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TRANSITIVE PROPERTIES OF THE IDEAL
S2

Abstract

In this paper we compute transitive cardinal coefficients of the σ-
ideal S2, the least nontrivial productive σ-ideal of subsets of the Cantor
space 2ω. We also apply transitive operations to S2. In particular, we
show that σ-ideal of strongly S2 sets is equal to B2, one of Mycielski
ideals.

1 Introduction

In this paper we investigate transitive properties of the σ-ideal S2. This ideal
appeared for the first time in [10], but only incidentally. It was thoroughly
investigated by Cichoń and Kraszewski in [5]. It turned out that cardinal char-
acteristics of S2 are strongly connected with some intensively studied combi-
natorial properties of subsets of natural numbers (the splitting and reaping
numbers). Namely,

add(S2) = ω,
1 cov(S2) = r, non(S2) = ℵ0 − s, cof(S2) = c.

Moreover, S2 is the least nontrivial productive σ-ideal of subsets of the Can-
tor space 2ω. The notion of productivity is a powerful tool for investigating
properties of ideals on generalized Cantor spaces 2κ. For more details see [9].

In the first part of this paper we completely describe all well-known tran-
sitive cardinal characteristics of S2. In the second part we apply transitive
operations to S2. In particular, we show that the σ-ideal of strongly S2 sets is
exactly B2, one of Mycielski ideals.
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2 Definitions and Basic Properties

We use standard set-theoretical notation and terminology from [2]. Recall that
the cardinality of the set of all real numbers is denoted by c. The cardinality
of a set X is denoted by |X|. The power set of a set X is denoted by P(X).
If κ is a cardinal number then [X]κ denotes the family of all subsets of the set
X of cardinality κ. If ϕ : X → Y is a function then rng(ϕ) denotes the range
of ϕ. If A ⊆ Y then ϕ−1[A] denotes the pre-image of A.

Let J be an ideal of subsets of an abelian group G. We say that J is
translation invariant if A+g = {x+g : x ∈ A} ∈ J for each A ∈ J and g ∈ G
and that J is symmetric if −A = {−x : x ∈ A} ∈ J for each A ∈ J .

For an ideal J we consider the following cardinal numbers

addt(J ) = min{|A| : A ⊆ J ∧ ¬(∃B ∈ J )(∀A ∈ A)(∃g ∈ G) A ⊆ B + g},
add∗t (J ) = min{|T | : T ⊆ G ∧ (∃A ∈ J ) A + T 6∈ J },
covt(J ) = min{|T | : T ⊆ G ∧ (∃A ∈ J ) A + T = G},
coft(J ) = min{|B| : B ⊆ J ∧ B is a transitive base of J },

where a family B ⊆ J is called a transitive base if for each A ∈ J there exists
B ∈ B and g ∈ G such that A ⊆ B + g. The first two of these are both called
transitive additivity and the last two are called transitive covering number and
transitive cofinality, respectively. Let us notice that all definitions of cardinal
coefficients mentioned above are valid also for an arbitrary family A ⊆ P(G).

Let us also recall that by the uniformity of J we mean the following
cardinal number

non(J ) = min{|A| : A ⊆ G ∧A 6∈ J }.

We say that an ideal J is κ-translatable if

(∀A ∈ J )(∃B ∈ J )(∀T ∈ [G]κ)(∃g ∈ G) A + T ⊆ B + g.

We define a translatability number of J as follows

τ(J ) = min{κ : J is not κ-translatable}.

In this paper we deal with the Cantor space 2ω interpreted as the set of all
functions from ω into the set {0, 1}. This space is endowed with the standard
product topology. Moreover, we consider the standard product group structure
on 2ω.

We define

Pif = {f : t is a function ∧ dom(f) ∈ [ω]ω ∧ rng(f) ⊆ 2}.
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If f ∈ Pif , then we put

[f ] = {x ∈ 2ω : f ⊆ x}.

Let S2 denote the σ-ideal of subsets of 2ω, which is generated by the family
{[f ] : f ∈ Pif}. We recall some properties of S2, which were proved in [5].

Fact 2.1. (a) S2 is a proper, translation invariant σ-ideal, containing single-
tons, with a base consisting of Borel sets. Every A ∈ S2 is both meagre and
null.
(b) There exists a family of size c of pairwise disjoint Borel subsets of 2ω that
do not belong to S2.

