and f2(t) =

Nt −
√
t. The graphs of functions fa and fb will be defined so as to zigzag

between f1 and f2, and so that fa(t) + fb(t) = Nt. First define fa(t). Let fa

be equal to f2 from the origin to a point P1 on the graph of f2 chosen above
the graph of f1, next continue horizontally to the point P2 on the graph of f1,
then with the slope N to the point P3 on the graph of f2, then horizontally
to the point on the graph of f1, and so on.

Let fb(t) := Nt−fa(t). It is easy to see that fa and fb satisfy conditions of
Lemma 2.1, so that they generate subsets A and B of [0, 1]N . Since the graphs
of fa and fb meet the graph of f1(t) =

√
t along an unbounded sequences of

values tn(a) and tn(b) respectively, the lower box dimensions of A and B are
both equal to zero. On the other hand, using Lemma 2.3 we have

dimB(A×B) = lim inf
n→∞

fA(n) + fB(n)
n

= N.

The claim related to the upper box dimension is obtained by modifying the
above proof. �

Remark 2.6. Using a slight modification in the proof we can find two subsets
A and B of [0, 1]N such that dimBA = dimBB = 0, dimB(A × B) = N and
dimB(A×B) = 2N .

Remark 2.7. Motivated by Theorems 2.2 and 2.4 it seems to make sense to
speak about “zigzagging fractals”. By this we mean that the corresponding
swarming function f(t), t ≥ 1 (obtained as a continuous and piecewise linear
extension of f(n) = log2 ωn(A)) zigzags between two prescribed functions f1(t)
and f2(t), such that f1(t) ≤ f(t) ≤ f2(t) for t ≥ t0, and such that f meets
each of the graphs of f1 and f2 at divergent sequence of values t′n and t′′n
respectively. If we assume that there exists limt→∞

fi(t)
t , i = 1, 2, then

dimBA = lim
t→∞

f1(t)
t

and dimBA = lim
t→∞

f2(t)
t

. (12)

With a suitable choice of bounding functions f1 and f2 it is possible to have
control not only over box dimensions, but also over Minkowski contents of A,
(see Corollaries 3.3 and 3.4 below).
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3 Bounds and Separation of Minkowski Contents.

In this section we obtain upper and lower bounds of Minkowski contents of
a given bounded subset A of RN in terms of the swarming sequence sn :=
log2 ωn(A), (see Theorem 3.1). Recall that s-dimensional lower and upper
Minkowski contents of A, s ≥ 0, are defined by

Ms
∗(A) = lim inf

r→0

|Ar|
rN−s

and M∗s(A) = lim sup
r→0

|Ar|
rN−s

,

where Ar is the Minkowski sausage of A; that is, Ar is Euclidean r-neighbor-
hood of A; Ar = {y ∈ RN : d(y,A) < r}, (see e.g. Mattila [19]). By |Ar| we
denote N -dimensional Lebesgue measure of Ar. We say that A is Minkowski
measurable if there exists d = dimB A and 0 <Md

∗(A) = M∗d(A) < ∞. We
shall occasionally deal with sets indexed with integers, say A1 and A2, which
should not be confused with Minkowski sausages.

The following theorem enables us to obtain necessary and sufficient con-
ditions on A to have nondegenerate Minkowski contents for some d ∈ [0, N ];
that is,

0 <Md
∗(A) ≤M∗d(A) <∞, (13)

see Theorem 3.2(c). Note that this condition implies d = dimB A. The crucial
role in Theorem 3.1 is played by two natural parameters D and D associated
with the fractal set A that we call lower and upper dispersions of A. The
reason for this name is that information about these parameters enables partial
control of the Minkowski contents, (see (15) and (16)). In particular, if the
difference D − D of dispersion parameters is large enough, then A is not
Minkowski measurable, (see (19)).

Theorem 3.1. (Bounds of Minkowski contents) Let A be a bounded subset of
RN , sn := log2 ωn(A), and let d := dimBA = lim infn sn/n, d := dimBA =
lim supn sn/n, see (2). Let

D := lim inf
n→∞

(sn − dn) and D := lim sup
n→∞

(sn − dn), (14)

that we call lower and upper dispersions of A respectively. Then we have:

2−NCN · 2D ≤M∗d(A) ≤ 2N−dDN · 2D, (15)

2d−2NCN · 2D ≤Md
∗(A) ≤ DN · 2D, (16)

where CN and DN are the N -dimensional Lebesgue measure of the unit ball
and of the 1-neighborhood of the unit cube respectively.
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Proof. (a) To prove the left-hand side inequality of (15), take any of ωn(A)
closed cubes of the 2−n-grid meeting A. The 2−n-neighborhood of a point
x ∈ A in any such cube occupies the smallest part of the cube if and only if
x is in a vertex of the cube. In this case the volume of this part is equal to
2−NCN (2−N )n. Hence, |A2−n | ≥ ωn(A) · 2−NCN (2−N )n, and from this we
have

|A2−n |
(2−n)N−d

≥ 2−NCN · 2sn−nd.

Therefore,

M∗d(A) = lim sup
r→0

|Ar|
rN−d

≥ lim sup
n→∞

|A2−n |
(2−n)N−d

≥ 2−NCN · 2D.

(b) To prove the right-hand side inequality of (16), note that the r neigh-
borhood of the set of points of A contained in any of ωn(A) cubes of the 2−n

grid is a subset of the 2−n-neighborhood of the cube. The volume of the 2−n-
neighborhood of the cube is DN (2−n)N ; hence

|A2−n |
(2−n)N−d

≤ ωn(A) ·DN2−nN

(2−n)N−d
= DN2sn−nd.

From this we conclude that

Md
∗(A) = lim inf

r→0

|Ar|
rN−d

≤ lim inf
n→∞

|A2−n |
(2−n)N−d

≤ DN · 2D.

(c) Let us fix any r ∈ (0, 1). There exists a unique integer n ≥ 1 such that
2−n ≤ r < 2−(n−1). As in (b) we obtain that

|Ar|
rN−d

≤ |A2−(n−1) |
(2−n)N−d

≤ ωn−1(A) ·DN2−(n−1)N

2−n(N−d)
= 2N−dDN · 2sn−1−(n−1)d.

The right-hand side inequality of (15) follows in much the same way as in (b).
(d) Fixing r ∈ (0, 1) and finding n as in (c), we obtain as in (a) that

|Ar|
rN−d

≥ |A2−n |
(2−(n−1))N−d

≥ ωn(A) · 2−NCN2−nN

2−(n−1)(N−d)
= 2d−2NCN · 2sn−nd.

The left-hand side inequality of (16) follows as in (a). �

Remark 3.1. It is well known that CN = 2πN−2N−1Γ(N/2)−1, for example,
C1 = 2, C2 = π, C3 = 4π/3, and CN → 0 as N → ∞. For the values of DN

see Gardner [8, pp. 348–349 and Steiner’s formula A.28]. It is easy to see that
D1 = 3, D2 = 5 + π, D3 = 7 + 13π/3, and clearly, DN ≤ 3N .
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Remark 3.2. Note that D = lim supn n( sn

n − d), so that D is a measure of
the speed of accumulation of the sequence sn/n at d: the larger D, the slower
the accumulation rate. Similarly for D.

Remark 3.3. It is natural to view the value of

2D = 2lim supn(sn−d n) = lim sup
n→∞

ωn(A) · (2−n)d

appearing in (15) as the d-dimensional upper Minkowski grid contentM∗d(A, 2)
of A, with base b = 2. Inequality (15) shows that the upper Minkowski grid
content is equivalent to the usual upper Minkowski content of A. Similarly for
the lower Minkowski grid content. Compare with Falconer [4, discussion about
the quantity ν(F ) on p. 43], and also with the notion of Jordan content of A,
(see Folland [7, pp. 71–73]), which is a special case of the above Minkowski
grid content of A. Estimates (15) and (16) are also closely related to Martio
and Vuorinen [18, (3.1) Lemma and (3.11) Theorem].

It is possible to describe a large class of bounded sets A in RN that are
not Minkowski measurable (see Theorem 3.2(b)). Also, using dispersion pa-
rameters D and D of A it is possible to characterize sets with nondegener-
ate Minkowski contents as those with nondegenerate dispersions (see Theo-
rem 3.2(c)).

Theorem 3.2. (Separation of Minkowski contents) Let the conditions of The-
orem 3.1 be satisfied. Then:
(a)

M∗d(A) = 0 or ∞⇐⇒ D = −∞ or ∞ respectively, (17)
Md

∗(A) = 0 or ∞⇐⇒ D = −∞ or ∞ respectively. (18)

(b) If d := d = d, then the Minkowski contents can be separated, provided
D −D is large enough:

D −D > N + log2(DN/CN ) =⇒Md
∗(A) <M∗d(A). (19)

More precisely, assuming the lower bound on D − D in (19) is fulfilled, we
have

Md
∗(A) ≤ DN · 2D < 2−NCN · 2D ≤M∗d(A). (20)

(c) If d := d = d, then we have the following characterization of nondegeneracy
of Minkowski contents of A.

