
Real Analysis Exchange
Vol. 29(1), 2003/2004, pp. 355–364

Aliasghar Alikhani-Koopaei∗, Department of Mathematics, Berks Lehigh
Valley College, Penn. State University, Tulpehocken Road, P.O. Box 7009,
Reading, PA 19610-6009. email: axa12@psu.edu

PATH DERIVED NUMBERS AND PATH
DERIVATIVES OF CONTINUOUS
FUNCTIONS WITH RESPECT TO

CONTINUOUS SYSTEMS OF PATHS

Abstract

V. Jarnik showed that a typical continuous function on the unit
interval [0, 1] has every extended real number as a derived number at
every point of [0, 1]. In this paper we classify the derived numbers of
a continuous function and study the likelihood of Jarnik’s Theorem for
path derived numbers of a continuous system of paths. We also provide
some results indicating that some of the nice behaviors of first return
derivatives are shared by path derivatives of continuous functions when
the path system is continuous.

Bruckner, O’Malley and Thomson [5] introduced the concept of Path deriva-
tives and showed that many known derivatives fall in this frame work. They
showed that most of the nice behavior of generalized derivatives is due to the
thickness of the paths as well as the way paths Rx and Ry intersect when x
and y are close. In [1] we introduced the notion of continuous systems of paths
and showed that it is also another important factor for the good behavior of
generalized derivatives.

The set of accumulation points of A is denoted by A′ and the class of
functions with the Darboux property is denoted by D. Let x belong to [0, 1].
A path leading to x is a set Rx ⊆ [0, 1] such that x ∈ Rx ∩ (Rx)′. A system
of paths R is a collection {Rx : x ∈ [0, 1]}, where each Rx is a path at x.
For a function f : [0.1] → R the path derivative of f at point x with respect
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to path system R is defined as limy∈Rx,y→x
f(y)−f(x)

y−x if it exists and is finite.
The extreme path derivatives are defined in a usual way. It is known that
many theorems about the differentiability of functions can be obtained from
conditions on the thickness of paths, how they intersect each other, and the
continuity of path systems (see [1,2,3,5].)

A path system R is said to have the external intersection condition denoted
by E.I.C. (intersection condition denoted by I.C., internal intersection condi-
tion denoted by I.I.C.) if there is a positive function δ(x) on [0, 1] such that
Rx ∩Ry ∩ (y, 2y− x) 6= ∅ and Rx ∩Ry ∩ (2x− y, x) 6= ∅ (Rx ∩Ry ∩ [x, y] 6= ∅,
Rx ∩Ry ∩ (x, y) 6= ∅, respectively), whenever 0 < y − x < min{δ(x), δ(y)}.
The thickness of paths is studied in terms of porosity. Let E be a set and let
a < b. Then λ(E, a, b) is the length of the largest open subinterval of (a, b)
that contains no point of E. At any point x one defines the right porosity of
E at x as ρ+(E, x) = lim sup h→0+

λ(E,x,x+h)
h , the left porosity of E at x as

ρ−(E, x) = lim sup h→0+
λ(E,x,x−h)

h , and the bilateral porosity of E at x as
ρ(E, x) = lim sup h→0

λ(E,x,x+h)
|h| . The latter of which is, of course the maxi-

mum of two unilateral porosities. Note that the porosity is always a number
in the interval [0, 1] and that both extremes can occur. The smaller ρ(E, x)
is, the ticker is the set E at point x. In Definition 2, we define γ({hn}, t) for
every monotone sequence {hn}∞n=1 with limn→∞ hn = t. This concept, which
is closely related to porosity, indicates how fast or slow the sequence{hn}
converges.

In [1] we introduced the notion of continuous systems of paths and showed
that aside from intersection conditions and porosity conditions, this notion is
also another factor in the differentiability of real functions. Some known path
systems like ordinary, sequential, and congruent systems of paths R = {Rx :
Rx = x + Q} when Q is a closed set with 0 ∈ Q′ are examples of continuous
systems of paths (see [4,6]). We used continuity of path systems for the study
of extreme path derivatives. This concept was generalized in [7] by Milan
Matejdes. Let R = {Rx : x ∈ [0, 1]} be a system of paths, with each Rx

compact. We endow R with the Hausdorff metric dH to form a metric space.
If the function P : x → Rx is a continuous function, we say R is a continuous
system of paths. The left continuous and right continuous systems of paths
are defined similarly.

