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Torino, Via Carlo Alberto 10, 10123 Torino, Italy. e-mail:
camerlo@dm.unito.it

Udayan B. Darji∗, Department of Mathematics, 224 Natural Sciences
Building, University of Louisville, Louisville, KY 40292. e-mail:
ubdarj01@athena.louisville.edu

CONSTRUCTION OF BOREL
INSEPARABLE COANALYTIC SETS

Abstract

We prove general results from which large families of pairwise dis-
joint, Borel inseparable, complete coanalytic sets can be obtained. The
elements of such families are naturally indexed by 2ℵ0 , ω1 or the classes
of a Borel complete equivalence relation. We also give some concrete
examples of such families in analysis, topology etc.

Introduction

A classical theorem of Lusin states that every two disjoint analytic sets in a
Polish space can be separated by a Borel set, i.e. there is a Borel set which
contains one but does not intersect the other. It is also a classical result
that there exist two disjoint coanalytic sets which can not be separated by
a Borel set. One such basic example in modern terminology is set WF, the
set of all well-founded trees, and set UB, the set of all trees with a unique
infinite branch. Sets WF and UB are complete coanalytic sets which can not
be separated by a Borel set (see [Ke95]). We will say two coanalytic sets are
Borel inseparable if these sets are disjoint and there is no Borel set which
contains one but misses the other.

Several examples of pairs of inseparable coanalytic sets can be found in the
literature. Some of the earliest examples were given by Novikov in [No31] and
Sierpiński in [Si31]. Maitra in [Mai74] gives a pair of inseparable coanalytic
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sets using a game theoretic construction. Other families of Borel inseparable
coanalytic sets have been studied by Becker in [Be86] and by Kechris and
the first author in [CK00]. There are many natural examples of coanalytic
complete sets in analysis, topology, etc. Becker presents a general procedure
which shows how to obtain a pair of Borel inseparable coanalytic sets from one
of these natural coanalytic complete sets. Kechris and the first author obtained
a large and a natural collection of pairwise Borel inseparable coanalytic sets.
This collection is large in the sense of cardinality as well as definability. We
will discuss this result in more detail in the first section.

In this paper we prove three general combinatorial results each of which
gives rise to a large class of pairwise disjoint Borel inseparable complete co-
analytic sets. Two of our main tools are the facts that UB and WF are Borel
inseparable complete coanalytic sets and the fact that UB×WF and WF×UB
are Borel inseparable complete coanalytic sets. The first fact is more or less
due to Becker [Be86] and its proof can be found in [Ke95]. The second fact
is due Kechris and the first author, proof of which can be found in [CK00].
We use our combinatorial results to give examples of large collections of Borel
inseparable coanalytic sets in analysis, topology, etc. This is done in the spirit
of work of Becker [Be86]. The basic idea is along the following line. Suppose
G is a family of pairwise Borel inseparable, complete coanalytic subsets of Tr.
Assume f : Tr → X is a Borel construction assigning to each tree T an object
f(T ) of some Polish space X. Suppose further that, for each G ∈ G, there is a
significant coanalytic set CG ⊆ X such that G = f−1(CG) and CG ∩ CG′ = ∅
for G 6= G′. Then {CG}G∈G is a family of pairwise Borel inseparable, complete
coanalytic sets too.

Our first result in this paper is that if K,L are nonhomeomorphic compact
subsets of NN, then TK , TL, sets of trees whose body is homeomorphic to K
and L respectively, are complete coanalytic sets which are Borel inseparable.
Of course, if we let K be the empty set and L be a singleton set then our
result reduces to the classical result.

Our second result is that if α, β are two distinct countable ordinals, then
Vα, Vβ , sets of trees whose body is order isomorphic to α and β respectively,
are complete coanalytic sets which are Borel inseparable. Again, this is a
generalization of inseparability of WF and UB but in a somewhat different
direction.

Our third main result is that if A,B ⊆ NN are disjoint coanalytic sets each
containing a closed copy of NN, then UBA and UBB , sets of all trees in UB
whose body is contained in A and B respectively, are complete coanalytic sets
which are Borel inseparable and are Borel inseparable from WF. Again, this
includes the classical result.
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Let us remark here that each of these results give rise to a large family of
pairwise disjoint complete coanalytic sets which are pairwise Borel insepara-
ble. Let G1 be the set of all TK where K ranges over all compact subsets of
NN. Then G1 is such a family of size continuum as there are continuum many
nonhomeomorphic compact subsets of NN. In addition, family G1 is large in
another sense. It is indexed by the classes of a Borel complete equivalence re-
lation, namely the equivalence relation on K(NN) formed by homeomorphism.
This will be discussed in more detail in Section 1. Similarly, letting G2 be the
set of Vα where α ranges over all countable ordinals, we obtain such a family
of size ω1. As NN is homeomorphic to NN ×NN, we can write NN as the union
of continuum many pairwise disjoint closed sets each one homeomorphic to
NN. If we let I be such a family, then G3, the set of all UBA such that A ∈ I,
is another such family.

In Section 4 we show how to use our results to obtain large collections of
pairwise Borel inseparable coanalytic sets in various spaces. This is done in
the spirit of aforementioned work of Becker.

