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A NOWHERE CONVERGENT SERIES OF
FUNCTIONS CONVERGING SOMEWHERE
AFTER EVERY NON-TRIVIAL CHANGE
OF SIGNS

Abstract

We construct a sequence of continuous functions (h,) on any given
uncountable Polish space, such that Y h, is divergent everywhere, but
for any sign sequence (g,) € {—1,+1}" which contains infinitely many
— 1 and + 1 the series anhn is convergent at at least one point.
We can even have h,, — 0, and if we take our given Polish space to
be any uncountable closed subset of R, we can require that every h,,
be a polynomial. This strengthens a construction of Taméas Keleti and
Tamdés Métrai.

1 Introduction.

Let X be a topological space, f, : X — R, n € N be a sequence of continuous
functions. One can ask about a condition on this sequence which guaran-
tees that for a “typical” choice of signs €, = +1 the series Y e, f, diverges
everywhere on X.

By “typical” choice of signs we mean that the set of the proper sign se-
quences is a residual (or dense G5) subset of S = {—1,4+1}"Y. Here we consider
S as a product of discrete topological spaces, which is clearly a Baire space.
By N we denote the set of the positive integers. By Polish space we mean
complete separable metric space.

In [1, Theorem 4.1] for o-compact X spaces a condition was given on
the divergence of the partial sums of »_ f,, implying that > e, f, diverges
everywhere for a typical sign sequence (g,) € S. Motivated by this result, S.
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Konyagin asked whether in case of compact metric spaces X, the pure fact
that > f,, diverges everywhere could imply that > e, f,, diverges everywhere
for a typical sign sequence. Tamds Keleti and Tamds Métrai (see [2]) gave
a negative answer to this question by showing an example of a sequence of
continuous functions (f,) on any uncountable Polish space, such that > f,
is divergent everywhere, but for a typical sign sequence (g,) € S, the series
> enfn is convergent at at least one point.

This paper strengthens this construction by showing a sequence of contin-
uous functions f, such that Y f,, is divergent everywhere but for every sign
sequence (g,) € So = {(g],) € S| (&},) contains infinitely many — 1 and + 1},
the series > e, f, is convergent at at least one point. Clearly Sy is the largest
subset of .S for which this could be true.

We will also construct an other series of continuous functions with the same
properties which satisfies even that f,, — 0. Providing that the uncountable
Polish space is R (or a closed subset of R) we can require every f, to be a
polynomial, see Remark 1.

2 The Example.

Theorem 1. ! Let P be an uncountable Polish space. There exists a sequence
of continuous functions hy, : P — R such that Y h, diverges everywhere on
P, but for any (,,) € {—1,+1} sign sequence containing infinitely many — 1
and + 1 digits > enh, converges at at least one point of P.

PROOF. At first we define continuous functions f, : S = {-1,+1} —
[—1,+1] such that > f, is divergent everywhere, but for any (e,) € Sp =
{(e},) € S| (},) contains infinitely many — 1 and + 1} the series e, fn is
convergent at at least one point, in fact, at (&,).

Consider a fix € S as the sequence of the — 1 and + 1 digits. Divide
this sequence into blocks of type AAA...AB (where A and B stand for —1
and + 1 in some order), with the property of containing at least one A and
containing exactly one B at the end. We start the division in the beginning of
the sequence. Occasionally we make one infinite block of type AAA . ... Thus,
the division is well defined.

For example,

[T+ 11 -1+1)[+1+1 —1|[+1 1| T +1|[F1+1+1...

ndependently from the author, Gergely Zabradi gave almost the same construction on
R at the same time.



A SERIES OF FUNCTIONS CONVERGING AFTER CHANGES OF SIGNS 857

Let n be a positive integer. We are going to define the real number f,(z).
Suppose that the n* digit of x is in the k' block of = and this digit is the i*"
number in this block. Denote the size of the k** block by I. (Thus 1 < i <1
and [ > 2.) _

. Ilfl is even, then let f,(z) = % if 1 <i<l—1andlet f,(z) =% if
=1 -

Tf 1 is odd, then let f, (x) = CU70 i 1 < i <12, let f(z) = 0ifi = 1—1
and let f,(z) = L if i = 1.

Tf I = oo, then let f,, () = EU°.