0 <Md
∗(A) ≤M∗d(A) <∞⇐⇒ D,D ∈ (−∞,∞). (21)
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Proof. Assuming that d = d = d, the separation of the Minkowski contents is
obviously secured by the condition DN · 2D < 2−NCN · 2D (see Theorem 3.1),
which is equivalent to D−D > N + log2(DN/CN ). Properties (17), (18), and
(21) follow immediately from (15) and (16). �

Remark 3.4. Due to property (19) it is natural to define amplA := D−D, the
amplitude of the set A. The larger the amplitude of A, the larger the quotient
of the upper and lower Minkowski contents. More precisely, if amplA >
N + log2(DN/CN ), then, (see (20)),

M∗d(A)/Md
∗(A) ≥ CN

2NDN
· 2ampl A. (22)

It is worth noting that Cantor’s classical middle third set is not Minkowski
measurable, although its amplitude is zero, (see (29) below).

The following two easy consequences of Theorem 3.1 provide numerous
examples of fractal sets in [0, 1]N with partial control over their Minkowski
contents.

Corollary 3.3. Let d ≤ d be given real numbers in [0, N ], and let δ and δ be
arbitrary real numbers (if d = d, we assume that δ ≤ δ). Let f1(t) = d · t+ δ
and f2(t) = d · t + δ, t ≥ 1. Assume that f(t) is an absolutely continuous
function satisfying 0 ≤ f ′(t) ≤ N a.e., f(1) ∈ [0, N + 1), and there exists
s0 ≥ 1 such that f1(t) ≤ f(t) ≤ f2(t) for t ≥ s0. Assume also that there exist
two unbounded sequences of points with integer abscissae n′ and n′′, lying on
the graph of f1 and f2 respectively, such that they also belong to the graph of
f . Let A be a subset of [0, 1]N generated by the swarming function f , (see
Lemma 2.1). Then bf(n)c ≤ log2 ωn(A) ≤ bf(n)c + N log2 3, dimBA = d,
dimBA = d, and for the Minkowski contents we have the estimates

2−NCN · 2δ−1 ≤M∗d(A) ≤ 3N2N−dDN · 2δ, (23)

2d−2N · 2δ−1 ≤Md
∗(A) ≤ 3NDN · 2δ. (24)

If d := d = d and δ − δ > N + 1 + log2(3NDN/CN ), then M∗d(A) >Md
∗(A).

Proof. Bounds for sn := log2 ωn(A) follow from Lemma 2.1, and the as-
sumption about points with integer abscissae implies that dimB = d and
dimBA = d. We use Theorem 3.1 by noting that sn−d ·n ≤ bd ·n+δc−d ·n ≤
δ + N log2 3 for all n ≥ s0, and sn′′ − d · nn′′ ≥ bd · n′′ + δc − d · nn′′ ; hence
δ − 1 ≤ D ≤ δ +N log2 3, and similarly δ − 1 ≤ D ≤ δ +N log2 3. �
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Remark 3.5. The existence of a function f satisfying the conditions of Corol-
lary 3.3 (given the functions f1 and f2) is easy to verify. It suffices to modify
a swarming function such that f ′(t) = 0 or f ′(t) = N a.e., described in the
proof of Theorem 2.2, in such a way that it is equal to f1 in a 1-neighborhood
of each P ′i , and equal to f2 in a 1-neighborhood of each P ′′i .

Example 3.1. We can describe a class of fractals with degenerate Minkowski
contents. It suffices for example that f1(t) = d · t + ϕ1(t) where ϕ1(t) is an
absolutely continuous function such that ϕ1(t) = o(t), ϕ′1(t) ≥ −d for a.e.
t, and ϕ1(t) → ∞ (or −∞) as t → ∞, and similarly for f2. Namely, in
this case we have that D = lim infn(sn − dn) = lim infn ϕ1(n) = ∞ (or −∞
respectively), and the claim follows from Theorem 3.2. We confine ourselves
to formulate a special case, rather than the most general possible result.

Corollary 3.4. (Degenerate Minkowski contents) Let us change the swarming
functions f1 and f2 appearing in Corollary 3.3 to

f±1 (t) = d · t±
√
t and f±2 (t) = d · t±

√
t.

In the case when d = d we do not allow the combination of f+
1 and f−2 . Let

a swarming function f be constructed in the same way as in Corollary 3.3.
If A = A(f±1 , f

±
2 ) is a subset of [0, 1]N generated by f (see Lemma 2.1),

then dimBA = d, dimBA = d, and the corresponding Minkowski contents are
degenerate:

(a) Md
∗(A(f−1 , f

−
2 )) = 0, M∗d(A(f−1 , f

−
2 )) = 0;

(b) Md
∗(A(f−1 , f

+
2 )) = 0, M∗d(A(f−1 , f

+
2 )) = ∞;

(c) Md
∗(A(f+

1 , f
−
2 )) = ∞, M∗d(A(f+

1 , f
−
2 )) = 0;

(d) Md
∗(A(f+

1 , f
+
2 )) = ∞, M∗d(A(f+

1 , f
+
2 )) = ∞.

Remark 3.6. It is possible to combine for example a linear function f1(t) =
d·t+δ with a nonlinear function f2(t) = d·t+

√
t, in order to obtain a swarming

function of a fractal set with nondegenerate Minkowski contents at dimension
dimBA = d and degenerate Minkowski contents at dimension dimBA = d, etc.

Remark 3.7. It is clear that Theorem 3.1 can be extended to arbitrary base
b ≥ 2. Indeed, defining ωn(A, b) as the number of closed cubes of b−n-grid
meeting a bounded set A ⊆ RN , and sn := logb ωn(A, b), then again d :=
dimBA = lim supn sn/n, d := dimBA = lim infn sn/n, and defining as before
D := lim supn(sn − dn), : D = lim infn(sn − dn), we have

2−NCN · bD ≤M∗d(A) ≤ bN−dDN · bD, (25)

2−Nbd−NCN · bD ≤Md
∗(A) ≤ DN · bD. (26)
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Now we estimate the Minkowski contents of graphs of some continuous,
rapidly oscillating functions f : Ω → R defined on an open set Ω in RN .
We shall need the notion of oscillation of f on a subset B of Ω, defined by
oscB f := supB f − infB f . Recall that for a given α ∈ (0, 1] we have that f is
α-Hölderian if and only if there exists c > 0 such that

osc
Q(δ)∩Ω

f ≤ c · δα for all r > 0 and all x ∈ Ω,

where Q(δ) is any closed cube with side δ. We say that a function f : Ω → R
is α-anti-Hölderian, α ∈ (0, 1], if by definition

osc
Br(x)∩Ω

f ≥ c · rα for all r > 0 and all x ∈ Ω,

for some c > 0, (see Tricot [23, Section 12.5] and also Falconer [4, Corollary
11.2(b)]). The main example of a function which is both α-Hölderian and
α-anti-Hölderian is the Weierstrass function.

Theorem 3.5. (a) Let Ω be a bounded open set in RN and f : Ω → R a
function which is α-Hölderian and α-anti-Hölderian, α ∈ (0, 1). If A is the
graph of f in RN+1, then d := dimB A = N + 1− α and

2−N−1CN+1 c |Ω| ≤ M∗d(A) ≤ DN+12α c |Ω|,
2−α−N−1CN+1c |Ω| ≤ Md

∗(A) ≤ DN+1 c |Ω|.

For α = 1 these estimates hold with c changed to 2 + c.
(b) Let A be the graph of the Weierstrass function f : [0, 1] → R defined by

f(x) =
∑∞

k=1 λ
−kα cos(λkx), where λ > 1 is sufficiently large and α ∈ (0, 1).

Then d := dimB A = 2− α and
π

4
c ≤M∗d(A) ≤ (5 + π)2α c,

2−α−2π c ≤Md
∗(A) ≤ (5 + π) c,

where c = 1
20λ

−α, c = (1 − λ−α−1)−1 + 2(1 − λ−α)−1. For the Knopp (or
Takagi) function f(x) =

∑
k 2−kαg(2kx), x ∈ [0, 1], where g : R → R is a

periodic piecewise linear, continuous function passing through the origin, with
values in [0, 1], g′(x) = ±2 for a.e. x, the above estimates hold with c = 1 and
c = 2(21−α − 1)−1 + (2α − 1)−1.

(c) Let A be the graph of the self-affine function f : [0, 1] → R generated
by affine transformations Si : R2 → R2, i = 1, . . . ,m,

Si

[
t
x

]
=

[
1
m 0
ai ci

] [
t
x

]
+

[
i−1
m
bi

]
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where 1/m < ci ≤ 1. Let c := mini ci, a := maxi |ai|, h be the height of
A; that is, the length of its projection onto the vertical axis, v be the vertical
distance from q2 to the segment [q1, q3] (see Falconer [4, Example 11.4]). Then
d := dimB F = 1 + logm(c1 + · · ·+ cm), and

πv

4
≤M∗d(A) ≤ (5 + π)m

c1 + · · ·+ cm

(
ma

1− (mc)−1
+ h

)
,

πv

4m
(c1 + · · ·+ cm) ≤Md

∗(A) ≤ (5 + π)
(

ma

1− (mc)−1
+ h

)
.

(d) Let A be the McMullen set in [0, 1]2 defined by parameters p, q, and r,
p > q, r < pq. Let the set A1 be obtained by choosing of r out of pq rectangles
in [0, 1]2, taken from the natural p−1 × q−1-rectangular grid. We assume that
in any of q rows there is at least one chosen rectangle. The set A is obtained by
intersection of iterated sets An. Then d := dimB A = 1 + logp

r
q (see Falconer

[4, Example 9.11] with p1 := p and
∑

j Nj =: r, with columns instead of rows,
and p < q), and

π

4
≤M∗d(A) ≤ (5 + π)

pq

r
,

πr

4pq
4 ≤Md

∗(A) ≤ 5 + π.