1 Families of trees with compact body

Our main result in this section is Theorem 1.4. From Theorem 1.4 we obtain
the above mentioned collection G1. We shortly discuss definable cardinality
before we proceed with proofs.

Let us go back for a moment to the example of [CK00]. The family {UG}G

presented there is naturally indexed, in an injective way, by the isomorphism
classes of countable groups; indeed, each member UG of the family is the class
of countable graphs (or countable structures for a suitable language L) whose
automorphism group is isomorphic to the countable group G. Thus there are,
of course, 2ℵ0 many of them; in other words, there is a bijection between
R and the index set, which is the quotient set of countable groups modulo
isomorphism. However, if we look at the definable cardinality, that is allowing
only restricted classes of functions — for example Borel ones — to compute the
cardinality of a space, things change. Indeed, let Gr be the class of countable
groups and 'Gr be the relation of isomorphism in Gr. There is no injection
Gr/ 'Gr→ R admitting a Borel lifting Gr → R. Moreover, by [Me81], 'Gr

is Borel complete, or S∞-universal. This means that, if 'C is the equivalence
relation of isomorphism on a class C of countable structures, there is a Borel
function f : C → Gr such that

∀C,C ′ ∈ C (C 'C C ′ ⇔ f(C) 'Gr f(C ′));

in symbols: 'C≤B'Gr. For a treatment of this theory, see [Ke].
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So, we can say that the quotient space Gr/ 'Gr has the biggest possible
Borel cardinality among classes of countable structures up to isomorphism.
Consequently, we should regard the family {UG}G as very complicated, since
the natural index set is.

The relation of homeomorphism ∼=NN between compact subsets of the Baire
space is also S∞-universal. Indeed, in [CG01] it is shown that the homeo-
morphism relation ∼=2N between compact subsets of the Cantor space is S∞-
universal. The natural inclusion 2N ⊆ NN shows that ∼=2N≤B

∼=NN , while, em-
bedding NN in 2N, we get ∼=NN≤B

∼=2N . Moreover, this shows that the equiva-
lence classes of ∼=NN are Borel, since the equivalence classes of ∼=2N are. Hence,
we have that G1 is complicated in definable sense as well as being large in the
cardinality sense. Now we proceed with proofs.

We denote by ∼= the relation of homeomorphism between topological spaces
(so ∼=NN and ∼=2N are restrictions of it). We use F (X) and K(X) to denote
all the closed and compact subsets of a Polish space X, respectively. K(X)
endowed with the Hausdorff metric is a Polish space; F (X) endowed with the
Effros Borel structure is a standard Borel space. If X is a standard Borel
space, B(X) is the family of Borel subsets of X and Π1

1(X) is the family of
coanalytic subsets of X. We denote by Tr the Polish space of trees on N. For
T a tree and n a natural number, [T ] is the body of T (that is the set of infinite
branches of T ) and Levn(T ) is the n-th level in T .

For K ∈ K(NN) let

TK = {T ∈ Tr | [T ] ∼=NN K}

.
The first thing we want to check is that each TK is coanalytic. We have

indeed the following fact.

Theorem 1.1. For any non-empty Borel B ⊆ K(NN), the set RB = {T ∈
Tr | [T ] ∈ B} is a complete coanalytic subset of Tr.

The part of Theorem 1.1 asserting coanalyticity of RB is in fact a special
case of the following known result, which follows using effective descriptive set
theory or game theoretic arguments. We thank A.S. Kechris for pointing this
out to us.

Theorem 1.2. Let X be a standard Borel space, Y a Polish space and let
A ∈ B(X × Y ). Fix also B ∈ B(K(Y )). Then {x ∈ X | Ax ∈ B} is a
coanalytic subset of X, where Ax = {y ∈ Y | (x, y) ∈ A}.

However, we give here an independent self-contained proof for Theorem
1.1 using classical descriptive set theory.
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Lemma 1.1. Let X be a standard Borel space, Y a Polish space and A ⊆
X × Y be Borel. Then {x ∈ X | Ax ∈ F (Y )} and {x ∈ X | Ax ∈ K(Y )} are
coanalytic.

Proof. Fix a countable basis B = {Un}n∈N of Y . For x ∈ X, we have

Ax ∈ F (Y ) ⇔ ∀y ∈ Y (∀n ∈ N (y ∈ Un ⇒ Un ∩Ax 6= ∅) ⇒ y ∈ Ax).

Now fix also a compatible complete metric in Y . For x ∈ X,

Ax ∈ K(Y ) ⇔ Ax ∈ F (Y )∧

∧∀ε ∈ Q+ ∃Uj0 , . . . , Ujn ∈ B (∀h ≤ n diam(Ujh
) < ε ∧Ax ⊆

n⋃
k=0

Ujk
).

Lemma 1.2. Let

C0 = {T ∈ Tr | [T ] ∈ K(NN) \ {∅}}

be the set of trees with compact non-empty body. Then C0 ∈ Π1
1(Tr).

Proof. We use a game theoretic approach similar to the one used in the proof
of coanalyticity of UB in [Ke95, theorem 18.11].

Given h ∈ N and finite sets A ⊆ Nh, B ⊆ Nh+1, we say that A is below B,
or B is above A, and we write A ≺ B, if every element of A has some extension
in B and every element of B is the extension of some element in A.

