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SOME CLASSES OF STRONGLY
QUASICONTINUOUS FUNCTIONS

Abstract

Some classes of strongly quasicontinuous functions are investigated.

Let R, Q and N be the set of all real, rational and positive integer numbers,
respectively. For a set A ⊂ R denote by IntA and ClA the interior and the
closure of A, respectively. Recall that a function f : R → R is quasi-continuous
at a point x ∈ R if for each ε > 0 and for each neighborhood U of x there
is a nonempty open set G ⊂ U such that f(G) ⊂ (f(x) − ε, f(x) + ε) ([3]).
Denote by Q(f) (C(f)) the set of all quasi-continuity (continuity) points of
f . It is well-known that the set Q(f) \ C(f) is of the first category but it
need not be measurable or of measure zero (e.g., if T is a closed nowhere
dense set of positive measure and S ⊂ T is dense in T and nonmeasurable (of
measure zero), then for its characteristic function χ

S the set Q(χS) \C(χS) is
nonmeasurable (of positive measure).

Let `e (`) denote the outer Lebesgue measure (Lebesgue measure) in R.
Let

du(A, x) = lim sup
h→0+

`e(A ∩ (x− h, x + h))/2h

(dl(A, x) = lim inf
h→0+

`e(A ∩ (x− h, x + h)/2h)

the upper (lower) outer density of A ⊂ R at a point x ∈ R.
Z. Grande in [1] introduced properties A(x) and B(x) of functions:
A function f : R → R has property A(x) at a point x ∈ R if there exists

an open set U such that du(U, x) > 0 and the restricted function f�(U ∪ {x})
is continuous at x. We will write f ∈ A(x) if f has the property A(x) at a
point x.

Key Words: continuity, quasi-continuity, strong quasi-continuity
Mathematical Reviews subject classification: Primary: 26A15; Secondary: 54C08,

54C30
Received by the editors November 15, 2004
Communicated by: B. S. Thomson

∗Supported by Grant VEGA 2/3165/23

689



690 Ján Borśık

A function f : R → R has property B(x) at x ∈ R (abbreviated f ∈ B(x))
if for ε > 0 we have du(Int{y : |f(y)− f(x)| < ε}, x) > 0.

Denote by A(f) the set {x ∈ R : f ∈ A(x)} and by B(f) the set {x ∈ R :
f ∈ B(x)}. Z. Grande has shown that C(f) ⊂ A(f) ⊂ B(f) ⊂ Q(f) and that
the measure of B(f) \ C(f) is zero.

Definition 1. Let f : R → R be a function and let r ∈ [0, 1). We put

Ar(f) = {x ∈ R : there is an open set U such that du(U, x) > r and
f � (U ∪ {x}) is continuous at x},

Al
r(f) = {x ∈ R : there is an open set U such that dl(U, x) > r and

f � (U ∪ {x}) is continuous at x},

Br(f) = {x ∈ R : for each ε > 0 there is an open set U such that
du(U, x) > r and f(U) ⊂ (f(x)− ε, f(x) + ε)},

Bl
r(f) = {x ∈ R : for each ε > 0 there is an open set U such that

dl(U, x) > r and f(U) ⊂ (f(x)− ε, f(x) + ε)}.

Evidently, Al
r(f) ⊂ Ar(f) ⊂ Br(f) and Al

r(f) ⊂ Bl
r(f) ⊂ Br(f) for each

r ∈ [0, 1). Further, Ar(f) ⊂ As(f), Br(f) ⊂ Bs(f), Al
r(f) ⊂ Al

s(f), and
Bl

r(f) ⊂ Bl
s(f) for 0 ≤ s < r < 1. Thus, the sets Ar(f) \ C(f), Al

r(f) \ C(f),
Br(f) \C(f) and Bl

r(f) \C(f) are sets of first category and of measure zero.
We shall show that Br(f) ⊂ As(f) and Bl

r(f) ⊂ Al
s(f) for 0 ≤ s < r < 1.

Lemma 1. Let 0 ≤ β < 1, a > 0, x ∈ R and let A be a measurable set. If
`(A ∩ (x− a, x + a)) > β, then there is c ∈ (0, a) such that for each b ∈ (0, c)

`(A ∩ ((x− a, x− b) ∪ (x + b, x + a))) > β.

Proof. Put `(A ∩ (x − a, x + a)) = α > β. Then there is c > 0 such that
α − 2c > β. Since 2c < α ≤ 2a, we have c < a. Let 0 < b < c. Then
α = `(A ∩ (x − a, x + a)) = `(A ∩ ((x − a, x − b) ∪ (x + b, x + a))) + `(A ∩
(x − b, x + b)) ≤ `(A ∩ ((x − a, x − b) ∪ (x + b, x + a))) + 2b. Therefore
`(A ∩ ((x− a, x− b) ∪ (x + b, x + a))) ≥ α− 2b > β.