(e) Let A be the set of all real numbers x = 0.x1x2x3 · · · ∈ [0, 1] in binary
representation (hence xi ∈ {0, 1}), such that there are no two consecutive 1’s
in the sequence of digits (xi), and there is no infinite sequence of consecutive
zeros. Then d := dimB A = log2

1+
√

5
2 and

√
5 + 2√
4 + 1

≤M∗d(A) ≤ 12 ·
√

5 + 2
(
√

5 + 1)2

and
√

5 + 2
(
√

5 + 1)2
≤Md

∗(A) ≤ 3
√

5 + 2√
5 + 1

.

(27)

Proof.
(a) We shall need the following lemma which is an easy extension of Fal-

coner [4, Proposition 11.1].

Lemma 3.6. Let Ω be a bounded open set in RN and f : Ω → R a continuous
function. Denote its graph in RN+1 by A. Let δ ∈ (0, 1) be a given number and
Nδ the number of closed cubes of a δ-grid in RN+1 that meet A. Let C(Ω, δ) be
the collection of closed cubes Q of the corresponding δ-grid in RN , which meet
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Ω. Let C0(Ω, δ) be the collection of all cubes from C(Ω, δ) that are contained
in Ω. Then

δ−1
∑

Q∈C0(Ω,δ)

osc
Q
f ≤ Nδ ≤ 2 ·#C(Ω, δ) + δ−1

∑
Q∈C(Ω,δ)

osc
Q∩Ω

f.

Proof. First, we have that

lim
δ→0

#C0(Ω, δ) · δN = |Ω| and lim
δ→0

#C(Ω, δ) · δN = |Ω| (28)

(see Folland [7, p. 73]). These limits are called lower and upper Jordan contents
of Ω respectively (see Folland [7, pp. 72–73]). For all δ > 0 we have #C0(Ω, δ) ·
δN ≤ |Ω| ≤ |Ω| ≤ #C(Ω, δ) · δN , with the left-hand side and the right-hand
side being nondecreasing and nonincreasing functions of δ respectively. Let
c1 > |Ω| be given. Since #C(Ω, δ) ≤ c1δ

−N for δ sufficiently small (see (28))
using Lemma 3.6 and α ∈ (0, 1) we have

Nδ ≤ 2c1δ−N + δ−1 · c1δ−N · cδα ≤ c2 · δ−(N+1−α),

where c2 is larger than and arbitrarily close to |Ω| · c, provided δ is sufficiently
small. Let us consider the standard 2−n-grid; that is, δ = 2−n. Then from

sn := log2 ωn(A) = log2N2−n ≤ log2 c2 + n(N + 1− α)

we have D := lim supn(sn − nd) ≤ log2 c2. If we let c2 → |Ω| · c, we obtain
D ≤ log2(|Ω| · c). Analogously, D ≥ log2(|Ω|c), and the claim follows from
Theorem 3.1. The case α = 1 is treated analogously.

(b) The claim follows from (a) (see also Falconer [4, Example 11.3] or Tricot
[23, Section 12.7]).

(c) We sketch the proof. Here we consider the base b := m and the cor-
responding m−n grid. Using the analysis from Falconer [4, Example 11.4] we
obtain that logm v + nd ≤ sn ≤ logm r+1 + nd, where r+1 is larger than and
arbitrarily close to r1 := h+ma/(1− (mc)−1), provided n is sufficiently large.
From this we conclude that

logm v ≤ D ≤ D ≤ logm r1,

and the claim follows from estimates (25) and (26).
(d) Take any closed interval of length p−n belonging to the natural p−n-grid

on the base interval of the square [0, 1]2. The number of closed squares in [0, 1]2

with base p−n lying in the column above the chosen interval, that meet A, is
between (p/q)n and (p/q)n + 1. Hence, (rp/q)n ≤ ωn(A, p) ≤ rn((p/q)n + 1),
and from this we get

nd ≤ sn := logp ωn(A, p) ≤ logp[r
n((p/q)n + 1)].
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Since 0 ≤ sn − nd ≤ logp[1 + (q/p)n] → 0 as n → ∞, we obtain D = 0. The
claim follows from (25) and (26) with b := p.

(e) We have that ωn(A) = ‖Bn−1‖, where B is the matrix

B =
[
1 1
1 0

]
,

and for any 2 × 2 matrix B′ we take the norm ‖B′‖ =
∑

i,j |b′ij |. Using (2)
and the fact that the sequence ‖Bn‖1/n converges to the spectral radius of
B (which is equal to (1 +

√
5)/2), we conclude that dimB A = log2

1+
√

5
2 ,

see Bishop [1, Chapter 1, Example 2.3] for details. Here we have that sn :=
log2 ωn(A) = log2 ‖Bn−1‖. Since

Bn =
[
Fn+1 Fn

Fn Fn+1

]
where Fn are Fibonacci numbers, Fn = 1

2 (αn − βn), n = 0, 1, 2, . . . , α =
1
2 (1 +

√
5), β = 1

2 (1−
√

5), and |β| < 1, we obtain

D = lim inf
n→∞

(sn − nd) = lim
n→∞

(log2 ‖Bn−1‖ − nd)

= log2[ lim
n→∞

‖Bn−1‖α−n]

= log2[ lim
n→∞

(Fn + 2Fn−1 + Fn−2)α−n]

= log2[ lim
n→∞

1
2
(αn + 2αn−1 + αn−2 +O(βn−1))α−n]

= log2(1 + 2α−1 + α−2) = log2

√
5 + 2√
5 + 1

.

Using Theorem 3.1 we obtain (27). �

Remark 3.8. Regarding Theorem 3.5(a), it is possible to construct an open
and bounded set Ω such that |Ω| < |Ω|, and even with arbitrarily small |Ω| and
arbitrarily large |Ω|. For example, it suffices to take a ball BR(0) with large
R, a countable dense set S in the ball, and cover S with a sequence of balls
contained in BR(0) such that their union Ω has arbitrarily small Lebesgue
measure. Clearly, Ω = BR(0). Furthermore, it is possible to construct an
open set Ω such that |Ω| is arbitrarily small and Ω = RN . It suffices to take
S dense in RN and proceed as before.

Remark 3.9. We do not know if any of the sets appearing in Theorem 3.5
is Minkowski measurable. It is known that the box dimension of the graph
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A of the function y := xα cosx−β , x ∈ (0, 1), where α and β are positive
constants such that α < β, is equal to d := 2− (α+1)/(β+1) (see Tricot [23,
pp. 111, 112]). It can be shown that the d-dimensional Minkowski contents
of A are nondegenerate (personal information by Dr. Mervan Pašić). Also,
estimates of Minkowski contents of graphs of rapidly oscillating solutions of
nonlinear ordinary differential equations are studied for the first time in Pašić
and Županović [21], using methods developed in Pašić [20]. In Martio and
Vuorinen [18, (4.20) Remark] it is shown that any isotropic self-similar fractal
set A which satisfies the open set condition is Minkowski nondegenerate; that
is, has nondegenerate d-dimensional Minkowski contents, where d = dimB A.

Example 3.2. We show that the converse of separation property (19) in
Theorem 3.2 does not hold. Let us consider standard Cantor’s middle third
set A ⊆ [0, 1]. Here we take the natural base b = 3, for which it is easy to see
that ωn(A, 3) = 5 · 2n−1. (Recall that we count closed intervals of 3−n-grid
of the real line, meeting A; the number of open such intervals is 2n.) Hence,
sn := log3 ωn(A, 3) = log3

5
2 + nd, where d = log3 2, and therefore

D := D = D = log3

5
2
, amplA := D −D = 0. (29)

Using bounds (25) and (26) we obtain

5
2
≤M∗d(A) ≤ 45

4
and

5
3
≤Md

∗(A) ≤ 15
2
.

This is in accordance with precise values of Minkowski contents of Cantor’s
set found in Lapidus, Pomerance [15, Theorem 2.4]:

M∗d(A) = (log3/2 9) (log4 3/2)log3 2 ≈ 2.58304,

Md
∗(A) = 22−log3 2 ≈ 2.49497.

Minkowski nonmeasurability of self-similar fractal strings of lattice type, orig-
inally proved by Lapidus [12], is studied in Lapidus and van Frankenhuysen
[17, Section 6.3.1], in the context of associated zeta functions and complex
fractal dimensions.

4 Minkowski Contents and the Lebesgue Integral.

In this section we study the Lebesgue integrability of functions of the form
d(x,A)−γ in a neighborhood of A, where A is a given fractal set and γ > 0.
The first result known to us in which the Minkowski content condition was
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employed to study this kind of problems, has been published by Harvey and
Polking [9, p. 42] in 1970, see also a brief historical overview in [27].