For any tree T on N, let GT be the following game:

I n0 x(0) x(1) x(2)
II y(0) y(1) y(2) y(3) . . .

where n0 ∈ N and, for h ∈ N, x(h), y(h) are non-empty finite subsets of Nh+1.
Of course, with a suitable coding, each move can be thought of as a natural
number.

Player I wins this run of the game if and only if either y(h+1) is not above
y(h) for some h ∈ N or the following conditions are all satisfied:

(1) ∀h ∈ N x(h) ≺ x(h+ 1);

(2) ∀h ∈ N (y(h) ⊆ T ⇒ x(h) ⊆ T );

(3) ∃h < n0 x(h) 6⊆ y(h).
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Let L∞ be the set of trees containing sequences of arbitrarily long length
(this is a Borel subset of Tr).

The claim is that, for T ∈ L∞,

T ∈ WF ∨ [T ] /∈ K(NN) ⇔ I has a winning strategy in GT .

Assuming this, let W ⊆ Tr2 be defined by

(σ, T ) ∈W ⇔ σ is a winning strategy for I in GT .

Then W ∈ B(Tr2) and, for T ∈ Tr,

[T ] ∈ K(NN) \ {∅} ⇔ T ∈ L∞ ∧ ¬∃σ ∈ Tr (σ, T ) ∈W.

To prove the claim, suppose first [T ] ∈ K(NN) \ {∅}. Let T ∗ be a pruned
tree, with [T ∗] = [T ]. Then player II wins by playing the levels of T ∗, which
are finite since [T ∗] is compact.

Assume now [T ] is not compact and let again T ∗ be pruned, with [T ∗] =
[T ]. Let n0 be least such that Levn0(T

∗) is infinite. Player I starts by
playing n0. Then, independently of what player II does, he plays x(0) =
Lev1(T ∗), . . . , x(n0−2) = Levn0−1(T ∗). For any finite subset y(n0−1) ⊆ Nn0 ,
there is a finite subset x(n0 − 1) ⊆ Levn0(T

∗) — which is above x(n0 − 2)
if n0 > 1 — such that x(n0 − 1) 6⊆ y(n0 − 1). So, if II plays y(n0 − 1),
player I plays this x(n0 − 1) and then continues by playing finite subsets
x(n0) ⊆ Levn0+1(T ∗), x(n0 + 1) ⊆ Levn0+2(T ∗), . . . each one above the pre-
ceding one.

Finally, suppose T ∈ WF. Let ρ be the rank function associated to T .
Since T ∈ L∞, we have ρ(∅) ≥ ω. So there are a limit ordinal λ and a natural
number n such that ρ(∅) = λ+ n. Player I starts by playing n0 = n+ 1.

A position (n0, y(0), x(0), . . . , y(k), x(k)), with k < n0, is decisive if, for all
h ≤ k, x(h) = {ph} is a singleton, 1 ≤ h ≤ k ⇒ x(h − 1) ≺ x(h), and one of
the following holds:

(A) k ≥ 1 and y(k − 1) 6≺ y(k);

(B) (A) does not hold and y(k−1), x(k−1) ⊆ T (if k > 0), x(k) 6⊆ y(k) 6⊆ T ;

(C) (A) does not hold and y(k), x(k) ⊆ T , max ρ(y(k)) < ρ(pk) (in particu-
lar, x(k) 6⊆ y(k)).

If player I can reach a decisive position then he can win the run of the
game as follows:

• in cases (A) and (B) he plays arbitrarily singletons x(k+1) = {pk+1} ≺
x(k + 2) = {pk+2} ≺ . . ., with x(k) ≺ x(k + 1) too;
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• in case (C) he plays singletons x(k+1) = {pk+1} ≺ x(k+2) = {pk+2} ≺
. . . in such a way that x(k) ≺ x(k + 1) and ∀m > k (y(k) ≺ y(k + 1) ≺
. . . ≺ y(m) ∧ y(m) ⊆ T ⇒ pm ∈ T ∧max ρ(y(m)) ≤ ρ(pm)).

So it is enough to show that I can reach a decisive position. Let y(0) be
the first move of II. If y(0) 6⊆ T then, playing any singleton x(0) 6⊆ y(0), I
reaches a decisive position. So suppose y(0) ⊆ T . If there is p0 ∈ N such that
p0 ∈ T and ρ(p0) > max ρ(y(0)), then I reaches a decisive position playing
x(0) = {p0}. Otherwise it must be that n > 0 and max ρ(y(0)) = λ + n − 1;
player I plays any singleton x(0) = {p0} with p0 ∈ T, ρ(p0) = λ + n − 1.
Let y(1) be II’s next move. If y(1) is not above y(0) or y(1) 6⊆ T , then any
singleton x(1) above x(0), with x(1) 6⊆ y(1) provides a decisive position for
player I. If y(1) is above y(0) and y(1) ⊆ T , there are again two cases. If
there exists x(1) = {p1} ⊆ T above x(0), with ρ(p1) > max ρ(y(1)), then we
are done. Otherwise n > 1 and max ρ(y(1)) = λ+n− 2. Again, player I plays
some singleton x(1) = {p1}, with p0 ⊆ p1 ∈ T, ρ(p1) = λ+ n− 2.