We call a family F ⊆ Pif normal if for each two different f1, f2 ∈ F we
have dom(f1)∩dom(f2) = ∅. Directly from the definition of S2 we can deduce
that

A ∈ S2 ⇐⇒ A ⊆
⋃

f∈F

[f ],

for some countable normal family F ⊆ Pif . In [5] the following useful lemma
was proved.

Lemma 2.2. Lemma 1.2 Suppose that {fi : i ∈ I} is a normal family of
functions from Pif, f ∈ Pif and [f ] ⊆

⋃
i∈I [fi]. Then [f ] ⊆ [fi] for some

i ∈ I.

Let A,S be two infinite subsets of ω. We say that S splits A if |A ∩ S| =
|A \S| = ω. Let us recall a cardinal number related with a notion of splitting,
introduced by Malychin in [13], namely

ℵ0 − s = min{|S| : S ⊆ [ω]ω ∧ (∀A ∈ [[ω]ω]ω)(∃S ∈ S)(∀A ∈ A)(S splits A)}.

More about cardinal numbers connected with the relation of splitting can be
found in [8]. It was proved in [5] that non(S2) = ℵ0 − s.

We will need one more σ-ideal. Let us define

B2 = {A ⊆ 2ω : (∀X ∈ [ω]ω) A�X 6= 2X},

where A � X = {x � X : x ∈ A}. This is one of the Mycielski ideals and was
intensively studied by many authors (cf. [7], [15], [17]).
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3 Transitive Cardinal Coefficients of S2

Let J be an ideal of subsets of an abelian group G. The first cardinal coefficient
on the stage was the transitive covering number of J that appeared implicitly
in 1938 in the famous Rothberger theorem, which was originally formulated
for classical ideals of meagre and null subsets of the real line (cf. [18]). In
his general version it says that if J and I are translation invariant ideals of
subsets of G, orthogonal to each other (that is there exist A ∈ J and B ∈ I
such that A ∪B = G) then covt(J ) ≤ non(I). It is worth observing that the
transitive covering number may be different from the covering number and S2

is an example.

Theorem 3.1. covt(S2) = c

Proof. It is obvious that covt(S2) ≤ c, so it is enough to show the other
inequality. Let T ⊆ 2ω and A ∈ S2. Without loss of generality we can as-
sume that A =

⋃
i<ω[fi], where the family {fi : i < ω} ⊆ Pif is normal. If

|T | < c then for every i < ω there exist a function gi : dom(fi) → 2 which
is different from every function fi + t � dom(fi), where t ∈ T . Because the
family {fi : i < ω} is normal then there exists a function x ∈ 2ω such that⋃

i<ω gi ⊆ x and we have x 6∈ (A + T ) which ends the proof.

In 1985 Pawlikowski in [16] introduced the transitive cofinality and gave
the complete description of transitive cofinalities of ideals of meagre and null
subsets of the real line. He also mentioned a dual coefficient to the transi-
tive cofinality. Following the way of describing cardinal characteristics of the
continuum presented by Blass in [3] we will call it a transitive additivity and
denote by addt(J ). Unfortunately, Pawlikowski (and then Bartoszyński and
Judah in [2]) used this name and notation for yet another coefficient, intro-
duced in [16]. In order not to make a mess we will call the latter coefficient
the starred transitive additivity and denote it by add∗t (J ).

Now we calculate these coefficients for S2. To begin with, we observe the
following general property concerning starred transitive additivity.

Proposition 3.2. Let J be a proper and translation invariant σ-ideal of sub-
sets of a group G containing all singletons. Then add∗t (J ) ≤ non(J ).

Proof. To prove that add∗t (J ) ≤ non(J ) it is enough to observe that for
every set T ⊆ G such that T 6∈ J we have |T | ≥ add∗t (J ) because {0}+ T =
T 6∈ J and, of course, {0} ∈ J .

Theorem 3.3. add∗t (S2) = ℵ0 − s.
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Proof. As non(S2) = ℵ0 − s then thanks to Proposition 2.2 it is enough to
show that add∗t (S2) ≥ non(S2).