Let Ω be a given open subset of RN and A ⊆ Ω a nonempty subset, not
necessarily bounded. Assume that hi : (0, r0) → R, i = 1, 2, are two positive,
continuous functions such that hi(r) → 0 as r → 0. We define generalized
lower and upper Minkowski contents of A relative to Ω, and with respect to
gauge functions hi:

M∗(h1, A,Ω) := lim inf
r→0

|Ar ∩ Ω|
rN

h1(r), (30)

M∗(h2, A,Ω) := lim sup
r→0

|Ar ∩ Ω|
rN

h2(r). (31)

Relative Minkowski contents were introduced in this generality in Žubrinić
[26], motivated by He and Lapidus [10]. If Ω = RN (or if Aε ⊆ Ω for some
ε > 0), then instead of (30) and (31) we writeM∗(h1, A) andM∗(h2, A). Note
that for hi(r) = rs, i = 1, 2, with fixed s ≥ 0, we obtain the s-dimensional
lower and upper Minkowski contents Ms

∗(A,Ω) and M∗s(A,Ω) of A relative
to Ω, introduced also in [26]:

Ms
∗(A,Ω) := lim inf

r→0

|Ar ∩ Ω|
rN−s

and M∗s(A,Ω) := lim sup
r→0

|Ar ∩ Ω|
rN−s

It is easy to see that there exists a unique value s = d at which the function
s 7→ Ms

∗(A,Ω) has infinite jump from infinity down to zero. This value is
called the lower box dimension of A relative to Ω (or relative box dimension),
and is denoted by dimB(A,Ω). Similarly for the upper box dimension of A
relative to Ω. If dimB(A,Ω) = dimB(A,Ω), the common value is denoted
by dimB(A,Ω), and we call it the relative box dimension of A with respect
to Ω. For Ω = RN we obtain classical Minkowski contents and classical box
dimensions. Note also that Ar = (A)r, so that M∗(h1, A,Ω) = M∗(h1, A,Ω)
and dimB(A,Ω) = dimB(A,Ω). As an example, an open set Ω ⊂ R2 containing
a (one-dimensional!) ray A can be constructed such that dimB(A,Ω) > 1, see
[26, Example 2.1].

In this section the identity obtained in Žubrinić [27, Lemma 3] will play a
crucial role. Its first version appeared in [26, Theorem 2.9(a)].

Lemma 4.1. Let u : (0, r) → R be a decreasing, nonnegative, C1 diffeomor-
phism from (0, r) onto its range. Then∫

Ar∩Ω

u(d(x,A)) dx = u(r) |Ar ∩ Ω|+
∫ r

0

|At ∩ Ω| |u′(t)| dt. (32)
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In particular, for all γ > 0 we have∫
Ar∩Ω

d(x,A)−γdx = r−γ |Ar ∩ Ω|+ γ

∫ r

0

|At ∩ Ω| t−γ−1dt. (33)

We state a result providing necessary and sufficient conditions for inte-
grability of a class of singular functions, which extends [26, Theorem 2.9 and
Corollary 2.5]. Due to Lemma 4.1 its proof is very simple.

Theorem 4.2. (a) Assume that M∗(h1, A,Ω) > 0. Then for all r > 0,

Ir :=
∫

Ar∩Ω

d(x,A)−γdx <∞ =⇒
∫ r

0

tN−γ−1

h1(t)
dt <∞.

Moreover, for any fixed R > 0 and for all r ∈ (0, R) we have

Ir ≥ c

(
rN−γ

h1(r)
+ γ

∫ r

0

tN−γ−1

h1(t)
dt

)
and c := inf

t∈(0,R)

|At ∩ Ω|
tN

h1(t). (34)

(b) Assume that M∗(h2, A,Ω) <∞. Then for all r > 0,∫ r

0

tN−γ−1

h2(t)
dt <∞ =⇒ Ir :=

∫
Ar∩Ω

d(x,A)−γdx <∞

Moreover, for any fixed R > 0 and for all r ∈ (0, R) we have that

Ir ≤ c

(
rN−γ

h2(r)
+ γ

∫ r

0

tN−γ−1

h2(t)
dt

)
and c := sup

t∈(0,R)

|At ∩ Ω|
tN

h2(t).

Proof. (a) It is clear that |At ∩ Ω| ≥ ctNh(t)−1 for all t ∈ (0, R). Using
identity (33) we obtain the inequality in (34). Since Ir < ∞, the desired
inequality follows. Claim (b) can be proved analogously. �

Remark 4.1. If 0 < M∗(h1, A,Ω) and M∗(h2, A,Ω) < ∞, then we obtain
the following asymptotics of Ir as r → 0. For every ε > 0 there exists R > 0
such that for r ∈ (0, R) we have

(M∗(h1, A,Ω)− ε) · F1(r) ≤ Ir ≤ (M∗(h2, A,Ω) + ε) · F2(r),

where we define F1(r) := rN−γh1(r)
−1 + γ

∫ r

0
tN−γ−1h1(t)

−1
dt, and analo-

gously F2(r). In particular, if 0 <Md
∗(A,Ω) ≤M∗d(A,Ω) <∞, then

(Md
∗(A,Ω)− ε) · F (r) ≤ Ir ≤ (M∗d(A,Ω) + ε) · F (r),
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where F (r) := N−d
N−d−γ r

N−d−γ , and hence Ir � rN−d−γ as r → 0; that is, the
quotient Ir/rN−d−γ is between two positive constants (both arbitrarily close
to the corresponding Minkowski contents) for all r > 0 sufficiently small. If A
is Minkowski measurable relatively to Ω; that is, if there exists Md(A,Ω) ∈
(0,∞), then

Ir ∼
N − d

N − d− γ
Md(A,Ω) · rN−d−γ as r → 0. (35)

These estimates extend Žubrinić [26, Theorems 2.9(c) and 3.1(b)].

Theorem 4.3. (a) Assume that M∗(h1, A,Ω) > 0 with h1(t) = tdg1(t), where
d ∈ [0, N ], and g1(t) is a bounded function near t = 0; that is, lim supt→0 g1(t)
<∞. Then for all r > 0,∫

Ar∩Ω

d(x,A)−γdx <∞ =⇒ γ < N − d.

(b) Assume that M∗(h2, A,Ω) <∞ with h2(t) = tdg2(t), where d ∈ [0, N ],
and let lim supt→0 t

εg2(t)−1 <∞ for all ε > 0. Then for all r > 0,

γ < N − d =⇒
∫

Ar∩Ω

d(x,A)−γdx <∞.

(c) Assume that M∗(h1, A,Ω) > 0 and M∗(h2, A,Ω) < ∞ with hi(t) =
tdgi(t), i = 1, 2, where d ∈ [0, N ], and let the conditions lim supt→0 g1(t) <∞
and lim supt→0 t

εg2(t)−1 <∞ be satisfied for all ε > 0. Then for all r > 0,∫
Ar∩Ω

d(x,A)−γdx <∞⇐⇒ γ < N − d. (36)

Proof.
(a) The function g(t) is bounded by a positive constant C near t = 0.

Using Theorem 4.2(a) we obtain that for r > 0,

∞ >

∫ r

0

tN−γ−1h1(t)−1dt ≥ 1
C

∫ r

0

tN−d−γ−1dt;

hence γ < N − d.
(b) Let us take ε > 0 sufficiently small, so that N − γ − d− ε > 0. There

exists a constant M = M(ε) > 0 such that tεg2(t)−1 ≤M . We have that∫ r

0

tN−γ−1

h2(t)
dt =

∫ r

0

tN−d−γ−1g2(t)−1dt

=
∫ r

0

tN−d−γ−ε−1tεg2(t)−1dt ≤M
rN−d−γ−ε

N − d− γ − ε
<∞.
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The conclusion follows from Theorem 4.2(b).
Claim (c) follows from (a) and (b). �

Note that in Theorem 4.3(c) it may happen that M∗(h1, A,Ω) is larger
than M∗(h2, A,Ω), but by multiplying h1 or h2 by a positive constant we
can easily achieve that 0 <M∗(h1, A,Ω) ≤ M∗(h2, A,Ω) < ∞. An immedi-
ate consequence of Theorem 4.3(c) is the following result, which extends [26,
Theorem 3.1(b)]. It was the principal motivation for our study of Minkowski
contents of fractal sets in this paper.

Theorem 4.4. Assume that Ω is an open subset of RN and A ⊆ Ω, where
A is not necessarily bounded and assume the relative box dimension d :=
dimB(A,Ω) exists. If the relative Minkowski contents of A are nondegenerate;
that is,

0 <Md
∗(A,Ω) ≤M∗d(A,Ω) <∞,

then for all r > 0,∫
Ar∩Ω

d(x,A)−γdx <∞⇐⇒ γ < N − dimB(A,Ω).

In particular, if d := dimB Aexists, and if the corresponding classical Minkowski
contents are nondegenerate; that is,

0 <Md
∗(A) ≤M∗d(A) <∞, (37)

then for all r > 0,∫
Ar

d(x,A)−γdx <∞ ⇐⇒ γ < N − dimB A. (38)

Remark 4.2. The second part of Theorem 4.4 applies to all fractal sets ap-
pearing in Theorem 3.5. In Theorem 5.2 we will show that the nondegeneracy
condition of Minkowski contents in (37) is indeed essential for the characteri-
zation of integrability (38) to hold in this form.

We can also improve [26, Theorem 2.3], by showing that the He - Lapidus
condition (see [26, condition (2.5)]) is not necessary (see Theorem 4.5(a) be-
low). The proof follows from Theorem 4.2 similarly as the proof of Theo-
rem 4.3.