Continuing this way, if by level n−1 player I has not reached a decisive po-
sition — the current position being (n0, y(0), x(0), y(1), . . . , y(n−1), x(n−1))
— we have x(n−1) = {pn−1}, y(n−1) ⊆ T and max ρ(y(n−1)) = ρ(pn−1) = λ.
Then, if y(n) is above y(n − 1) and y(n) ⊆ T , we have max ρ(y(n)) < λ, so
there exists pn ∈ T, pn−1 ⊆ pn, with max ρ(y(n)) < ρ(pn) < λ and we are
done.

In the next lemma we introduce a construction that will also come handy
later.

Lemma 1.3. Let M be a closed subset of the Baire space NN. Then there is
a continuous function F : Tr → Tr such that:

(1) if T is a well founded tree then F (T ) is well founded;

(2) if T is a tree with a unique infinite branch then [F (T )] and M are home-
omorphic and order isomorphic under the lexicographical ordering;

(3) if T has more than one infinite branch, then [F (T )] contains a closed
subset homeomorphic to M .

Proof. Fix a tree V such that [V ] = M and let T ∈ Tr with the aim to define
F (T ).

Of course, Lev0(F (T )) = {∅}. Let Lev1(F (T )) = Lev1(T ) and, for each
u ∈ Lev1(F (T )), put ũ = u ∈ Lev1(T ). To define Lev2(F (T )), for every
u ∈ Lev1(F (T )) and every n ∈ N let uan ∈ Lev2(F (T )) if and only if (n) ∈
Lev1(V ); if uan ∈ Lev2(F (T )) let also (uan)̃ = (n) ∈ Lev1(V ).
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For h ∈ N, assume Lev2h+1(F (T )) and Lev2h+2(F (T )) have been con-
structed. Moreover suppose that for each u ∈ Lev2h+1(F (T )) an element ũ ∈
Levh+1(T ) has been defined and, similarly, to each v ∈ Lev2h+2(F (T )) we have
associated an element ṽ ∈ Levh+1(V ). The aim is to define Lev2h+3(F (T )) and
Lev2h+4(F (T )). Given any element uan ∈ Lev2h+2(F (T )) and any m ∈ N,
we let uanam ∈ Lev2h+3(F (T )) if and only if ũam ∈ T ; in such a case, put
(uanam)̃ = ũam. Similarly, for van ∈ Lev2h+3(F (T )),m ∈ N, let vanam ∈
Lev2h+4(F (T )) if and only if ṽam ∈ V ; then define (vanam)̃ = ṽam.

The assignment T 7→ F (T ) is continuous; moreover it has the desired
properties.

We are now ready to give the proof of Theorem 1.1.

Proof of theorem 1.1. First we prove that RB is coanalytic. We begin by
checking the assertion for B a sub-basic open set of K(NN), that is a set of
the form B = {K ∈ K(NN) | K ⊆ U} or B = {K ∈ K(NN) | K ∩ U 6= ∅},
where U is an open set in NN. If B = {K ∈ K(NN) | K ⊆ U} we have, for
T ∈ Tr,

T ∈ RB ⇔ [T ] ∈ K(NN) ∧ ∀x ∈ NN (x ∈ [T ] ⇒ x ∈ U).

For the case B = {K ∈ K(NN) | K ∩U 6= ∅}, let us consider first a basic open
set U = Nt = {x ∈ NN | t ⊆ x}, where t ∈ N<ω. Letting then Tt = {u ∈ N<ω |
u ⊆ t∨ t ⊆ u}, the continuous function Tr → Tr, T 7→ T ∩Tt reduces {T ∈ Tr |
[T ]∩U ∈ K(NN)\{∅}} to the set C0 of trees with compact non-empty body and
witnesses, by Lemma 1.2, the coanalyticity of {T ∈ Tr | [T ]∩U ∈ K(NN)\{∅}}.
Since RB = {T ∈ Tr | [T ] ∩ U ∈ K(NN) \ {∅}} ∩ {T ∈ Tr | [T ] ∈ K(NN)}
and {T ∈ Tr | [T ] ∈ K(NN)} is coanalytic by Lemma 1.1, RB is coanalytic
as well. If U =

⋃
n∈N

Ntn is a countable union of basic open sets of NN, then

RB = {T ∈ Tr | [T ] ∈ K(NN) ∧ [T ] ∩ U 6= ∅} =
⋃
n∈N

{T ∈ Tr | [T ] ∈

K(NN) ∧ [T ] ∩Ntn
6= ∅} ∈ Π1

1(Tr).

If B =
n⋂

h=1

Bh and each Bh is as above, then RB =
n⋂

h=1

RBh
∈ Π1

1(Tr) and

this takes care of B member of the basis generated by the above mentioned
sub-basic sets.

Finally, if B =
⋃
j∈J

Bj , with J countable and each Bj a basic open set, then

RB =
⋃
j∈J

RBj ∈ Π1
1(Tr) and this takes care of B an arbitrary open set.
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If B is closed, then B =
⋂
j∈J

Bj , with J countable and each Bj open; so

RB =
⋂
j∈J

RBj ∈ Π1
1(Tr).