Theorem 1. Let f : R → R be a function and let 0 ≤ s < r < 1. Then
Br(f) ⊂ As(f) and Bl

r(f) ⊂ Al
s(f).

Proof. The inclusion Br(f) ⊂ As(f):
Let x ∈ Br(f). Then for each n ∈ N there is an open set An such that

du(An, x) > r and f(An) ⊂ (f(x)−1/n, f(x)+1/n). There is a sequence (hn
i )i

such that 0 < hn
i+1 < hn

i , lim
i→∞

hn
i = 0 and `(An ∩ (x− hn

i , x + hn
i ))/(2hn

i ) > r.
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Let v0 = h1
1. Since `(A1 ∩ (x− v0, x + v0)) > 2rv0, according to Lemma 1

there is c1 ∈ (0, v0) such that `(A1 ∩ ((x− v0, x− b) ∪ (x + b, x + v0))) > 2rv0

for each b ∈ (0, c1). Let j ∈ N be such that h2
j < c1/2 and let v1 = h2

j . Assume
that we have positive numbers v0, v1, . . . , vn such that 0 < vi < vi−1/2, vi ∈
{hi+1

1 , hi+1
2 , . . . , hi+1

k , . . . } and `(Ai ∩ ((x− vi−1, x− vi)∪ (x + vi, x + vi+1)) >
2rvi−1 for each i ∈ {1, 2, . . . , n}. Since vn = hn+1

j for some j ∈ N, so `((An+1∩
(x−vn, x+vn)) > 2rvn and according to Lemma 1 there is cn+1 ∈ (0, vn) such
that `((An+1 ∩ ((x− vn, x− b)∪ (x + b, x + vn))) > 2rvn for each b ∈ (0, cn+1)
There is k ∈ N such that hn+2

k < cn+1/2 and put vn+1 = hn+2
k .

Now put Vn = An ∩ ((x − vn−1, x − vn) ∪ (x + vn, x + vn−1)) and V =⋃∞
n=1 Vn. Then V is an open set. We shall show that du(V, x) > s. We see

that V ∩ (x − vn, x + vn) =
⋃∞

i=1(Vi ∩ (x − vn, x + vn)) =
⋃∞

i=n+1 Vi and

therefore `(V ∩ (x− vn, x + vn)) =
∞∑

i=n+1

`(Vi) ≥ `(Vn+1) > 2rvn. This yields

`(V ∩ (x− vn, x + vn))
2vn

>
2rvn

2vn
= r and thus du(V, x) ≥ r > s.

Now we shall show that f � (V ∪{x}) is continuous at x. Let ε > 0. Choose
n ∈ N with 1/n < ε. If y ∈ V ∩ (x− vn, x + vn), then y ∈ Vj for some j ≥ n.
Then f(y) ∈ f(Vj) ⊂ f(Aj) ⊂ (f(x)− 1/j, f(x) + 1/j) ⊂ (f(x)− ε, f(x) + ε);
i.e., f � (V ∪ {x}) is continuous at x.

The inclusion Bl
r(f) ⊂ Al

s(f):
Let x ∈ Bl

r(f). Then for each n ∈ N there is an open set An such that
βn = dl(An, x) > r and f(An) ⊂ (f(x) − 1/n, f(x) + 1/n). Since r/βn < 1,
for each n ∈ N there is kn > 2 such that

kn − 1
kn + 1

> max
{√

r

βn
,

√
r

βn+1

}
.

Put ηn =
βn − r

kn
> 0. Evidently βn−ηn > r. Since dl(An, x) > βn−ηn, there

is hn > 0, such that `(An ∩ (x− h, x + h)) > 2(βn − ηn)h for each h ∈ (0, hn].
We can assume that hn+1 < hn/2. Put p0 = h1. According to Lemma 1

there is c1 ∈ (0, p0) such that `(A1 ∩ ((x − p0, x − b) ∪ (x + b, x + p0))) >
2(β1 − η1)p0 for each b ∈ (0, c1). Further, since dl(A1, x) < β1 + η1, there is
p1 < min{c1, h2} such that `(A1 ∩ ((x− p1, x + p1)) < 2(β1 + η1)p1.