Theorem 4.5. Let Ω be an open set in RN and A a subset of Ω.
(a) Assume that M∗(h1, A,Ω) > 0, where h1(r) ≤ C · rα for all r > 0

sufficiently small, and α > 0 is a constant. Then for all r > 0,∫
Ar∩Ω

d(x,A)−γdx <∞ =⇒ γ < N − α.
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(b) Assume that M∗(h2, A,Ω) < ∞, where h2(r) ≥ C · rβ for all r > 0
sufficiently small, and β > 0 is a constant. Then for all r > 0,

γ < N − β =⇒
∫

Ar∩Ω

d(x,A)−γdx <∞.

Remark 4.3. Using Lemma 4.1 we can easily generate other Lebesgue inte-
grable functions, for example those having logarithmic singularity on a pre-
scribed set A ⊂ RN . It suffices to consider the function u(t) := log t−1 for
t ∈ (0, 1); that is, x 7→ log d(x,A)−1, or analogous functions with iterated
logarithms.

Theorem 4.6. Let A be a subset of RN and Ω an open set such that A ⊂
Ω ⊆ RN . Assume that 0 < Md

∗(A,Ω) ≤ M∗d(A,Ω) < ∞, d < N . Then the
function x 7→ log d(x,A)−1 is Lebesgue integrable on Ar ∩ Ω. Moreover, for
any fixed R < 1 and r ∈ (0, R) we have

F1(r) ≤
∫

Ar∩Ω

log d(x,A)−1dx ≤ F2(r), (39)

where F1(r) = (log r−1+(N−d)−1)·inft∈(0,R)
|At∩Ω|
tN−d ·rN−d, and F2(r) is defined

analogously with sup instead of inf. The corresponding function u : Ω → R
defined by

u(x) :=

{
log d(x,A)−1 for x ∈ Ω ∩Ar,
0 for x ∈ Ω \Ar,

is contained in the space ∩1≤p<∞L
p(Ω).

Proof. Estimate (39) follows from Lemma 4.1. It is easy to see that for
any p ≥ 1 there exist γ > 0 and C > 0 such that pγ < N − d and u(x) ≤
C · d(x,A)−γ , for x ∈ Ar. The claim follows from Theorem 4.4. �

5 Gauge Functions for Minkowski Contents.

Let us describe a class of d-dimensional fractal sets with degenerate d-dimen-
sional Minkowski contents, but which possess gauge functions such that the
corresponding Minkowski contents are nondegenerate.

Theorem 5.1. Let a set in A ⊂ [0, 1]N be defined by a swarming function
f(t) := d · t + ϕ(t), t ≥ 1 (see Lemma 2.1), where d ∈ [0, N) is fixed, and
ϕ(t) is an absolutely continuous function such that ϕ(1) ∈ [−d,N − d + 1),
0 ≤ ϕ′ ≤ N − d for a.e. t ≥ 1, and ϕ(t) = o(t), ϕ(t) → ∞ as t→∞, (for
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example, ϕ(t) :=
√
t). Then dimB A = d and A has degenerate Minkowski

content with Md(A) = ∞, while for the gauge function h(r) := rd2−ϕ(log2 r−1)

the corresponding h-Minkowski contents are nondegenerate:

2d−2N−1CN ≤M∗(h,A) ≤ 3NDN

and 2−N−1CN ≤M∗(h,A) ≤ 3N2N−dDN .

Also, for all r > 0,

Ir :=
∫

Ar

d(x,A)−γdx <∞⇐⇒ γ < N − d, (40)

and for any R > 0 there exist positive constants c and c such that for all
r ∈ (0, R):

c F (r) ≤ Ir ≤ c F (r), (41)

where F (r) := rN−d−γ2ϕ(log2 r−1) +
∫ r

0
tN−d−γ−12ϕ(log2 t−1) dt.

Proof. By (2) we have that dimB A = limn f(n)/n = d. Also, since sn :=
log2 ωn(A) ≥ bf(n)c (see Lemma 2.1) we conclude that

D = lim inf
n→∞

(sn − nd) ≥ lim inf
n→∞

(bdn+ ϕ(n)c − nd) = ∞;

hence by Theorem 3.2(a) the Minkowski content is degenerated: Md(A) = ∞.
To find the appropriate gauge function of A which would generate nondegen-
erate Minkowski contents of A, let r ∈ (0, 1) be fixed, and choose a natural
number n such that 2−n ≤ r < 2−(n−1). Using the estimate from step (d) of
the proof of Theorem 3.1 we have

|Ar|
rN−d

≥ 2d−2NCN2sn−nd ≥ 2d−2NCN2ϕ(n)−1 = 2d−2N−1CN2ϕ(log2 r−1).

Hence |Ar|
rN h(r) ≥ 2d−2N−1CN , and therefore M∗(h,A) ≥ 2d−2N−1CN . Using

the estimate from step (c) of the proof of Theorem 3.1 we have

|Ar|
rN−d

≤ 2N−dDN2sn−1−(n−1)d ≤ 2N−dDN2ϕ(n−1)+N log2 3

= 3N2N−dDN2ϕ(log2 r−1),

since ϕ is nondecreasing. Hence |Ar|
rN h(r) ≤ 3N2N−dDN , and thus M∗(h,A)

≤ 3N2N−dDN . Using steps (a) and (b) from the proof of Theorem 3.1 we have

|A2−n |
(2−n)N−d

≥ 2−NCN2sn−nd ≥ 2−N−1CN2ϕ(n),

|A2−n |
(2−n)N−d

≤ DN2sn−nd ≤ DN2ϕ(n)+N log2 3 = 3NDN2ϕ(n);
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hence,

M∗(h,A) ≥ lim sup
n→∞

|A2−n |
(2−n)N

h(2−n) ≥ 2−N−1CN ,

M∗(h,A) ≤ lim inf
n→∞

|A2−n |
(2−n)N

h(2−n) ≤ 3NDN .

To prove (40) it suffices to use Theorem 4.3(c). We have that g(t) :=
2−ϕ(log2 t−1) → 0 as t→∞, and for any ε > 0,

lim
t→0

tεg(t)−1 = lim
t→0

tε2ϕ(log2 t−1) = lim
p→∞

2−pε+ϕ(p) = lim
p→∞

2−p(ε−ϕ(p)/p) = 0.

Estimate (41) for Ir follows from Theorem 4.2. �

Example 5.1. The conditions of Theorem 5.1 are satisfied if ϕ1(t) = tα

with α ∈ (0, 1) or ϕ2(t) = β log2 t (with β > 0 sufficiently small). The
corresponding gauge functions are

h1(r) = rd2−(log2 r−1)α

and h2(r) = rd(log2 r
−1)−β . (42)

Now we construct a class of fractal sets showing that nondegeneracy condi-
tion (37) is indeed important for characterization of integrability (38) to hold
in Theorem 4.4. Note that in (45) we allow γ = N − γ, in contrast to (38).

Theorem 5.2. Let A be a set in [0, 1]N generated by a swarming function
f(t) := d · t − ϕ(t), t ≥ 1, where d ∈ (0, N) is fixed, ϕ(1) ∈ (−N + d − 1, d],
0 ≤ ϕ′(t) ≤ N − d for a.e. t ≥ 1, ϕ(t) = o(t) and ϕ(t) →∞ as t→∞, and∫ ∞

1

2−ϕ(t)dt <∞. (43)

Then dimB A = d, and A has degenerate Minkowski content,Md(A) = 0. For
the gauge function

h(r) := rd2ϕ(log2 r−1) (44)

the lower and upper h-Minkowski contents of A are nondegenerate:

2d−2N−1CN ≤M∗(h,A) ≤ 3NDN and 2−N−1DN ≤M∗(h,A) ≤ 3N4N−dDN .

Furthermore, we have that for all r > 0,∫
Ar

d(x,A)−γdx <∞⇐⇒ γ ≤ N − d. (45)
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Proof. Given r ∈ (0, 1) there exists a unique natural number n such that
2−n ≤ r < 2−(n−1). Using the estimate from step (c) in the proof of Theo-
rem 3.1, and the fact that ϕ is nondecreasing, we obtain

|Ar|
rN−d

≤ 2N−dDN2sn−1−(n−1)d ≤ 2N−dDN2−ϕ(n−1)+N log2 3

= 2N−dDN2−ϕ(log2 r−1−1).

Hence, since ϕ(t)−ϕ(t−1) ≤
∫ t

t−1
ϕ′(s) ds ≤ N−d, we have ϕ(t−1) ≥ ϕ(t)−

N + d for t ≥ 2, and substituting t = log2 r
−1 we conclude that M∗(h,A) ≤

3N4N−dDN . The remaining estimates of h-Minkowski contents are obtained
in the same way as in the proof of Theorem 5.1.

Defining g(t) := 2ϕ(log2 t−1) we have that for all ε > 0, limt→0 t
εg(t)−1 = 0,

hence by Theorem 4.3(b) we have that sufficiency part in (45) holds with
γ < N − d.

Let us consider the case of γ = N − d. We use Theorem 4.2(b). It suffices
to check that Hr :=

∫ r

0
tN−γ−1h(t)−1dt <∞. Indeed, we have

Hr =
∫ r

0

t−12−ϕ(log2 t−1)dt = log 2
∫ ∞

log2 r−1
2−ϕ(s)ds <∞.

