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A NOTE ON THE LEBESGUE
DIFFERENTIATION THEOREM IN SPACES

OF HOMOGENEOUS TYPE

Abstract

We prove that the Lebesgue differentiation theorem holds in the
general setting of spaces of homogeneous type if the balls are subspaces
of homogeneous type.

The theory of differentiation of an integral is an important tool in the classi-
cal theory of harmonic analysis for maximal functions, singular integrals and
weighted norm inequalities on Rn. One of the most popular abstract setting
for the above theories is the case of the spaces of homogeneous type which are,
in the sense of Coiffman and Weiss, quasimetric spaces with a Borel measure
satisfying a doubling condition on balls (see the definitions below). In this
context the (1, 1)-weak type of the maximal operator of Hardy-Littlewood al-
lows proving that almost every point is a Lebesgue point of f assuming, for
instance, that the measure is regular. A weaker condition than the regular-
ity of the underlying measure is usually assumed (see [2] for example). The
set of continuous functions is dense in L1. This is probably the most general
situation in which the Lebesgue differentiation theorem is known to hold in
the setting of spaces of homogeneous type. On the other hand, when we are
facing a particular case, it may occur that the regularity of the underlying
measure or the density condition of the continuous functions in L1 are not
easy to verify.

The aim of this note is to show that a condition of a geometrical na-
ture together with a slight generalization of a standard result in the theory
of probability measures on metric spaces imply the validity of the Lebesgue
differentiation theorem in the general setting of the spaces of homogeneous
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type without asking for the regularity of the measure or the density of the
continuous functions in L1. The geometrical condition is that the balls are
subspaces of homogeneous type. At first sight this could be a serious restric-
tion because even in a rather simple case such as the one shown in [1] the balls
are not subspaces of homogeneous type. But this difficulty may be overcame
by recalling a result in [5] which says that given a space of homogeneous type
we can always find a quasidistance equivalent to the original one such that the
balls defined by this new quasidistance are subspaces of homogeneous type.

The key result for the approach given here is a result of Maćıas and Segovia
proved in [4].

Now we give some standard definitions and notation. Let X be a set. A
nonnegative symmetric function d defined on X ×X is called a quasidistance
on X if and only if there exists a constant K ≥ 1 such that for all x, y and
z ∈ X the following conditions hold:

i) d(x, y) = 0 if and only if x = y;

ii) d(x, y) = d(y, x);

iii) d(x, y) ≤ K (d(x, z) + d(z, y)) .

Inequality iii) is often called quasitriangular inequality and K is often called
the quasitriangular constant of d. Of course, d is called a metric when K = 1.

A pair (X, d) is called a quasimetric space if X is a set and d is a quasidis-
tance on X.

Let x ∈ X and let r be a positive real number. The set {y ∈ X /d(x, y) <
r} is called an open ball of radius r centered in x and will be denoted by
B(x, r). We shall say that a set E ⊂ X is open if for every x ∈ E there exists
a number r > 0 such that B(x, r) ⊂ E. Unlike the metric case; i.e., K = 1,
the open balls defined by a quasidistance may not be open sets.

We shall say that a set E ⊂ X is bounded if there exist x ∈ X and r > 0
such that E ⊂ B(x, r).

A triple (X, d, µ) is called a measurable quasimetric space if (X, d) is a quasi
metric space and µ is a positive measure defined on a σ-algebra of subsets of
X containing the balls. Given a measurable set E ⊂ X we shall denote the
restriction of d and µ to E with the symbols d

E
and µ

E
respectively.

Following Coiffman and Weiss in [3] we shall say that a measurable quasi-
metric space (X, d, µ) is a space of homogeneous type if µ is a Borel measure
satisfying the following so-called doubling condition. There exists a positive
constant C such that for all x ∈ X and all r > 0 we have

µ(B(x, 2r)) ≤ C µ(B(x, r)) < ∞.
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Notice that we do not require (as is done in [3]) that the open balls are open
sets.

A set E ⊂ X will be called a subspace of homogeneous type if the triple
(E, d

E
, µ

E
) is a space of homogeneous type.

Let (X, d, µ) be a measurable quasimetric space and let f ∈ L1
loc(X). A

point x ∈ X is said to be a Lebesgue point of f if

lim
r→0+

1
µ(B(x, r))

∫
B(x,r)

f(y) dµ(y) = f(x).