Proceed now by induction on the Borel hierarchy.
To prove that RB is Π1

1-hard, first apply Lemma 1.3 with M = NN to get
a continuous function F : Tr → Tr such that if T is well founded then F (T )
is well founded and if T is ill founded then [F (T )] contains a closed subset
homeomorphic to NN. Fix now a tree TB such that [TB ] ∈ B. For T ∈ Tr let
Φ(T ) = TB ∪ F (T ). Then Φ : Tr → Tr is a continuous function reducing WF
to {T ∈ Tr | [T ] ∈ B}.

Now we continue towards the main goal of this section.

Theorem 1.3. Let C and C ′ be non homeomorphic closed subsets of the Baire
space. Then {T ∈ Tr | [T ] ∼= C} and {T ∈ Tr | [T ] ∼= C ′} are Borel inseparable
subsets of Tr.

Proof. Apply Lemma 1.3 twice, with M = C and M = C ′ respectively, to
get continuous functions FC , FC′ : Tr → Tr. For T, T ′ ∈ Tr, let Ψ(T, T ′) be
obtained by joining FC(T ) and FC′(T ′) to a common root. Then Ψ : Tr2 → Tr
is continuous. If (T, T ′) ∈ WF×UB, then [Ψ(T, T ′)] is homeomorphic with C ′;
if (T, T ′) ∈ UB×WF, then [Ψ(T, T ′)] is homeomorphic with C. Since UB×WF
and WF×UB are Borel inseparable by [CK00, theorem 3], {T ∈ Tr | [T ] ∼= C}
and {T ∈ Tr | [T ] ∼= C ′} are Borel inseparable as well.

The results of this section allow us to state the following.

Theorem 1.4. Let K ∈ K(NN). Then TK is complete coanalytic and if
L ∈ K(NN) is not homeomorphic to K, then TK and TL are Borel inseparable.

Note that {T ∈ Tr | [T ] ∈ K(NN)} is Π1
1-hard, by applying Lemma 1.3

with M = NN. From Theorem 1.4 we get the announced family G1.

Corollary 1.5. The set {TK}K∈S — where S is a transversal for the relation
of homeomorphism on K(NN), that is S intersects each homeomorphism class
of K(NN) in exactly one point — is a family of pairwise Borel inseparable,
complete coanalytic subsets of Tr partitioning the complete coanalytic set {T ∈
Tr | [T ] ∈ K(NN)}.

We observe that the Borel inseparability statement of Theorem 1.3 holds
for any closed sets. However, the following theorem shows that Theorem 1.4
and Corollary 1.5 do not extend to arbitrary closed sets since Σ1

1-hard sets
cannot be coanalytic.
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Theorem 1.6. The set {T ∈ Tr | [T ] ∼= NN} is a Σ1
1-hard subset of Tr.

Proof. It is enough to reduce the set IF of ill founded trees to {T ∈ Tr | [T ] ∼=
NN}. We do this with a more detailed analysis of the construction given in
Lemma 1.3. Let F : Tr → Tr be the function built in Lemma 1.3 for M = NN;
we want to show F−1({T ∈ Tr | [T ] ∼= NN}) = IF.

If T ∈ WF then F (T ) ∈ WF. So assume T ∈ IF, in order to show that
[F (T )] is homeomorphic with NN. By Lemma 1.3, [F (T )] 6= ∅, so it is enough
to show that each non-empty basic clopen subset of [F (T )] contains a closed
subset homeomorphic to NN and then apply Alexandrov-Urysohn theorem
([Ke95, theorem 7.7]). Let t ∈ N<ω be such that Nt ∩ [F (T )] 6= ∅ and let
x ∈ [F (T )] with t ⊆ x. If ∀n ∈ N y(n) = x(2n), then y ∈ [T ]. Since the tree
V in the proof of Lemma 1.3 is now the complete tree N<ω, we have that, for
each z ∈ NN, the sequence (y(0), z(0), y(1), z(1), y(2), . . .) is in [F (T )]. The
set of such infinite sequences, for z ranging over all elements of NN such that
(y(0), z(0), y(1), z(1), y(2), . . .) extends t, is a closed subspace of Nt ∩ [F (T )]
homeomorphic to NN.

2 Families of trees with countable well ordered body

In this section we describe an example of a family of complete coanalytic,
pairwise Borel inseparable sets whose natural index set is ω1. Thus this family
carries a natural well ordering.

For ξ a countable order type, let Vξ be the set of trees whose body is
countable and ordered in type ξ by the lexicographical ordering <lex of NN.

Lemma 2.1. Every Vξ is a coanalytic subset of Tr.

Proof. For clarity we split the proof into two parts — for ξ finite and ξ infinite
— giving a separate argument for ξ finite, though this is not strictly necessary.

So, assume first ξ is finite. If ξ is 0 or 1, then Vξ is WF or UB. Thus, let
ξ ≥ 2. For T ∈ Tr,

T ∈ Vξ ⇔ ∃!x ∈ (NN)ξ ∀m < ξ (x(m) ∈ [T ]∧(m+1 < ξ ⇒ x(m) <lex x(m+1))).

For ξ infinite, we use the same argument as in [CK00, theorem 9]. Let

Bℵ0 = {T ∈ Tr | 0 6= card([T ]) ≤ ℵ0} ∈ Π1
1(Tr).