V. Jarnik showed that a typical continuous function on the unit interval
[0, 1] has every extended real number as a derived number at every point of
[0, 1]. By typical we mean that all continuous functions except for those in
some first category subset of the complete metric space C[0, 1]. We will first
classify the derived numbers of a continuous function and we will study the
likelihood of Jarnik’s Theorem for path derived numbers when the path system
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is a continuous system of paths. Sierpinski proved the following theorem.

Theorem 1. Let {hn} be any sequence of nonzero numbers converging to zero.
Let for all x ∈ R, Rx = {x + hn : n = 0, 1, . . . } ∪ {x}. Then for any finite
function f : R → R, there is a function F such that F ′

R = f for all x.

Sierpinski’s Theorem indicates that any finite function g could be the path
derivative of some function f with respect to a continuous system of paths.
Thus we cannot expect such path derivatives or path derived numbers have
interesting properties, unless some extra assumptions on the function f are
imposed. The following example indicates that the existence of f ′R does not
imply the nice behavior of f even when R is continuous.

Example 1. There exists f ∈ B2 \B1 and a nonporous continuous system of
paths R = {Rx : x ∈ R} so that f ′R(x) = 0 exists for all x.

Proof. Let f(x) = χQ(x) where Q is the set of rational numbers and let
{hn} be a sequence in Q converging to zero with ρ({hn}∞n=1, 0) = 0. Then it
is clear that f ′R = 0.

In [8] it is shown that a first return differentiable function is an element of
DB∗

1 . Example 1, indicates that even for a continuous system of paths, a path
differentiable function need not be an element of B1 and may not have the
Darboux property. It also shows that the path derivatives could be zero with
f not being a constant function. Theorem 2 provides some positive results
under the extra assumption that f is continuous and the system of path is
bilateral. However, Example 2 indicates that even for a continuous function
and a continuous system of paths, the path derivative might not have Darboux
property.

Theorem 2. Let f ∈ C([0, 1]) and let R = {Rx : x ∈ [0, 1]} be a bilateral
system of paths.

(i) If f ′R(x) exists, then f ′R(x) ∈ D.

(ii) If −M ≤ f ′R(x) ≤ f ′R(x) ≤ M for all x ∈ [0, 1], then f is a Lipschitz one
function.

Proof. The proof of this theorem is straight forward and thus is omitted.

When the path system R is not bilateral, the results of Theorem 2 do not
hold.

Example 2. There exists a continuous function f and a continuous system
of paths R = {Rx : x ∈ R} so that f ′R(x) 6∈ D.
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Proof. Let g(x) = x, for 0 ≤ x < 1
2 , g(x) = 2x, for 1

2 ≤ x ≤ 1, f(x) =
∫ x

0
g,

and Rx = x+ 1
n , for n = 1, 2, . . . . Then f is continuous and f ′R = g. However

g 6∈ D.

In [3] we showed that the right (left) first return system of paths are right
(left) continuous system of paths, respectively. Thus one could ask what kind
of nice behavior of first return derivatives is shared by path derivatives when
the path system is continuous. In [3] we also showed that for a continuous
function some of the nice behavior of first return derivatives also hold for path
derivatives when the path system is continuous. Here we provide some other
results which illustrates other properties of first return derivatives shared by
path derivatives when the path system is continuous.

Definition 1. Let R be a system of paths. A number α is called an R-
derived number of the function f at a point x ∈ [0, 1] if there exists a sequence
{xn} ⊆ Rx so that limn→∞ xn = x and limn→∞

f(xn)−f(x)
xn−x = α. A number α

is called an R-derived number of the function f , if it is an R-derived number
of f at some point x ∈ [0, 1]. The set of R-derived numbers of f at x and
the set of R-derived numbers of f are denoted by D(R, f, x) and D(R, f),
respectively.

Definition 2. Let {xn} be a monotone sequence with limn→∞ xn = x0. If it is
decreasing, we define γ({xn}, x0) = lim supn→∞

xn−xn+1
xn−x0

and if it is increasing,
we define γ({xn}, x0) = lim supn→∞

xn+1−xn

x0−xn
.

Remark 1. For every α ∈ D(R, f, x) there exists a monotone sequence in Rx

converging to x with limn→∞
f(xn)−f(x)

xn−x = α. Thus in Definition 1 we can
take {xn} to be monotone.