For example (writing f,,(z) below the n*" digit of z),

[—14+1)[-1-1-1+1)[+1+1 1) [+1 1] -1 +1][+1+1+1...

L1 2 2 o o |73 3 L4 4 5 5 6 6 6 -
Claim 1. The function f, is an S — [=1,+1] continuous function for every
n € N.

PROOF. It is easy to see that f,(z) depends only on the first n + 1 digits of
x. This implies continuity. O

Claim 2. The series Y fn(x) is divergent for every x € S.

ProOF. For a fixed x consider those positive integers n for which the n'” digits
of z are in the fixed k" block. For these n the sum of f,(x) equals to 2/k if
this block is finite. Hence )y fn(z) = oo if x has infinitely many blocks.
Otherwise = has an infinite block so the terms of the series ) _y fn(x) are
not converging to 0.

Claim 3. For every (e,) € Sy there exists x € S for which Y enfn(x) is
convergent, namely x = ().

PROOF. The sequence z = (e,) € Sp has only blocks of finite size. Consider
those positive integers n for which the nt" digits of  are in the same fixed
block. For these n the sum of €, f,, () is exactly zero. The sequence of partial
sums converges to 0, hence the series > e, f,, () is convergent. O

It is well known (see [3, Corollary 6.5]) that P contains a homeomorphic
copy of the Cantor set, denote it by C. Clearly S is homeomorphic to the
Cantor set, let ¢ be a ¢ — S homeomorphism. Let g, : P — [—1,+1]
be a continuous extension of f, o ¢ : C — [=1,+1] for every n. On P let
hn(p) = gn(p) + n - d(p,C), where d(p, C') denotes the distance of p from the
closed set C. Clearly for p ¢ C the series > h,(p) diverges. On C we have
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hn = fn o, hence by Claim 2 and Claim 3 we obtain that (h,,) satisfies all
required properties. O]

Theorem 2. Requiring that h, — 0, Theorem 1 remains true.

PrOOF. Just like in the proof of Theorem 1, at first we define functions f,, on
S. Let z € S be fixed. Consider the same blocks. Suppose that the k" block
is finite and contains the a*®, (a4 1), ..., bt" digits of x (a,b € N, b—a > 2).
Define fo(z), fat1(z), ..., fo(x) to be respectively

+1 -1 -1 41 +1 +1 +1 g0 0t
k o2k 2k 3k 3k 3k @mi Dk 2mi Dk ===k
<4dm
2m—+1

where the number of zeros is less than 4m + 5 and maybe there are no zeros
at all. This properly defines the value of m (m € {0,1,2,...}). Note that
Ziza fa(z) =2 and if z = (g,) € So then ZZ:Q enfn(z) =0.
If the k" block is infinite and contains the a'”, (a + 1), ... digits of x
then define f,(z), fat1(x),... to be respectively
+1 -1 -14+1 41 41 -1 -1 -1 -1

k 2k 2k 3k 3k 3k 4k 4k 4k 4k

Note that Y07 fn(z) diverges.

One can easily check that f,, () depends only on the first 2n + 2 digits of
x, so these functions are continuous. It is clear that Claim 2 and Claim 3 also
hold for this sequence of functions f,, and — 1 < f,, < +1 for every n € N.
Define ¢ and g,, the same way as in the proof of Theorem 1. We modify the
definition of function h.,,, put

d(p,C)

n

hn(p) = (max(1 — d(p,C), 0))" gn(p) +

If p £ C then hy,(p) ~ L, hence Y h,(p) diverges and h,(p) — 0. For p € C
we have hy,(p) = fn o @(p). Hence by Claim 2 and Claim 3 we obtain that
(hy,) satisfies all required properties. O

Remark 1. Let P be an uncountable closed subset of R (hence P is a Polish
space). There exists a sequence of polynomials p,, : P — R such that p,, —
0 and > p, diverges everywhere on P, but for any sign sequence (g,) €
{—1, +1}" containing infinitely many —1 and +1, the series Y_ ,,p,, converges
at at least one point of P.
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PRrROOF. Consider the continuous functions h, given by Theorem 2 for P.
Let p, be a polynomial on R for which |p,(z) — hy(z)] < -5 for every
x € P([-n,n]. Clearly p,(z) — 0 for every z € P. Since the series Y -5 con-
verges, for every (e,,) € S the series > e,p, converges if and only if > e,h,
converges. This completes the proof. O
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