Let f : Bℵ0 → (NN)N be a Π1
1-measurable function such that ∀T ∈ Bℵ0 [T ] =

{f(T )(n)}n∈N.
Let L = {<} be a language consisting of one binary relation symbol and

let XL = 2N2
be the space of (codes for) L-structures with universe N. There
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is a Borel function g : (NN)N → XL such that, if z ∈ (NN)N has infinite range,
then the structure Ag(z) coded by g(z) is order isomorphic to {z(n)}n∈N under
the lexicographical ordering. Indeed, for z ∈ (NN)N, define g(z)(k, l) = 1 if
and only if, after deleting repetitions, the k-th value enumerated by z is <lex

the l-th value.
Then gf : Bℵ0 → XL is Π1

1-measurable and, for each T ∈ Bℵ0 , if [T ] is
infinite then Agf(T ) is order isomorphic to [T ]. Since the subset of XL of those
structures that are total orderings of type ξ is Borel (being an isomorphism
class), Vξ is coanalytic as required.

Now notice that ∀α ∈ ω1 Vα 6= ∅. In other words, each countable ordinal
can be order preservingly embedded as a closed subset of NN. This can be
seen by induction. It is immediate for α = 0. Assume the statement for some
α ∈ ω1; embedding α as a closed subset of the open basic set N(0) = {x ∈
NN | x(0) = 0} and adding a point in N(1) = {x ∈ NN | x(0) = 1}, we get the
assertion for α + 1. Finally, let α be a limit ordinal. Write it as an infinite
sum α =

∑
n∈N

αn, with ∀n ∈ N αn < α; embed each αn as a closed subset of

N(n) = {x ∈ NN | x(0) = n}.

Lemma 2.2. Let α ∈ ω1. Then Vα is a Π1
1-hard subset of Tr.

Proof. Fix Tα ∈ Vα. We shall define a continuous function ∗ : Tr → Tr, T 7→
T ∗ reducing WF to Vα. To this aim, simply join a copy of Tα and a copy of
T to a common root, Tα to the left and T to the right.

Using now Lemma 1.3 we get the desired inseparability result.

Lemma 2.3. Let α, β be countable ordinals, with α 6= β. Then Vα and Vβ

are Borel inseparable.

Proof. Assume α < β and let γ be such that α+ γ = β. It is enough to define
a continuous function ∗ : Tr → Tr, T 7→ T ∗ such that

T ∈ WF ⇒ T ∗ ∈ Vα

T ∈ UB ⇒ T ∗ ∈ Vβ .

Let M be a closed subset of NN order isomorphic to γ and let F : Tr → Tr
be the function constructed in Lemma 1.3 for this M . Also, fix Tα ∈ Vα.

Now, for T ∈ Tr, let T ∗ be the tree defined by joining to a common root
a copy of Tα to the left and a copy of F (T ) to the right. Thus if T is well
founded [T ∗] has order type α; if T has a unique infinite branch [T ∗] has order
type α+ γ = β.
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The results of this section are summarised in the following statements,
from which we get family G2.

Theorem 2.1. Let α, β ∈ ω1 be two distinct ordinals. Then Vα is complete
coanalytic and Vα,Vβ are Borel inseparable.

Corollary 2.2. The set {Vα}α∈ω1 is a family of pairwise Borel inseparable,
complete conalytic subsets of Tr.

3 Families of trees with one infinite branch

In this section we build a partition of the Π1
1-complete set UB of trees on N

with a unique branch into 2ℵ0 many complete coanalytic sets. The elements
of this partition will be pairwise Borel inseparable.

For A ⊆ NN, let

UBA = {T ∈ Tr | T ∈ UB ∧ [T ] ⊆ A}.

Theorem 3.1. Let A ⊆ NN be a non-empty coanalytic set; then UBA is com-
plete coanalytic. If A,B ⊆ NN are two disjoint coanalytic sets, each containing
a closed subset of NN homeomorphic to NN, then UBA and UBB are Borel in-
separable complete coanalytic sets; in addition, each is Borel inseparable from
WF.

Proof. For T ∈ Tr,

T ∈ UBA ⇔ T ∈ UB ∧ [T ] ⊆ A⇔
⇔ T ∈ UB ∧ ∀x ∈ NN (x ∈ [T ] ⇒ x ∈ A).

Since A is coanalytic, this shows that UBA is coanalytic as well.
To show completeness, let V ∈ UBA. Let f : Tr → Tr be the function

granted by Lemma 1.3 for M a non-singleton closed subset of NN. For T ∈ Tr
define Φ(T ) = V ∪ f(T ). Then Φ−1(UBA) = WF.

Now suppose that there is F ∈ F (NN), F ⊆ A, with F homeomorphic to
NN and let TF be the tree of F .