Suppose now that T ⊆ 2ω and A ∈ S2. To finish the proof we show that
if |T | < non(S2) then A + T ∈ S2. As in the proof of Theorem 2.1 we can
assume that A =

⋃
i<ω[fi], where fi ∈ Pif form a normal family. Thus

A + T =
⋃
t∈T

A + t =
⋃
t∈T

⋃
i<ω

([fi] + t) =
⋃
i<ω

⋃
t∈T

[fi + t�dom(fi)]

Fix i < ω. Let ι : dom(fi) → ω be a bijection. It induces a bijection ι̂ :
2dom(fi) → 2ω. The image of the set {fi + t�dom(fi) : t ∈ T} ⊆ 2dom(fi) by ι̂
has cardinality strictly smaller than non(S2). Consequently, it can be covered
by a set

⋃
j<ω[gj ], for some {gj : j < ω} ⊆ Pif . Hence⋃

t∈T

[fi + t�dom(fi)] ⊆
⋃
j<ω

[ι̂−1(gj)] ∈ S2,

which ends the proof.

In order to prove results about addt(S2) and coft(S2) we introduce some
extra notation. For a set X ∈ [ω]ω let (X)ω

ω denote the family of all infinite
partitions of X into infinite parts. For P1, P2 ∈ (ω)ω

ω we put P1 � P2 if for
every p1 ∈ P1 there exists p2 ∈ P2 such that p2 ⊆ p1 (we say that P2 dominates
P1). It is not difficult to observe that � is a partial ordering on (ω)ω

ω. Let
us notice that if we consider � on the family (ω) of all partitions of ω (which
is more common) then {ω} (one-element partition) is the smallest element of
this ordering while the partition into singletons is the greatest one. Properties
of relations on partitions of ω have been intensively studied lately by Matet,
Majcher-Iwanow and others; for more information cf. [14], [6] or [12].

We define an unboundedness and dominating numbers b� and d� in a
standard way.

b� = min{|R| : R ⊆ (ω)ω
ω ∧ (∀P ∈ (ω)ω

ω)(∃R ∈ R)R 6� P},
d� = min{|R| : R ⊆ (ω)ω

ω ∧ (∀P ∈ (ω)ω
ω)(∃R ∈ R)P � R}.

We have the following well-known lemma.

Lemma 3.4. b� = ω1, d� = c.

Proof. Inequalities b� ≥ ω1 and d� ≤ c are obvious. To show the other
inequalities we first construct a family P ⊆ (ω)ω

ω of cardinality c such that for
every two partitions P1, P2 ∈ P if p1 ∈ P1 and p2 ∈ P2 then p1 ∩ p2 is finite.
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We deal with partitions of Z × Z instead of partitions of ω. Let pα
i =

{(z1, z2) ∈ Z × Z : i ≤ z2 − αz1 < i + 1} for i ∈ Z and α ∈ [0, +∞). Then
Pα = {pα

i : i ∈ Z} is a partition from (Z × Z)ω
ω. It is not difficult to check

that a family P = {Pα : α ∈ [0, +∞)} has a needed property.
Now, if R ⊆ (ω)ω

ω is any subfamily of P of size ω1 then R cannot be
dominated by one partition. Indeed, if there exists a partition P ∈ (ω)ω

ω such
that for every R ∈ R and every r ∈ R we have an element p ∈ P such that p ⊆ r
then we get a contradiction as for different R1, R2 ∈ R and r1 ∈ R1, r2 ∈ R2

there is no p ∈ P which is simultaneously contained in r1 and r2.
On the other hand, let us consider a family R such that every partition

from (ω)ω
ω is dominated by a partition from R. For a given R ∈ R we define

PR = {P ∈ P : (∀p ∈ P )(∃r ∈ R)r ⊆ p}. Obviously P =
⋃

R∈R PR.
Moreover, every family PR is at most countable because any element of R
cannot be contained in elements of different partitions from PR. Therefore

c ≤ |P| ≤ ω · |R|.

Theorem 3.5. addt(S2) = ω1, coft(S2) = c.

Proof. As ω1 ≤ addt(S2) and coft(S2) ≤ c then thanks to Lemma 2.4 we
have to prove only addt(S2) ≤ b� and coft(S2) ≥ d�.

We observe the following useful fact. Let P ⊆ (ω)ω
ω be a family of partitions

and A ⊆ S2. Let us assume that for every partition P ∈ P there exist AP ∈ A
and xP ∈ 2ω such that

⋃
p∈P [0p] ⊆ AP + xP , where 0p denotes a function

constantly equal to 0 on its domain, which is the set p. Then there exists a
family R ⊆ (ω)ω

ω of size |A| such that for every P ∈ P there exists R ∈ R
such that P � R. Indeed, without loss of generality we can assume that
AP =

⋃
i<ω[fP

i ], where {fP
i : i < ω} ⊆ Pif and {dom(fP

i ) : i < ω} ∈ (ω)ω
ω

and by Lemma 1.2 we get that for every p ∈ P there exists a natural number ip
such that [0p] ⊆ [fP

ip
+ xP �dom(fP

ip
)]. Thus dom(fP

ip
) ⊆ p and, consequently,

P � {dom(fP
i ) : i < ω}. Hence R = {{dom(fP

i ) : i < ω} : P ∈ P} is a family
of the sort we are looking for.