Definition 3. Let f : [0, 1] → R be a function, R be a system of paths on
[0, 1]. For every α ∈ D(R, f, x), let

S(α, R, f, x) = {{xn}∞n=1 ⊆ Rx :{xn} is a monotone sequence converging to x

with lim
n→∞

f(xn)− f(x)
xn − x

= α},

S(α, R, f) = ∪ x∈[0,1] S(α, R, f, x) and C(α, R, f, x) = inf{γ({xn}, x) : {xn} ∈
S(α, R, f, x)}. We call C(α, R, f, x) the index of the path derived number α
of f with respect to the path system R at x. The index of path derived
number α with respect to the path system R is defined as C(α, R, f) =
infx∈[0,1] C(α, R, f, x). It is clear that for each α ∈ D(R, f) we have 0 ≤
C(α, R, f) ≤ 1.
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Example 3. For each r, 0 ≤ r ≤ 1 and real number α there exists a continuous
function f defined on [0, 1] and a continuous systems of paths R so that α ∈
D(R, f) with C(α, R, f) = r.

Proof. For each r, 0 ≤ r ≤ 1, let {hn} be a decreasing sequence with h1 = 1,
limn→∞ hn = 0 and γ({hn}, 0) = r. For each x ∈ [0, 1], define Rx = ({x} ∪
{x+hn, x−hn}∞n=1)∩ [0, 1]. It is clear that R is a bilateral continuous system

of paths. Let f(x) = αx for x ∈ {hn}∞n=1, f(x) = 0 for x ∈
{

hn+hn+1
2

}∞
n=1

,

and f linear elsewhere. It is clear that f is continuous and α ∈ D(R, f, 0), and
S(α, R, f, 0) = {{Zn}∞n=1 : {Zn} is a decreasing subsequence of {hn}}. Since
{hn} ∈ S(α, R, f, 0), we have C(α, R, f, 0) ≤ r. Let {Zm} be an arbitrary
decreasing subsequence of {hn} and γ({hn}, 0) = r = limk→∞

hnk
−hnk+1
hnk

.
Then for each k, there exists mk such thatZmk+1 ≤ hnk+1 < hnk

≤ Zmk
. Thus

we have
Zmk

−Zmk+1
Zmk

≥ hnk
−hnk+1
hnk

, implying

γ({Zn}, 0) ≥ lim sup
k→∞

Zmk
− Zmk+1

Zmk

≥ lim
k→∞

hnk
− hnk+1

hnk

.

Thus C(α, R, f, 0) ≥ r, implying C(α, R, f, 0) = r.

Lemma 1. Let R = {Rx : x ∈ [0, 1]} be a continuous system of paths and
m > 1 be an integer. Then for each m, there exists a sequence {hm

n }∞n=1 ⊆ [0, 1]
such that 0 < hm

n+1 < hm
n for all n, limn→∞ hm

n = 0, Rx∩ ([x+hm
n+1, x+hm

n ]∪
[x− hm

n , x− hm
n+1]) 6= ∅ for all x ∈ [0, 1], and lim infn→∞

hm
n −hm

n+1
hm

n
≥ 1− 1

m .

Proof. Let hm
1 = 1. Define hm

2 = 1
m infx∈[0,1] sup{| y |: y ∈ (Rx − x) ∩

[−hm
1 , hm

1 ]}. Obviously hm
2 ≤ 1

mhm
1 < hm

1 . Let hm
n be defined. Inductively

define hm
n+1 = 1

m infx∈[0,1] sup{| y |: y ∈ (Rx − x)∩ [−hm
n , hm

n ]}. Then we have
hm

n+1 ≤ 1
mhm

n < hm
n for all n. We claim for each n, hm

n > 0. If not, there exists
a natural number n0 so that hm

n0
= 0. But hm

n0−1 > 0. Since 0 ∈ (Rx − x)′, we
have (Rx − x) ∩ [−hm

n0−1, h
m
n0−1] 6= ∅. Thus we have

rx = sup{| y |: y ∈ (Rx − x) ∩ [−hm
n0−1, h

m
n0−1]} > 0

for every x ∈ [0, 1] and infx∈[0,1] rx = hm
n0

= 0. This implies there is a sequence
{xn}∞n=1 ⊂ [0, 1], so that limn→∞ rxn = 0. Since {xn} is bounded, without
loss of generality we may assume that limn→∞ xn = x0. From the continuity
of the path system R, it follows that limn→∞ dH(Rxn