First note that, for every u ∈ TF , there is n > length(u) such that u has
infinitely many extensions in TF of length n. Otherwise, Nu ∩ F is compact
clopen in F , contradicting Alexandrov-Urysohn theorem. This defines an em-
bedding g : N<ω → TF such that, for every v ∈ N<ω, all g(vak) have the
same length in TF . To this aim, let g(∅) = ∅. Then assume that, for some
v ∈ N<ω, g(v) has been defined. Let nv > length(g(v)) be least such that g(v)
has infinitely many extensions of length nv in TF and, for k ∈ N, let g(vak)
be the k-th of such extensions in the lexicographic order.
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For T ∈ Tr, let fA(T ) ∈ Tr be the subtree of TF generated by g(T ), that
is the smallest subtree of TF containing g(T ). The function fA : Tr → Tr is
Borel: for T ∈ Tr we have

∀u ∈ N<ω (u ∈ fA(T ) ⇔ ∃v ∈ N<ω (v ∈ T ∧ u ⊆ g(v))).

Moreover f−1
A (UBA) = UB and f−1

A (WF) = WF, showing that UBA is Borel
inseparable from WF.

Finally, if A,B are disjoint subsets of the Baire space, containing a closed
subset homeomeorphic to NN, let Φ : Tr2 → Tr, (T, T ′) 7→ fA(T ) ∪ fB(T ′).
Then

(T, T ′) ∈ UB×WF ⇒ Φ(T, T ′) ∈ UBA

(T, T ′) ∈ WF×UB ⇒ Φ(T, T ′) ∈ UBB .

By the inseparability of UB×WF and WF×UB we get the inseparability of
UBA and UBB .

Remark. Note that the hypothesis that A,B contain a closed subset of NN

homeomorphic to NN cannot be dropped in the inseparability statement of
theorem 3.1. If, for instance, A is σ-compact, then {T ∈ Tr | [T ] ∩ A 6= ∅} =
{T ∈ Tr | ∃z ∈ A ∀n ∈ N z � n ∈ T} is Borel and separates UBA,UBB .

To get family G3, note that it is possible to partition the Baire space into
continuum many closed subspaces homeomorphic to itself. For example, recall
that the Baire space is homeomorphic to its square and consider the family
F = {{x} × NN}x∈NN .

Corollary 3.2. If F is a partition of the Baire space into continuum many
closed subspaces homeomorphic to the Baire space, {UBF }F∈F constitutes a
partition of the Π1

1-complete set UB into 2ℵ0 many complete coanalytic, Borel
inseparable subsets.

4 Applications

We show now how to apply the constructions given in the preceding sections
to obtain several other examples of families of pairwise Borel inseparable,
complete coanalytic sets. Suppose G is a family of pairwise Borel inseparable,
complete coanalytic subsets of Tr — like the ones built so far. Assume f :
Tr → X is a Borel construction assigning to each tree T an object f(T ) of some
Polish space X. Suppose further that, for each G ∈ G, there is a significant
coanalytic set CG ⊆ X such that G = f−1(CG) and CG ∩CG′ = ∅ for G 6= G′.
Then {CG}G∈G is a family of pairwise Borel inseparable, complete coanalytic
sets too. To illustrate this kind of argument we say a few more words about
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the results we are going to get using the family G1 = {TK}K∈S obtained
with Corollary 1.5. Analogous remarks apply also to the examples we can
get using G2 and G3. In [Be86] the author provides a general procedure for
producing pairs of disjoint Borel inseparable complete coanalytic sets, given
natural examples of complete coanalytic sets. Such pairs take the form

A = {points with no singularities}
B = {points with one singularity}.

These sets A and B are subsets of some Polish space X and are such that
WF = f−1(A),UB = f−1(B), where f : Tr → X is a Borel function. Using
G1, here we develop a similar procedure, which produces families of continuum
many pairwise Borel inseparable, complete coanalytic sets. Such sets have the
form

AK = {points whose set of singularities
is compact and homeomorphic with K}

where K ranges over compact subsets of NN up to homeomorphism. Our
first application will produce topological examples. Let N∗ = N \ {0} and
Tr∗ be the space of trees on N∗. Let also ϕ : N∗<ω → Q ∩ [0, 1] be the
function assigning to each finite sequence (a0, a1, . . . , an) of positive integers
its terminating continued fraction

1
a0 + 1

a1+
1

...+ 1
an

(where ϕ(∅) = 0) and γ : N∗N → [0, 1] \ Q be the homeomorphism mapping
each infinite sequence of positive integers to its continued fraction. Now define
f : Tr∗ → K([0, 1]) by letting

∀T ∈ Tr∗ f(T ) = ϕ(T ) = ϕ(T ) ∪ γ([T ]).

The function f is Borel. We need now to establish the following fact.

Lemma 4.1. Let X be a Polish space containing a subspace Y homeomorphic
to NN. Then, for each B ∈ B(K(Y )),

{F ∈ F (X) | F ∩ Y ∈ B} ∈ Π1
1(F (X)).

In particular,
{H ∈ K(X) | H ∩ Y ∈ B} ∈ Π1

1(K(X)).
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Proof. Fix a homeomorphism ψ : NN → Y and define A ⊆ F (X)× NN by

(F, x) ∈ A⇔ ψ(x) ∈ F.

Then A is Borel and has closed sections AF , for each F ∈ F (X). So, by
[Ke95, exercise 28.9], there is a Borel function F ∈ F (X) 7→ TF ∈ Tr such
that ∀F ∈ F (X) [TF ] = AF = ψ−1(F ∩ Y ). Now apply Theorem 1.1.