To prove the necessity part in (45), we use Theorem 4.5(a) with Ω =
RN . Let us fix any α < d. We first check that h(r) ≤ rα. Indeed, for t
sufficiently large we have that ϕ(t)

t ≤ d−α, and the desired inequality follows
by substituting t = log2

1
r , with r sufficiently small. Using Theorem 4.5 we

obtain γ < N − α. Now letting α→ d we conclude that γ ≤ N − d. �

Remark 5.1. Note that for the gauge function in (44) there is no positive
constant C such that h(r) ≤ C ·rd. Hence, Theorem 5.2 shows that the growth
condition on h1 in Theorem 4.5(a) is in some sense optimal for the conclusion
to hold there. Analogously for Theorem 4.3(a).

Example 5.2. It is easy to see that the integral condition (43) is fulfilled if
the function ϕ : (1,∞) → RN is increasing C1 diffeomorphism onto its range,
and the inverse function ψ := ϕ−1 satisfies the condition∫ ∞

ϕ(1)

2−sψ′(s) ds <∞,

where we have used a change of variables. This is the case if for example the
function ψ′ has at most polynomial growth, or even more generally, if ψ′(s) ≤
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2cs for some constant c ∈ (0, 1). Among examples that satisfy conditions of
Theorem 5.2 are ϕ1(t) = tα with α ∈ (0, 1), or ϕ2(t) = β log2 t with β > 1.
The corresponding gauge functions are

h1(r) = rd2(log2 r−1)α

and h2(r) = rd(log2 r
−1)β . (46)

It is also possible to construct fractals using iterated logarithms in ϕ2, so that
they will appear in h2 as well. The same is possible in Example 5.1.

Example 5.3. Interesting geometric constructions of fractals yielding gauge
functions of the form h2 in (46) can be seen in Caetano [2], Evans and Harris
[3, Section 6.2.2], or in He, Lapidus [10, Examples 7.5 and 7.7, see also the
Appendix]. Here we can easily construct various open sets Ω in RN with the
boundary ∂Ω having prescribed inner box dimension in (N − 1, N), and with
partial control over Minkowski contents of ∂Ω relative to Ω, and also with
degenerate contents possessing gauge functions as above. If A is a compact
fractal set in RN as in Theorem 5.1, it suffices to define Ω := BR(0) \ A
with dimB A =: d ∈ (N − 1, N), and with R large enough so that A ⊂
BR(0). It is clear that ∂Ω = ∂BR(0) ∪ A, and for the relative box dimension
of the boundary with respect to Ω (also called inner box dimension in the
literature) we have dimB(∂Ω,Ω) = dimB A = d, classical Minkowski content
is degenerate, Md(∂Ω) = 0, while generalized Minkowski contents M∗(h, ∂Ω)
and M∗(h, ∂Ω) are nondegenerate. Analogous sets Ω can be obtained using
Theorem 5.2. Using fractal set A described in Corollary 3.3 or 3.4 we can
construct a domain Ω as above such that relative box dimensions d and d of
the boundary with respect to Ω have prescribed values in (N−1, N), and with
partial control over the corresponding relative Minkowski contents Md

∗(∂Ω,Ω)
and M∗d(∂Ω,Ω).

We also formulate a result about general properties of Minkowski contents,
which extends Krantz, Parks [11, Theorem 3.3.6]. It enables to generate new
fractals with nondegenerate Minkowski contents, and the corresponding new
Lebesgue integrable functions. See also the excision property of the upper
Minkowski content described in Lemma 6.6(a) below.

Proposition 5.3. Let hi : (0, r0) → R, i = 1, 2, be gauge functions for pairs
(Ai,Ωi), where Ai ⊆ Ωi ⊆ RNi . We have

M∗(h1h2, A1 ×A2,Ω1 × Ω2) ≤M∗(h1, A1,Ω1) · M∗(h2, A2,Ω2).

Assuming that gauge functions hi are nondecreasing, then

M∗(h1, A1,Ω1) · M∗(h2, A2,Ω2) ≤
√

2
N1+N2M∗(h1h2, A1 ×A2,Ω1 × Ω2).
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If h := h1 = h2 and Ω := Ω1 = Ω2, then

M∗(h,A1 ∪A2,Ω) ≤M∗(h,A1,Ω) +M∗(h,A2,Ω).

Analogous inequality holds for M∗ provided d(A1, A2) > 0:

M∗(h,A1 ∪A2,Ω) ≥M∗(h,A1,Ω) +M∗(h,A2,Ω).

Proof. Let us prove the second inequality only. It is clear that (A1)r ×
(A2)r ⊆ (A1 ×A2)√2 r. Hence,

((A1)r ∩ Ω1)× ((A2)r ∩ Ω2) ⊂ (A1 ×A2)√2 r ∩ (Ω1 × Ω2),

and from this it follows that

|(A1)r ∩ Ω1|
rN1

· |(A2)r ∩ Ω2|
rN2

≤
√

2
N1+N2 |(A1 ×A2)√2 r ∩ (Ω1 × Ω2)|

(
√

2 r)N1+N2
.

The claim follows easily by multiplying this inequality with h1(r)h2(r) ≤
h1(

√
2 r)h2(

√
2 r), and taking the liminf as r → 0. �

It is easy to see that classical Minkowski contents are positively homo-
geneous; that is, Md

∗(λA) = λdMd
∗(A) and M∗d(λA) = λdM∗d(A) for any

λ > 0. This property can be extended to generalized Minkowski contents. We
say that a gauge function h : (0, r0) → R is almost homogeneous with degree
d ≥ 0 if for all λ > 0,

h(λr) ∼ λdh(r) as r → 0. (47)

Example 5.4. It is easy to see that functions having the form h1(r) :=
rd2±(log2 r−1)α

, with α ∈ (0, 1), or h2(r) := rd(log r−1)β , with α ∈ R and
d ≥ 0, appearing in (42) and (46), are both almost homogeneous with degree
d. Indeed, for h1 the condition (47) reduces to verifying that logα

2 (λr)−1 −
logα

2 r
−1 → 0 as r → 0, and this follows from |uα − vα| ≤ α · uα−1|u − v| for

any 0 < u ≤ v, where α ∈ (0, 1). Almost homogeneity of a gauge function
implies homogeneity of the corresponding Minkowski contents. The proof of
this fact is simple, and we omit it.

Proposition 5.4. Assume that a gauge function h is almost homogeneous
with degree d ≥ 0. Then for any λ > 0

M∗(h, λA) = λd · M∗(h,A) and M∗(h, λA) = λd · M∗(h,A).
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Remark 5.2. Probably the easiest geometrical way to construct a fractal
S in [0, 1] with degenerate 1-dimensional Minkowski content (and equal to
zero) is to start with a sequence of compact sets An in R such that dn :=
dimB An ∈ (0, 1), dn → 1 as n → ∞, and possessing nondegenerate dn-
dimensional Minkowski contents. Let us define a generalized fractal spray
(generalizing standard fractals sprays in which all An coincide, see Lapidus
and van Frankenhuysen [17]; fractal sprays were introduced by Lapidus and
Pomerance [15]), S :=

⋃∞
n=1(λnAn + µn). Here λn and µn are real numbers

chosen so that each set λnAn+µn is contained in the prescribed closed interval
In in [0, 1], and the family of intervals In is disjoint. Note that S is negligible
(i.e., its Lebesgue measure is zero) as a countable union of negligible sets. It
is easy to see that dimB A = 1, since Ms(S) = ∞ for s < 1 (for any such s
there exists dn ∈ (s, 1); hence Ms(λnAn +µn) = λs

nMs(An) = ∞). Since the
set S is trivially 1-rectifiable, using Federer [6, 3.2.39. Theorem] we have that
M1(A) = H1(S) = 0, where H1 is the Hausdorff measure (equal to Lebesgue’s
measure in this case). This construction can be applied to the sequence of
uniform Cantor sets An := C(an), where dn = log1/an

2 and an → 1/2, or
to a-sets (in the terminology of Lapidus, van Frankenhuysen [17]) defined by
An := {k−αn : k ∈ N}, where dn = 1/(1 + αn) and αn → 0. We do not
know if these sets possess gauge functions which would yield nondegenerate
generalized Minkowski contents of S. It is easy to extend the definition of
generalized fractal spray to RN , defining S := ∪n(λnOnAn + µn), where An

are compact subsets of RN , On is a sequence of orthogonal matrices of order
N , and λn ∈ R, µn ∈ RN . A generalized fractal spray generated by a sequence
of uniform Cantor sets has been used in Žubrinić [27, Proposition 10] in order
to construct maximally singular Lebesgue integrable function u : (0, 1) → R,
in the sense that Hausdorff’s dimension of the set of its singular points is equal
to 1.

6 Minkowski Measurable Spirals in the Plane.

In this section we consider two classes of nonrectifiable spirals in the plane
defined in polar coordinates (r, ϕ). Let us first consider a class of spirals of
the focus type.

Theorem 6.1. Let A be a spiral of the focus type, defined by r = ϕ−α, where
ϕ ≥ ϕ0, with ϕ0 > 0 a fixed angle.

(a) If α ∈ (0, 1), then d := dimB A = 2/(1 + α) (see Tricot [23, p. 121])
and A is Minkowski measurable,

Md(A) = π(πα)−2α/(1+α) 1 + α

1− α
. (48)
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(b) If α = 1, then d = 1 and M1(A) = ∞, while with the gauge function
h(r) := r · (log r−1)−1 we have that 0 <M∗(h,A) ≤M∗(h,A) <∞.