, Rx0) = 0. This implies
limn→∞ rxn

= rx0 = 0. But Rx0 is the path leading to x0 and thus rx0 can
not be zero; so hm

n > 0 for all n. Also we have

0 < hm
n ≤ 1

m
hm

n−1 ≤
1

m2
hm

n−2 ≤ · · · ≤ 1
mn−1

hm
1 =

1
mn−1

.
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Thus 0 ≤ limn→∞ hm
n ≤ limn→∞

1
mn−1 = 0. It is clear that

Rx ∩ ([x + hm
n+1, x + hm

n ] ∪ [x− hm
n , x− hm

n+1]) 6= ∅ for all x ∈ [0, 1],

and hm
n −hm

n+1
hm

n
≥ hm

n − 1
m hm

n

hm
n

= 1 − 1
m for each n. Thus lim infn→∞

hm
n −hm

n+1
hm

n
≥

1− 1
m .

Using a proof similar to that of Lemma 1, when the path system is bilateral
and continuous, we will be able to prove the following.

Lemma 2. Let R = {Rx : x ∈ [0, 1]} be a bilateral continuous system of
paths and m > 1 be an integer. Then for each m, there exists a sequence
{hm

n }∞n=1 ⊆ [0, 1] such that 0 < hm
n+1 < hm

n for all n, limn→∞ hm
n = 0, Rx ∩

([x+hm
n+1, x+hm

n ] 6= ∅ and Rx ∩ [x−hm
n , x−hm

n+1]) 6= ∅ for all x ∈ [0, 1], and

lim infn→∞
hm

n −hm
n+1

hm
n

≥ 1− 1
m .

Theorem 3. Let m > 1 be an integer, R be a continuous system of paths, hm
n

be the sequence obtained in Lemma 1 and x1 be an arbitrary point of [0, 1].
Then for each R-derived number α ∈ D(R, f, x1) with C(α, R, f, x1) < 1− 1

m
there exists a monotone sequence {tn} so that for sufficiently large n, tn ∈
Rx1∩([x1+hm

n+1, x1+hm
n ]∪ [x1−hm

n , x1−hm
n+1]) and limn→∞

f(tn)−f(x1)
tn−x1

= α.

Proof. Since C(α, R, f, x1) < 1− 1
m , there exists a monotone sequence {yj} ⊆

Rx1 , so that limj→∞ yj = x1, limj→∞
f(yj)−f(x1)

yj−x1
= α, and γ({yj}, x1) <

1− 1
m . We claim that there exists a positive integer n1 so that for all n ≥ n1,

([x1 +hm
n+1, x1 +hm

n ]∪ [x1−hm
n , x1−hm

n+1])∩{yj}∞j=1 6= ∅. If this is not true,
then for some subsequence {nk} of natural numbers we have

([x1 + hm
nk+1, x1 + hm

nk
] ∪ [x1 − hm

nk
, x1 − hm

nk+1]) ∩ {yj}∞j=1 = ∅.

Without loss of generality we may assume that {yj} is a decreasing sequence
and [x1+hm

nk+1, x1+hm
nk

]∩{yj}∞j=1 = ∅ for each k. Thus we have a subsequence
{yjk

} of the sequence {yj} so that yjk+1 < hm
nk+1

+ x1 < hm
nk

+ x1 < yjk
. Let

a = yjk+1 − x1, b = hm
nk+1

, c = hm
nk

, d = yjk
− x1. Then a < b < c < d.

Thus we have a
d < b

c implying ac < bd; hence c−b
c < d−a

d . This shows that
hm

nk
−hm

nk+1
hm

nk

≤ (yjk
−x1)−(yjk+1−x1)

yjk
−x1

=
yjk

−yjk+1
yjk

−x1
for all k. Thus γ({yj}, x1) ≥

lim supk→∞
yjk

−yjk+1
yjk

−x1
≥ lim infk→∞

hm
nk
−hm

nk+1
hm

nk

≥ lim infn→∞
hm

n −hm
n+1

hm
n

≥ 1 −
1
m . This is a contradiction to γ({yj}, x1) < 1− 1

m . Hence for each n ≥ n1 we
may choose sn ∈ Rx1∩([x1+hm

n+1, x1+hm
n ]∪[x1−hm

n , x1−hm
n+1])∩{yj}∞j=1. Let

{tn} be the sequence defined by tn = sn1 + 1−sn1
n or tn = sn1−

sn1
n , depending
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on whether {yn} is monotone decreasing or monotone increasing, for n < n1

and tn = sn for n ≥ n1. Then {tn} has all the desired properties.