Assume that we have positive numbers p0, p1, . . . , pn such that for each
i ∈ {1, 2, . . . , n}

pi < min{pi−1, hi+1},

`((Ai ∩ (x− pi, x + pi)) < 2(βi + ηi)pi and

`(Ai ∩ ((x− pi−1, x− pi) ∪ (x + pi, x + pi−1))) > 2(βi − ηi)pi−1.
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Since pn < hn+1, `(An+1∩ (x−pn, x+pn)) > 2(βn+1−ηn+1)pn and according
to Lemma 1 there is cn+1 ∈ (0, pn) such that for each b ∈ (0, cn+1)

`(An+1 ∩ ((x− pn, x− b) ∪ (x + b, x + pn)) > 2(βn+1 − ηn+1)pn.

Further there is pn+1 < min{cn+1, hn+2} such that

`(An+1 ∩ ((x− pn+1, x + pn+1)) < 2(βn+1 + ηn+1)pn+1.

Then pn+1 < pn and `(An+1 ∩ ((x − pn, x − pn+1) ∪ (x + pn+1, x + pn)) >
2(βn+1−ηn+1)pn. Put Vn = An∩ ((x−pn−1, x−pn)∪ (x+pn, x+pn−1)) and
V =

⋃∞
n=1 Vn. Then V is an open set. We shall show that dl(V, x) > s. Let

0 < h < h1. Since 0 < pj+1 ≤ pj and lim
j→∞

pj = 0, there is n ∈ N such that

pn < h ≤ pn−1. Then h > kn+1
kn−1pn or h ≤ kn+1

kn−1pn.

a) Let h >
kn + 1
kn − 1

pn. Then knh−h−knpn−pn = (kn−1)h−(kn +1)pn >

(kn − 1)
kn + 1
kn − 1

pn − (kn + 1)pn = 0. Further, h ≤ pn−1 < hn and hence

2(βn − ηn)h <`((An ∩ (x− h, x + h)) = `(An ∩ (x− pn, x + pn))
+ `(An ∩ ((x− h, x− pn) ∪ (x + pn, x + h))

<2(βn + ηn)pn + `(An ∩ ((x− h, x− pn) ∪ (x + pn, x + h))).

Therefore

`(An ∩ ((x− h, x− pn) ∪ (x + pn, x + h)) > 2(βn − ηn)h− 2(βn + ηn)pn

=2r(h− pn) + 2k−1
n (knβnh− βnh + rh− knpn − βnpn + rpn − rknh + rknpn)

=2r(h− pn) + 2k−1
n (βn − r)(knh− h− knpn − pn) > 2r(h− pn).

Further we see that `(Vn+1) = `(An+1∩((x−pn, x−pn+1)∪(x+pn+1, x+pn)) >
2(βn+1 − ηn+1)pn > 2rpn. Therefore we obtain

`(V ∩ (x− h, x + h)) ≥ `(V ∩ ((x− h, x− pn+1) ∪ (x + pn+1, x + h))
= `(Vn+1) + `(An ∩ ((x− h, x− pn) ∪ (x + pn, x + h))
> 2rpn + 2r(h− pn) = 2rh.

b) Now let h ≤ kn+1
kn−1pn. We see that

kn − 1
kn + 1

(βn+1 − ηn+1) =
kn − 1
kn + 1

· (kn+1 − 1)βn+1 + r

kn+1

>
kn − 1
kn + 1

· kn+1 − 1
kn+1 + 1

βn+1 >

√
r

βn+1
·
√

r

βn+1
· βn+1 = r.



Some Classes of Strongly Quasicontinuous Functions 693

This yields

`(V ∩ ((x− h, h + h)) ≥ `(Vn+1)
= `(An+1 ∩ ((x− pn, x− pn+1) ∪ (x + pn+1, x + pn))

> 2(βn+1 − ηn+1)pn ≥ 2(βn+1 − ηn+1)
kn − 1
kn + 1

h > 2rh.

Therefore for each h ∈ (0, h1) we have `(V ∩ (x − h, x + h)) > 2rh; i.e.,
dl(V, x) ≥ r > s. Similarly as above we can prove that f � (V ∪ {x}) is
continuous at x.

Theorem 2. Let f : R → R be a function and let 0 ≤ s < r < 1. Then

Ar(f) // Br(f) // As(f) // Q(f)

C(f) // Al
r(f) //

OO

Bl
r(f) //

OO

Al
s(f)

OO

and each of inclusions can be proper.

Proof. The inclusions follow from previous remarks and Theorem 1. The
following examples show that the inclusions can be proper.

Proposition 1. Let r, s ∈ [0, 1). Then there is a function f : R → [0, 1] such
that f is continuous at each point different from zero and 0 ∈ Ar(f) \Bl

s(f).