Now, let P ⊆ (ω)ω
ω be an arbitrary family of partitions of size less than

addt(S2). From the definition of S2 we obtain that our assumption is fulfilled
for a family A having one element. Thus P is bounded by one partition and
we get addt(S2) ≤ b�.

On the other hand, our assumption is fulfilled also for P = (ω)ω
ω and

A ⊆ S2 being a transitive base for S2. In this situation, the family R obtained
from the fact mentioned above is a dominating family of partitions, so we have
coft(S2) ≥ d�, which ends the proof.
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The last transitive property we deal with is translatability. In 1993 Carlson
in [4] introduced the notion of κ–translatability and proved that the σ-ideal
of meagre subsets of the real line and the σ-ideal generated by closed null
subsets of the real line are ω–translatable. Bartoszyński in [1] proved that the
σ-ideal of null subsets of the Cantor space is not 2–translatable. Kysiak in
[11] introduced a natural notion of a translatability number.

As far as S2 is concerned, its translatability number can be computed
precisely.

Theorem 3.6. τ(S2) = ω1.

Proof. To begin with, we show that S2 is ω–translatable. Let A ∈ S2

be arbitrary. As usual, without loss of generality we can assume that A =⋃
i<ω[fi], where {fi : i < ω} ⊆ Pif and {dom(fi) : i < ω} ∈ (ω)ω

ω. For
every i < ω let us fix a partition Pi = {pij : j < ω} ∈ (dom(fi))ω

ω. Then
{pij : i, j < ω} ∈ (ω)ω

ω. Let B =
⋃

i<ω

⋃
j<ω[0pij

]. Obviously, B ∈ S2. For
every T = {tj : j < ω} ∈ [2ω]ω we define g ∈ 2ω by

(∀i, j < ω) g �pij = (fi + tj)�pij .

It is a routine calculation to show that A + T ⊆ B + g.
To show the other inequality, let us consider first a partition P of ω into

infinite parts. We can observe that there exists a set T ∈ [2ω]ω1 such that for
every family {hi : i < ω} ⊆ Pif if {dom(hi) : i < ω} = P then T 6⊆

⋃
i<ω[hi].

Namely, it is enough to take T such that (∀p ∈ P )(∀x, y ∈ T )(x 6= y ⇒ x�p 6=
y �p).

Let A = {0ω}. We claim that this set witnesses that S2 is not ω1–
translatable. So suppose B =

⋃
i<ω[hi] where {hi : i < ω} ⊆ Pif and

{dom(hi) : i < ω} = P ∈ (ω)ω
ω. Consider the set T defined as above. Then no

translation of B covers T = A + T .

4 Transitive Operations on S2

In this paragraph we apply transitive operations to the ideal S2. To begin
with, let us recall some definitions.

Let us assume that J is a σ-ideal of subsets of an abelian group G which
is proper, translation invariant, symmetric and contains all singletons. We
define (cf. [19])

s(J ) = {A ⊆ G : (∀B ∈ J ) A + B 6= G},
g(J ) = {A ⊆ G : (∀B ∈ J ) A + B ∈ J }



636 Jan Kraszewski

(Seredyński used J ∗ instead of s(J )). In [19] many basic properties of oper-
ations s and g can be found. If we apply these operations to the σ-ideals of
meagre sets M and of null sets N we obtain strongly null sets s(M), strongly
meagre sets s(N ), meagre-additive sets g(M) and null-additive sets g(N ) (see
[2] for more information).

The following are well-known.

Fact 4.1. non(s(J )) = covt(J ), non(g(J )) = add∗t (J ).

We can also observe other basic relations.

Proposition 4.2. covt(s(J )) ≥ non(J ), add∗t (g(J )) = non(g(J )).

Proof. Straightforward from definitions.

We prove now that σ-ideals S2 and B2 are closely related to each other.

Theorem 4.3. s(S2) = B2.