Theorem 4. Let R be a continuous system of paths. Then a typical continuous
function in C([0, 1]) has no finite R-derived number α with C(α, R, f) < 1.

Proof. Let m, k, and p be positive integers, Am,p = {f ∈ C([0, 1]) : ∃ xf ∈
[0, 1] so that f has an R−derived number α such that | α | is less than p with
C(α, R, f, xf ) < 1 − 1

m}, and A = {f ∈ C([0, 1]) : f has a finite R-derived
number α with C(α, R, f) < 1}. It is clear that A ⊆ ∪∞m=1 ∪∞p=1 Am,p. From
Theorem 3, it follows that for each f ∈ Am,p, there exist a point xf ∈ [0, 1],
sequences {hm

n }∞n=1, {yn}∞n=1 and positive integers N1(p) and N2(p) so that
yn ∈ Rxf

∩ [xf + hm
n+1, xf + hm

n ] or yn ∈ Rxf
∩ [xf − hm

n , xf − hm
n+1] for all

n ≥ N1(p), and | f(yn)−f(xf )
yn−xf

|≤ p for all n ≥ N2(p). Now let

A1(m, k, p) = {f ∈ C([0, 1]) : ∃ xf ∈ [0, 1] and yk ∈ Rxf
∩ [xf − hm

k , xf − hm
k+1]

such that
∣∣∣f(yk)− f(xf )

yk − xf

∣∣∣ ≤ p}

and

A2(m, k, p) = {f ∈ C([0, 1]) : ∃ xf ∈ [0, 1] and yk ∈ Rxf
∩ [xf + hm

k+1, xf + hm
k ]

such that | f(yk)−f(xf )
yk−xf

|≤ p}. Then Am,p = ∩∞k=N(p)[A1(m, k, p)∪A2(m, k, p)]
when N(p) = max{N1(p), N2(p)}. Thus we have

A ⊆ ∪∞m=1 ∪∞p=1 ∩∞k=N(p)[A1(m, k, p) ∪A2(m, k, p)].

First we claim that A1(m, k, p) is a closed subset of C([0, 1]) for any positive
integers m, p, and k ≥ N(p). To prove our claim let {fi} ⊂ C([0, 1] be a
Cauchy sequence in A1(m, k, p) and limi→∞ fi = f . Then for each i, there exist

xfi ∈ [0, 1] and tfi

k ∈ Rxfi
∩ [xfi + hm

k+1, xfi + hm
k ] so that

∣∣∣ fi(t
fi
k )−fi(xfi)

t
fi
k −xfi

∣∣∣ ≤ p.

By replacing a sequence with one of its subsequence, if necessary, we may
assume that there exist xf ∈ [0, 1] and subsequences {xfij

} of {xfi
}, {t

fij

k }

of {tfi

k }, such that limj→∞ xfij
= xf , limj→∞ t

fij

k = tfk . Since t
fij

k ∈ Rxfij
∩

[xfij
+ hm

k+1, xfij
+ hm

k ] and R is a continuous system of paths, we have tfk ∈
Rxf

∩ [xf +hm
k+1, xf +hm

k ]. From uniform convergence of fij
to f we also have∣∣∣∣∣f(tfk)− f(xf )

tfk − xf

∣∣∣∣∣ = lim
j→∞

∣∣∣∣∣fij (t
fij

k )− fij (xfij
)

t
fij

k − xfij

∣∣∣∣∣ ≤ p.
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That is f ∈ A1(m, k, p); so A1(m, k, p) is closed. Similarly we can show that
A2(m, k, p) is also closed. Hence ∩∞k=N(p)[A1(m, k, p)∪A2(m, k, p)] is a closed
subset of C([0, 1]) for each positive integer p. To complete the proof we will
show that Bp = ∩∞k=N(p)[A1(m, k, p) ∪A2(m, k, p)] is nowhere dense for every
positive integer p. This implies that A is a subset of a first category set. Thus
it is a first category set. To show Bp is nowhere dense, let f ∈ C([0, 1]), ε > 0
be an arbitrary real number, and let B(f, ε) be the open ball about f with
radius ε. Suppose h ∈ B(f, ε) is a saw tooth function so that the absolute
value of all the slopes of its linear segments are greater than p. Then at each
point x ∈ [0, 1] for any sequence {zk} ⊂ [0, 1] so that zk ∈ [x− hm

k , x− hm
k+1]

or zk ∈ [x + hm
k+1, x + hm

k ] we have
∣∣h(zk)−h(x)

zk−x

∣∣ > p for sufficiently large k.
Thus h 6∈ Bp for any positive integer p. Thus Bp is a closed subset of C([0, 1])
that does not contain any open ball, hence it is nowhere dense. Therefore A
is first category.