In this work we shall make use of some known results. We just give the
statement of them as follow:

a) In a space of homogeneous type a subset is bounded if and only if it has
finite measure.

b) Let (X, d) be a quasimetric space. There exist positive constants c1 and
c2 and a quasidistance d′ such that d is equivalent to d′ in the sense that
c1d

′ ≤ d ≤ c2d
′ and such that the d′-balls are open sets in the topology

induced by both d and d′. Furthermore d′ = ρα where ρ is a metric on X
and α is a positive constant depending on d.

c) Let (X, d, µ) be a space of homogeneous type and let f ∈ L1
loc(X). If µ is

regular, then almost every point is a Lebesgue point of f .

We are now in a position to give the statement of the main result of this
note.

Theorem. Let (X, d, µ) be a space of homogeneous type such that the balls
are subspaces of homogeneous type and let f ∈ L1

loc(X). Then almost every
point of X is a Lebesgue point of f .

For the proof of this theorem we will need the following lemma which is a
slight generalization of a classical result in the theory of probability measures
on metric spaces.

Lemma. Let (X, d, µ) be a measurable quasimetric space such that µ(X) < ∞.
Then the σ-algebra of the µ-regular sets contains the σ-algebra of the Borel sets

Proof. Let S be the σ-algebra of the µ-regular sets. It is enough to show
that S contains the closed sets. Let C be a subset of X and consider the
function x 7→ d(x,C). Since we are in a quasimetric space, this function need
not be continuous in the underlying topology given by d. To overcome this
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difficulty we use a result proved in [4] which says that for all x, y ∈ X, there
exist positive constants c1, c2 and α and a metric ρ on X such that

c1ρ(x, y)α ≤ d(x, y) ≤ c2ρ(x, y)α.

The function x 7→ ρ(x,C) is continuous in both the topology given by ρ and
d. Let C be a closed subset of X. Since C is closed, we only need to show that
for any ε > 0 there exists an open set V such that C ⊂ V and µ(V − C) < ε.
To see this, notice that

C ⊂ {x ∈ X /d(x, C) < n−1} ⊂ {x ∈ X /ρ(x,C) < 2(c1n)−1/α} = Vn,

for all n ∈ N. We have that each Vn is open in both the topology given by ρ
and d. Since C is a closed set in the topology given by ρ, we have that

C =
⋂
n≥1

Vn,

with Vn+1 ⊂ Vn for all n ≥ 1. Therefore, µ(Vn) → µ(C) as n → ∞ and this
implies that for any ε > 0 we can find a Vn satisfying that µ(Vn −C) < ε and
the lemma follows.

Now we prove the theorem. Let E be the Borel set consisting of all points
of X which are not Lebesgue points of f and suppose that µ(E) > 0. Let d′

be a quasidistance equivalent to d such that the d′-balls are open sets in the
topology induced by d. Let z ∈ X be an arbitrary point. Then

X =
⋃
n∈N

B′(z, n),

where B′ means d′-balls. Therefore, there exists an index n0 such that

µ (E ∩B′(z, n0)) > 0.

Since d is equivalent to d′, there exists a d-ball B such that B′(z, n0) ⊂ B.
Recall that a space of homogeneous type is bounded if and only if it has

finite measure. By hypothesis, the ball B is a subspace of homogeneous type
so that (B, d

B
, µ

B
) is a space of homogeneous type of finite measure. Now the

above lemma implies that µ
B

is a regular Borel measure. But in this context,
regularity implies that almost every point of B is a Lebesgue point of f .

On the other hand given x ∈ E ∩B′(z, n0) there exists a positive number
rx such that for all r < rx we have B(x, r) ⊂ B′(z, n0) ⊂ B, because the
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d′-ball B′(z, n0) is open in the topology induced by d. But then

lim
r→0+

1
µ(B ∩B(x, r))

∫
B∩B(x,r)

f(y) dµ(y)

= lim
r→0+
r<rx

1
µ(B(x, r))

∫
B(x,r)

f(y) dµ(y) 6= f(x),

so that every point of E∩B′(z, n0), which is a subset of B of positive measure,
is not a Lebesgue point of f in B and this is a contradiction. Therefore
µ(E) = 0 and the theorem follows.
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