Proof. Let us consider any A ⊆ 2ω. A standard calculation shows that if
for some X ∈ [ω]ω we have A�X = 2X then A + [0X ] = 2ω. Hence if A 6∈ B2

then A 6∈ s(S2).
On the other hand, let us consider any C ⊆ 2ω such that B + C = 2ω for

some B ∈ S2. As in proofs in Paragraph 2, without loss of generality we can
assume that B =

⋃
i<ω[fi], where {fi : i < ω} ⊆ Pif and {dom(fi) : i < ω} ∈

(ω)ω
ω. Then there exists i < ω such that C � dom(fi) = 2dom(fi). Indeed, if

we suppose that for all i < ω there exists gi ∈ 2dom(fi) \ (C � dom(fi)) then
we have

⋃
i<ω(fi + gi) ∈ 2ω \ (B + C). Thus if C 6∈ s(S2) then C 6∈ B2 which

completes the proof.

In [7] the authors showed that the covering number of B2 is a weird object
and it is difficult to find reasonable estimations for it. In particular, it is
relatively consistent that Martin’s Axiom holds, c = ω2 and cov(B2) = ω1.
The following corollary shows that the situation for the transitive covering
number of B2 is different.

Corollary 4.4. If Martin’s Axiom holds then covt(B2) = c.

Proof. From Theorem 3.3 and Proposition 3.2 we obtain that covt(B2) ≥
non(S2). It was proved in [5] that non(S2) = ℵ0 − s and it is well-known that
under Martin’s Axiom we have ℵ0 − s = c.

In order to describe g(S2) we need to introduce more definitions. By Inj
we denote the set of all injections from ω into ω. For A ⊆ 2ω and ϕ ∈ Inj we
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put ϕ ∗ A = {x ◦ ϕ : x ∈ A} and Aϕ = {x ∈ 2ω : x ◦ ϕ ∈ A}. It is easy to
observe that we have ϕ ∗ Aϕ = A and A ⊆ (ϕ ∗ A)ϕ. Let J be a σ-ideal of
subsets of 2ω. We say that J is productive if for every A ⊆ 2ω and ϕ ∈ Inj if
ϕ ∗A is in J then so is A. We say that J has WFP (Weak Fubini Property)
if for every A ⊆ 2ω and ϕ ∈ Inj if Aϕ is in J then so is A. Straight from the
definitions we obtain that S2, σ-ideals of meagre and null sets are productive
and have WFP. For more discussion on these properties cf. [9].

We put
p(J ) = {A ⊆ 2ω : (∀ϕ ∈ Inj) ϕ ∗A ∈ J }.

In other words, A ∈ p(J ) if for every T ∈ [ω]ω the set A�T is in J (T ), where
J (T ) denotes a version of J defined on 2T instead of 2ω.

Theorem 4.5. g(S2) = p(S2).

Proof. Let us assume that A ∈ g(S2) that is (∀B ∈ S2)A + B ∈ S2. It is not
difficult to observe that this condition is equivalent to (∀T ∈ [ω]ω)[0T ] + A ∈
S2. But we can prove that if ϕ ∈ Inj then [0rng(ϕ)] + A = (ϕ ∗ A)ϕ. Hence,
reformulating our condition we obtain (∀ϕ ∈ Inj) (ϕ ∗ A)ϕ ∈ S2. Thus,
as S2 is productive and has WFP, we show that this fact is equivalent to
(∀ϕ ∈ Inj) ϕ ∗A ∈ S2 and, consequently, to A ∈ p(S2).

Finally, we will show that all operations that appeared in this paragraph
are versions of one operation, defined in [19].

Let A,B be translation invariant families of subsets of a group G. We put

Gt(A,B) = {A ⊆ G : (∀B ∈ B) A + B ∈ A}.

Then we have the following results.

Proposition 4.6. Let J be a translation invariant, symmetric σ-ideal of sub-
sets of a group G. Then
(a) s(J ) = Gt(P(G) \ {G},J ),
(b) g(J ) = Gt(J ,J ).
If G = 2ω and J is productive and has WFP then
(c) p(J ) = Gt(J , S2).

Proof. (a) and (b) are reformulations of definitions and were observed in
[19]. To prove (c) it is enough to repeat carefully the proof of Theorem 3.5.

Acknowledgements. The author would like to thank the referee for improv-
ing the language of the paper.
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[6] J. Cichoń, A. Krawczyk, B. Majcher-Iwanow, B. Wȩglorz, Dualization of
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