Theorem 5. Let f ∈ C([0, 1]) and let R be a bilateral continuous system of
paths so that f ′R(x) < ∞ for all x ∈ [0, 1] or f ′R(x) > −∞ for all x ∈ [0, 1].
Then there exists a dense open set O ⊆ [0, 1] on which f is differentiable for
almost all x ∈ O.

Proof. We prove the theorem for the case where f ′R(x) > −∞ for all x ∈
[0, 1]. The case where f ′R(x) < ∞ for all x ∈ [0, 1] follows from this case by
interchanging the roles of f and −f . To this end, let {an} be the sequence
obtained in Lemma 1 for m = 2. Take

Fn(x) = inf
{f(y)− f(x)

y − x
: y ∈ Rx ∩ ([x + an+1, x + an]∪ [x− an, x− an+1])

}
and Am,n = {x ∈ [0, 1] : Fn(x) > m}. We have

[0, 1] = ∪∞m=−∞{x : f ′R(x) > m}
= ∪∞m=−∞{x ∈ [0, 1] : lim inf

n→∞
Fn(x) > m}

⊆ ∪∞m=−∞ ∪∞l=1 ∩∞n=l{x ∈ [0, 1] : Fn(x) > m}
= ∪∞m=−∞ ∪∞l=1 ∩∞n=lAm,n ⊆ ∪∞m=−∞ ∪∞l=1 ∩∞n=lAm,n ⊆ [0, 1].

Let t ∈ ∩∞n=lAm,n. Then for each n > l, there exists a sequence xn,i ∈ Am,n

such that limi→∞ xn,i = t. Thus Fn(xn,i) > m for all n ≥ l and all i ≥ 1. Let
n ≥ l be a fixed natural number and z ∈ Rt∩([t+an+1, t+an]∪[t−an, t−an+1])
be an arbitrary point. Because
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lim
i→∞

dH

(
Rxn,i

∩ ([xn,i + an+1, xn,i + an] ∪ [xn,i − an, xn,i − an+1]),

Rt ∩ ([t + an+1, t + an] ∪ [t− an, t− an+1])
)

= 0,

there exists a sequence

tn,i ∈ Rxn,i
∩ ([xn,i + an+1, xn,i + an] ∪ [xn,i − an, xn,i − an+1])

with limi→∞ tn,i = z. This implies

f(z)− f(t)
z − t

= lim
i→∞

f(tn,i)− f(xn,i)
tn,i − xn,i

≥ lim inf
i→∞

Fn(xn,i) ≥ m.

Hence Fn(t) ≥ m, implying f ′R(t) ≥ m. Consequently for each x ∈ ∩∞n=lAm,n

we have D+(f)(x) ≥ f ′R(x) ≥ m.
Finally let [a, b] be a closed subinterval of [0, 1]. Then we have [a, b] =

∪∞m=−∞ ∪∞l=1 (∩∞n=lAm,n ∩ [a, b]); so by Baire Category Theorem there exist
an open interval J and integers M and L so that J ⊆ ∩∞n=LAM,n ∩ [a, b]).
Hence for every x ∈ J , D+(f)(x) ≥ M . Therefore the function f(x)−Mx is
increasing on J and hence differentiable at almost all points of J . This implies
that for any arbitrary closed subinterval of [0, 1] there is an open interval
contained in the subinterval so that f is differentiable at almost all points of
that open interval. Now let A = {J : J is an open subinterval of [0, 1] so that
f is differentiable almost everywhere on J} and let O = ∪J∈AJ . It is clear
that O is an open dense subset of [0, 1] and f is differentiable at almost all
points of O.

The following theorem is an immediate consequence of Theorem 5.

Theorem 6. Let f ∈ C([0, 1]) and let R be a bilateral continuous system of
paths so that f ′R exists on [0, 1]. Then there is a dense open set O ⊂ [0, 1] on
which f is differentiable for almost all x ∈ O.

Remark 2. We know that typically continuous functions defined on [0, 1] are
nowhere differentiable. Theorem 6 indicates that typically such functions are
not R-differentiable on any nondegenerate closed subinterval of [0, 1] when R
is a bilateral continuous system of paths.
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