Remark 6.1. It is easy to see that the spiral r = ϕ−α, ϕ ≥ ϕ0 is rectifiable if
and only if α > 1. In this case dimB A = 1 and its 1-dimensional Minkowski
content is equal to its length multiplied by 2.

Theorem 6.2. Let A be a spiral of the limit cycle type, defined by r = 1−ϕ−α,
where α > 0 is a fixed constant, and ϕ ≥ ϕ0, with ϕ0 ≥ 1 a fixed angle. Then
A is Minkowski measurable: d := dimB A = 2+α

1+α and Md(A) = 2π(1 +
α)(πα)−α/(1+α).

Remark 6.2. It is interesting to note that in the nonrectifiable case the cor-
responding d-dimensional Minkowski content of the spiral A does not depend
on the initial angle ϕ0.

Remark 6.3. If λA is the graph of the spiral r = λϕ−α, ϕ ≥ ϕ0 > 0, with
fixed α ∈ (0, 1), scaled with respect to the spiral A in Theorem 6.1 with factor
λ > 0, we obtain the corresponding Minkowski content using homogeneity,
Md(λA) = λdMd(A). On the other hand, in the case of the spiral A(λ) of
the cycle type r = 1− λϕ−α, ϕ ≥ ϕ0, we have

M∗d(A(λ)) = 2π(1 + α)λ1/(1+α)(πα)−α/(1+α).

Note that here λ does not have the role of scaling factor of A(λ) with respect
to the spiral A in Theorem 6.2. This value of Minkowski content is obtained by
direct computation, repeating the proof of Theorem 6.2. It is interesting that
for this class of spirals we have that Md(A(λ)) = λd−1Md(A). Intuitively,
this property is due to the fact that all radial sections of the spiral A(λ) are
sets of the form {(1−λ(ϕ1+2kπ)−α, ϕ1) ∈ R2 : k ∈ N}, and the box dimension
of any such set (with fixed ϕ1 and α > 0) is equal to dimB{k−α : k ∈ N} =
1/(1 + α) = d− 1 (see e.g. Tricot [23, p. 25]).

As a consequence of Theorem 4.3(c) we obtain new examples of Lebesgue
integrable functions, with singular sets being equal to spirals.

Corollary 6.3. Let B1(0) be the unit disk in the plane. Assume that either
the assumptions of Theorem 6.1 or of Theorem 6.2 are satisfied, and let A be
the corresponding spiral. Then for γ > 0,∫

B1(0)

d(x,A)−γdx <∞⇐⇒ γ < 2− d.
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Assuming that conditions of Theorem 6.1(a) or 6.2 are satisfied, we have

lim
r→0

1
r2−d−γ

∫
Ar

d(x,A)−γdx =
2− d

2− d− γ
·
{
π(πα)−2α/(1+α) 1+α

1−α ,

2π(1 + α)(πα)−α/(1+α),

respectively, see (35).

Theorems 6.1 and 6.2 can be reformulated in terms of simple dynamical
systems as follows. By the trajectory of the dynamical system here we mean
the set of the form {(r(t), ϕ(t)) ∈ R2 : t ∈ (t0,∞)}, with t0 corresponding to
initial angle ϕ0, where the functions r(t) and ϕ(t) satisfy the corresponding
system of differential equations.

Theorem 6.4. (a) Assume that A is any trajectory of dynamical system de-
fined by ṙ = −a · rb, ϕ̇ = 1, where a > 0, b > 2, 0 < r(t) < 1 and ϕ(t) ≥ ϕ0

with fixed ϕ0 > 0. Then

d := dimB A = 2− 2
b
, Md(A) =

πb

b− 2
(aπ)−2/b.

(b) Assume that A is any trajectory of dynamical system defined by ṙ =
a(1 − r)b, ϕ̇ = 1, where a > 0, b > 1, 0 < r(t) < 1 and ϕ(t) ≥ ϕ0 with fixed
and sufficiently large ϕ0 > 0. Then

d := dimB A = 2− 1
b
, Md(A) =

2πb
b− 1

(aπ)−1/b.

Remark 6.4. The larger the box dimension of a trajectory in Theorem 6.4
(i.e. the larger the value of b), the greater the “density” of the trajectory
near its ω-limit set. This can nicely be seen by plotting the phase portrait.
Hausdorff and box dimensions of nonrectifiable trajectories A = A(ϕ0,∞) of
general dynamical systems in RN are studied in Pesin [22].

Let a spiral r = r(ϕ), ϕ > ϕ0, be given, and let A be the corresponding
curve in the plane. For any two given angles ϕ1 < ϕ2 we let A(ϕ1, ϕ2) be the
subset of A corresponding to angles ϕ ∈ (ϕ1, ϕ2). We can write A = A(ϕ0,∞).

The following lemma states that for large values of ϕ the set A(ϕ,ϕ+ 2π)
corresponding to the spiral r = ϕ−α (or r = 1− ϕ−α) is almost indistinguish-
able from the circle.

Lemma 6.5. Let r = ϕ−α, where α > 0 is a constant, ϕ ≥ ϕ0, and ~r(ϕ) :=
r(ϕ)(cosϕ~i+ sinϕ~j). Then

∠(~r(ϕ), ~r ′(ϕ)) → π/2, ∠(~r ′(ϕ), ~r ′(ϕ+ 2π)) → 0,
r(ϕ)− r(ϕ+ 2π)

r(ϕ)
→ 0, R(ϕ) ∼ r(ϕ),



348 Darko Žubrinić

as ϕ→∞, where R(ϕ) is the radius of curvature of A at the point correspond-
ing to ϕ. Analogous claim holds for the spiral r = 1− ϕ−α of the cycle type.

Proof. We consider the spiral of the focus type only. Letting A(ϕ) :=
∠(~r(ϕ), ~r ′(ϕ)) we have

cosA(ϕ) =
~r(ϕ) · ~r ′(ϕ)
|~r(ϕ)| · |~r ′(ϕ)|

=
−α√
α2 + ϕ2

→ 0 as ϕ→∞;

hence, A(ϕ) → π/2. Denoting B(ϕ) := ∠(~r(ϕ), ~r(ϕ+ 2π)) we have

cosB(ϕ) =
~r ′(ϕ) · ~r ′(ϕ+ 2π)
|~r ′(ϕ)| · |~r ′(ϕ+ 2π)|

=
α2ϕ−1(ϕ+ 2π)−1 + 1√

(α2ϕ−2 + 1)(α2(ϕ+ 2π)−2 + 1)
→ 1;

hence, B(ϕ) → 0 as ϕ→∞. The fact that (r(ϕ)−r(ϕ+2π))/r(ϕ) → 0 follows
from the Lagrange mean value theorem, ϕ−α − (ϕ+ 2π)−α ≤ 2παϕ−α−1.

For any curve r = r(ϕ) of class C2 in the plane we have

R(ϕ) =
(r2 + r′2)3/2

|r2 + 2r′2 − rr′′|
,

see e.g. Gardner [8, p. 25]. By direct computation we have that

R(ϕ) = ϕ−α (1 + α2ϕ−2)3/2

1− α(1− α)ϕ−2
∼ ϕ−α as ϕ→∞. �

Now we show that if the curve A = A(ϕ0,∞) is smooth, then the upper d-
dimensional Minkowski content of A(ϕ1,∞) does not depend on ϕ1, ϕ1 ≥ ϕ0,
provided d > 1.

Lemma 6.6. (Excision property of the upper Minkowski content)
(a) Let E and F be two bounded sets in RN , E ⊂ F . If M∗d(E) = 0, then

M∗d(F ) = M∗d(F \ E).
(b) Let A = A(ϕ0,∞) be a spiral defined by a C1 function r = r(ϕ),

ϕ ≥ ϕ0. Assume that d := dimB A(ϕ0,∞) > 1. Then for any ϕ1 > ϕ0 we
have M∗d(A(ϕ1,∞)) = M∗d(A(ϕ0,∞)).

Proof. (a) It is clear that M∗d(F \ E) ≤ M∗d(F ). To show the reverse
inequality, note that from E ⊂ F it follows that F = E ∪ (F \ E); hence
|Fε| ≤ |Eε|+ |(F \E)ε| for all ε > 0. Dividing by εN−d and taking lim sup as
ε→ 0 we obtain that

M∗d(F ) ≤M∗d(E) +M∗d(F \ E) = M∗d(F \ E).
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(b) Let E := A(ϕ0, ϕ1), where ϕ1 ∈ (ϕ0,∞), and F := A(ϕ0,∞). Since E
is a curve of finite length, we have dimB E = dimB A(ϕ0, ϕ1) = 1 (see Tricot
[23, Theorem on p. 106]). Hence d = dimB(F ) > dimB E, and in particular
Md(E) = 0. The claim follows from (a). �

Remark 6.5. We believe the claim in Lemma 6.6(a) is not true for lower
Minkowski contents. It would be interesting to find an example.