We can now apply our function f to the family G1. Let

C = {H ∈ K([0, 1]) | H \Q ∈ K([0, 1] \Q)}

and for K ∈ K([0, 1] \Q),

CK = {H ∈ K([0, 1]) | H \Q ∼= K}.

Theorem 4.1. Family {CK}K∈K([0,1]\Q) is a partition of C consisting of pair-
wise Borel inseparable complete coanalytic sets.

Proof. First, by Lemma 4.1, each CK is coanalytic. Moreover, f−1(CK) =
{T ∈ Tr∗ | [T ] ∼= K}.

We give now an abstract formulation which allows to produce several other
examples of big families of pairwise Borel inseparable complete coanalytic sets.
For this we introduce the following definition, similar to the one given in [Ke85,
section 6]. Note however that our definition is the complement of the one given
there.

Definition. Let Z be a separable Fréchet space. A notion of singularity of
Z in [0, 1] is any relation N ⊆ Z × [0, 1]. If N(~f, x) holds, x is a point of
N -singularity for ~f . The notion of singularity N is linear if the two following
conditions hold:

(1) N(~f, x) ∧N(~g, x) ⇒ N(~f + ~g, x);

(2) if N(~f + ~g, x) holds, then either N(~f, x), N(~g, x) both hold or none of
N(~f, x), N(~g, x) holds.

Theorem 4.2. Let Z be a separable Fréchet space. Let N be a Borel linear
notion of singularity for Z in [0, 1]. Assume:

(1) there is a Borel function H ∈ K([0, 1]) 7→
−→
fH ∈ Z such that N(

−→
fH , x) ⇔

x ∈ H;
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(2) there is a Borel function P ∈ P([0, 1]∩Q) 7→ −→gP ∈ Z such that N(−→gP , x) ⇔
x ∈ [0, 1] \ P .

For each K ∈ K([0, 1] \Q) let

NK = {~f ∈ Z | N~f ⊆ [0, 1] \Q ∧N~f
∼= K}.

Then NK is complete coanalytic and, for K,K ′ non homeomorphic compact
subsets of the irrationals, NK , NK′ are Borel inseparable.

Proof. Since N is Borel, each NK is coanalytic by Theorem 1.2. Let ψ :
K([0, 1]) → Z be defined by

∀H ∈ K([0, 1]) ψ(H) =
−→
fH +−−−→gH∩Q.

Then ψ is Borel, as H ∈ K([0, 1]) 7→ H ∩ Q ∈ P([0, 1] ∩ Q) is. Moreover,
N(ψ(H), x) ⇔ x ∈ H \ Q and ψ−1(NK) = CK , where CK is as in Theorem
4.1.

Corollary 4.3. Let Z and N be as in Theorem 4.2. Then {NK}K is a par-
tition — indexed by compact subsets of the irrationals up to homeomorphism
— of the complete coanalytic set

{~f ∈ Z | N~f ∈ K([0, 1] \Q)}

consisting of Borel inseparable, complete coanalytic subsets.

Now we turn to some examples from Real Analysis. Let C([0, 1],R) be the
space of continuous functions endowed with the supnorm. For f ∈ C([0, 1],R),
let D(f) be the set of points where f is differentiable, and

D = {f ∈ C([0, 1],R) | D(f) ∈ K([0, 1] \Q)},

and for K ∈ K([0, 1] \Q),

DK = {f ∈ D | D(f) ∼= K}.

Theorem 4.2 and its corollary allow us to apply our procedure to Mauldin
theorem, which states that the class NDIFF of nowhere differentiable functions
is Π1

1-complete (see [Mau79]). For this, take Z = C([0, 1],R) and

N(f, x) ⇔ f is differentiable at x.

Theorem 4.4. Family {DK}K∈K([0,1]\Q) is a partition of D consisting of
pairwise Borel inseparable complete coanalytic sets.
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Similarly, by taking

N({fn}, x) ⇔ {fn(x)} converges

as a Borel linear notion of singularity for (C([0, 1],R))N in [0, 1], we get the
following application. For {fn} ∈ (C([0, 1],R))N, let L({fn}) be the set of
points where {fn} converges,

B = {{fn} ∈ (C([0, 1],R))N | L({fn}) ∈ K([0, 1] \Q)},

and for K ∈ K([0, 1] \Q),

BK = {{fn} ∈ B | L({fn}) ∼= K}.

Theorem 4.5. Family {BK}K∈K([0,1]\Q) is a partition of B consisting of pair-
wise Borel inseparable complete coanalytic sets.

The application of the function f above to family G3 produces other big
families of pairwise Borel inseparable, complete coanalytic sets, which corre-
spond to the ones obtained with Theorems 4.1 through 4.5 using G1. Of course
the family {f(Vα)}α∈ω1 , does also constitute a family of pairwise Borel insep-
arable, complete coanalytic subsets of K([0, 1]) and this translates to similar
families for the other spaces considered above. However this family does not
seem to have an intrinsic description and so does not seem to provide inter-
esting examples. The reason is that continued fractions, used to get Theorem
4.1, provide a homeomorphism γ which is not order preserving. More elabo-
rated constructions can be built so that also family G2 can provide meaningful
examples. One of them is given by the coding of each point of the real line
realisation of the Cantor space E 1

3
with a finite or infinite sequence of natural

numbers as done in [CG01]. We omit the details here.
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