Proof of Theorem 6.1. (a1) Let ε > 0 and ϕ1 ∈ (ϕ0,∞) be fixed. We
first consider the upper bound of |A(ϕ1,∞)ε|. Let us find a value ϕ2 = ϕ2(ε)
sufficiently large, such that ϕ−α − (ϕ + 2π)−α ≤ 2ε for all ϕ ∈ (ϕ2,∞).
Using the Lagrange mean value theorem we get that this inequality is satisfied
with ϕ2 := Cε−1/(1+α), where C = (πα)1/(1+α). We split |A(ϕ1,∞)ε| into
two parts: the central disk of area P 1(ε) (covering the “nucleus” of the set
A(ϕ2,∞)ε, corresponding to ϕ ∈ (ϕ2,∞), r ≤ ϕ−α

2 ) and the area P 2(ε)
covering the “tail” corresponding to ϕ ∈ (ϕ1, ϕ2 + 2π) (we assume that ε is
sufficiently small, so that ϕ2 > ϕ1). We have that

P 1(ε) := π · r(ϕ2)
2 = πϕ−2α

2 ∼ π(πα)−2α/(1+α)ε2α/(1+α) as ε→ 0.

Now we approximate A(ϕ1, ϕ2)ε by a “radial sausage” A(ϕ1, ϕ2)ε,rad defined
by

A(ϕ1, ϕ2)ε,rad := {(ρ, ϕ) ∈ R2 : ϕ ∈ (ϕ1, ϕ2), r(ϕ)− ε < ρ < r(ϕ) + ε},

with suitably chosen constant ε > 0. The idea is to expand the radial sausage
corresponding to ε using auxiliary parameter D(ϕ1) in order to cover the
Minkowski sausage A(ϕ1, ϕ2)ε. From Lemma 6.5 it follows that there exists a
constant D(ϕ1) > 1 independent of ε > 0, such that D(ϕ1) → 1 as ϕ1 → ∞,
and such that with ε := D(ϕ1) · ε we have

A(ϕ1, ϕ2)ε ⊆ A(ϕ1, ϕ2)ε,rad ∪ S1(ε) ∪ S2(ε).

Here S1(ε) and S2(ε) are the corresponding semidiscs of radii ε attached at two
points of A for ϕ = ϕ1 and ϕ = ϕ2, covering the set A(ϕ1, ϕ2)ε\A(ϕ1, ϕ2)ε,rad.
Therefore (taking into account the uncovered part of A(ϕ1,∞)ε in P1(ε) cor-
responding to ϕ ∈ (ϕ2, ϕ2 + 2π) and r ≥ ϕ−α) we obtain

P 2(ε) ≤ |A(ϕ1, ϕ2 + 2π)ε,rad|+ |S1(ε)|+ |S2(ε)|

=
1
2

∫ ϕ2+2π

ϕ1

[(r(ϕ) + ε)2 − (r(ϕ)− ε)2] dϕ+ πε2

= D(ϕ1)K(ε)ε2α/(1+α) + o(ε2−d),
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where we have used that α ∈ (0, 1). Since K(ε) → K := 2
1−α (πα)(1−α)/(1+α)

as ε→ 0, we conclude that lim supε→0
P 2(ε)
ε2−d ≤ D(ϕ1)·K, Hence, using excision

Lemma 6.6(b) (note that A = A(ϕ0,∞) and d := 2/(1 + α) > 1, see Tricot
[23, p. 121], and A(ϕ1,∞) ⊂ A(ϕ0,∞)) we get

M∗d(A) = M∗d(A(ϕ1,∞)) ≤ π(πα)−2α/(1+α)+D(ϕ1)·
2

1− α
(πα)(1−α)/(1+α).

Letting ϕ1 →∞ we obtain

M∗d(A) ≤ π(πα)−2α/(1+α) +
2

1− α
(πα)(1−α)/(1+α)

= π(πα)−2α/(1+α) 1 + α

1− α
.

(49)

(a2) Now we proceed to obtain the lower bound. Let us again fix ε > 0 and
ϕ1 ∈ (ϕ0,∞). Using the Lagrange mean value theorem we see that inequality
|r(ϕ) − r(ϕ + 2π)| ≥ 2ε is satisfied with ϕ ≤ ϕ

2
:= Cε−1/(1+α) − 2π, where

C := (πα)1/(1+α). From Lemma 6.5 it follows that there exists a constant
D(ϕ1) < 1 independent of ε > 0, such that D(ϕ1) → 1 as ϕ1 → ∞, and
such that with ε := D(ϕ1) · ε we have A(ϕ1, ϕ2

)ε,rad ⊆ A(ϕ1, ϕ2
)ε, and the

radial sausage A(ϕ1, ϕ2
)ε,rad is non-self-intersecting; that is, for any fixed

ϕ ∈ (ϕ1, ϕ2
) the family of intervals (r(ϕ− 2kπ)− ε, r(ϕ− 2kπ) + ε), indexed

with k ∈ N ∪ {0}, is disjoint. Let us first estimate the area of the “nucleus”
A(ϕ

2
,∞)ε from below:

P 1(ε) : π · r(ϕ
2

+ 4π)2 = π(ϕ
2

+ 4π)−2α ∼ πC−2αε2α/(1+α) as ε→ 0.

Also, assuming that ε is small enough so that ϕ1 < ϕ
2
, we have

P 2(ε) := |A(ϕ1, ϕ2
)ε| ≥ |A(ϕ1, ϕ2

)ε,rad|

=
1
2

∫ ϕ
2

ϕ1

[(r(ϕ) + ε)2 − (r(ϕ)− ε)2] dϕ

= D(ϕ1)K(ε)ε2α/(1+α) + o(ε2−d).

Since K(ε) → K := 2
1−α (πα)(1−α)/(1+α) as ε→ 0, we conclude that

lim inf
ε→0

P 2(ε)
ε2−d

≥ D(ϕ1) ·K.
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Hence

Md
∗(A(ϕ1,∞)) = lim inf

ε→0

|Aε|
ε2−d

≥ π(πα)−2α/(1+α)

+D(ϕ1) ·
2

1− α
(πα)(1−α)/(1+α).

From A(ϕ1,∞) ⊂ A = A(ϕ0,∞) it follows that

Md
∗(A) ≥Md

∗(A(ϕ1,∞)) ≥ π(πα)−2α/(1+α) +D(ϕ1) ·
2

1− α
(πα)(1−α)/(1+α).

Letting ϕ1 →∞ we obtain

Md
∗(A) ≥ π(πα)−2α/(1+α) +

2
1− α

(πα)(1−α)/(1+α)

= π(πα)−2α/(1+α) 1 + α

1− α
.

This together with (49) finishes the proof of (48).
(b) For α = 1 the corresponding gauge function is obtained by repeating

the same computations as in (a). �

The proof of Theorem 6.2 can be obtained analogously. The notions of
nucleus and tail for spirals that we used in the proof of Theorem 6.1 have
been introduced in Tricot [23, pp. 121, 122].

Remark 6.6. As seen from the proof of Theorem 6.1, the d-dimensional
Minkowski content of a spiral A of the focus type, defined by r = ϕ−α, is the
sum of two quantities: nucleus Minkowski content of A which is equal to

Md(A,n) := π(πα)−2α/(1+α),

and tail Minkowski content of A equal to

Md(A, t) :=
2

1− α
(πα)(1−α)/(1+α).

Analogously for the spiral r = 1−ϕ−α of the cycle type, its nucleus content is
2π(πα)−α/(1+α), while its tail content is 2(πα)1/(1+α). It is easy to define d-
dimensional (upper and lower) nucleus and tail Minkowski contents for graphs
A of general curves of spiral type defined in polar coordinates by r = f(ϕ),
ϕ ≥ ϕ0, provided d := dimB A exists, the function f is strictly monotone and
limϕ→∞ f(ϕ) is finite. Namely, in this case for any ε > 0 the maximal value
of ϕ2 = ϕ2(ε) exists and is such that A(ϕ0, ϕ2)ε,rad is non-self-intersecting
(tail of Aε,rad). The set A(ϕ2,∞)ε,rad contains the ball (nucleus of Aε,rad)
Bf(ϕ2+2π)(0). See also Tricot [23, Figure 10.4 on p. 122].
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Remark 6.7. Following the idea of directional Minkowski sausage due to
Tricot [23, Chapter 16], it is natural to define radial distance drad(x,A) from
a point x to the spiral A by

drad(x,A) := d(x,R+{x} ∩A),

where we define d(x, ∅) := ∞, and R+{x} := {tx : t ≥ 0}. Using radial
Minkowski sausage Aε,rad := {y ∈ RN : drad(x,A) < ε} one can define ra-
dial Minkowski contents by changing |Aε| to |Aε,rad| in the usual definition
of Minkowski contents. In this way one obtains radial upper and lower box
dimensions of spirals. For spirals in Theorems 6.1 and 6.2 these radial dimen-
sions coincide with the usual ones (see Tricot [23, p. 249]). Radial Minkowski
contents of these spirals also coincide with the usual Minkowski contents, which
can be seen from the proof of Theorem 6.1. Also, we have the same integrabil-
ity criteria of the function drad(x,A)−γ involving radial distance function from
the set A as in Corollary 6.3. All integrability results in this paper involving
Euclidean distance functions can be formulated also in terms of suitable di-
rectional distances and the corresponding directional Minkowski contents.
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[29] D. Žubrinić, V. Županović, Box dimension of spiral trajectories of some
vector fields in R3, Comptes Rendus Mathématique, 129 (2005)457–485.

[30] D. V. Županović, Žubrinić, Fractal dimensions in dynamics, Encyclopedia
of Mathematical Physics Jean-Pierre Françoise, Greg Naber, Sheung Tsun
Tsou (editors), Elsevier Academic Press, 2006, to appear.