Proof. Put an = 1
(4n)! , bn = 1

(4n−1)! , cn = 1
(4n−2)! and dn = 1

(4n−3)! . Then

0 < dn+1 < an < bn < cn < dn ≤ 1. Put A =
∞⋃

n=1
((an, bn) ∪ (−bn,−an))

and B =
∞⋃

n=1
((cn, dn)∪ (−dn,−cn)). Then A and B are open disjoint sets and

Cl A ∩ Cl B = {0}. Hence there is a continuous function g : R \ {0} → [0, 1]
such that g(x) = 0 for x ∈ B and g(x) = 1 for x ∈ A. Now let f : R → [0, 1]
be such that f(x) = g(x) for x 6= 0 and f(0) = 0. We shall show that f is our
function.

We have A ∩ (0, bn) =
⋃∞

i=n(ai, bi) and therefore

`(A ∩ (−bn, 0)) = `(A ∩ (0, bn)) ≥ `((an, bn)) =
1

(4n− 1)!
− 1

(4n)!
=

4n− 1
(4n)!

and
`((A ∩ (−bn, bn))

2bn
≥ ((4n− 1)!)(4n− 1)

(4n)!
=

4n− 1
4n

.



694 Ján Borśık

Since lim
n→∞

bn = 0, we obtain

du(A, 0) ≥ lim
n→∞

`((A ∩ (−bn, bn))
2bn

≥ lim
n→∞

4n− 1
4n

= 1.

Similarly we can show that du(B, 0) = 1. Evidently, f is continuous at each
point different from zero. The set B is open, du(B, 0) = 1 > r and f(x) = 0
for x ∈ B ∪ {0}, thus 0 ∈ Ar(f).

Now let U be an open set such that dl((U, 0) > s. Then du(R \ U, 0) <
1 − s ≤ 1. If A ∩ U = ∅ then du(A, 0) ≤ du(R \ U, 0) < 1, a contradiction,
Therefore A ∩ U 6= ∅ and this yields 0 /∈ Bl

s(f).

Lemma 2. Let 0 ≤ α < 1. Then there are disjoint closed intervals In
i , Jn

i ⊂
(−1, 0) ∪ (0, 1), i, n ∈ N, such that:

(i) dl(
⋃∞

n=1 Int In
i , 0) ≥ α · 2−i for each i ∈ N,

(ii) dl(
⋃∞

n=1 Int Jn
i , 0) ≥ (1− α)2−i for each i ∈ N,

(iii) Cl(
⋃∞

n=1

⋃∞
i=1 In

i ) ∩ Cl(
⋃∞

n=1

⋃∞
i=1 Jn

i ) = {0}.

Proof. There are disjoint closed intervals Kn
i , Ln

i ⊂ ( 1
n+1 , 1

n ), 1 ≤ i ≤ n,

such that `(Kn
i ) = α·2−i

n(n+1) and `(Ln
i ) = (1−α)·2−i

n(n+1) for each i, 1 ≤ i ≤ n (For

α = 0 we require that `(Kn
i ) > 0 and `(Ln

i ) = 2−i

n(n+1) ). If I = [a, b] is an

interval, denote by −I the interval [−b,−a]. Put Ik
i = (−1)k+1K

i+[(k−1)/2]
i

and Jk
i = (−1)k+1L

i+[(k−1)/2]
i for i, k ∈ N, where [x] is the integer part of

x. Then all intervals Ik
i , Jk

i are mutually disjoint. We shall show that they
satisfy (i), (ii), and (iii). (i): Let ε > 0 and i ∈ N. Choose p ∈ N such that
p ≥ i and 1/p < ε. Let 0 < h < 1/p. Then there is n ∈ N, n ≥ p, such that
1/(n + 1) ≤ h < 1/n. We see that

∞⋃
k=1

Ik
i ∩ (0, h) ⊃

∞⋃
k=1

Ik
i ∩ (0, 1/(n + 1)) =

∞⋃
k=n+1

Kk
i

and therefore

`(
∞⋃

k=1

Ik
i ∩ (0, h)) ≥ `(

∞⋃
k=n+1

Kk
i ) =

∞∑
k=n+1

`(Kk
i ) =

∞∑
k=n+1

α · 2−i

k(k + 1)

= α · 2−i
∞∑

k=n+1

1
k(k + 1)

=
α · 2−i

n + 1
.
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Similarly we can show that `(
∞⋃

k=1

Ik
i ∩ (−h, 0)) ≥ α·2−i

n+1 and hence `(
∞⋃

k=1

Ik
i ∩

(−h, h)) ≥ 2α·2−i

n+1 . Since 0 < h < 1/n, we obtain

`(
∞⋃

k=1

Ik
i ∩ (−h, h))

2h
≥ α · 2−i · n

n + 1
≥ α · 2−i(1− 1

p
) > α · 2−i(1− ε).

Thus dl(
⋃∞

n=1 In
i , 0) ≥ α·2−i(1−ε) for each ε > 0; i.e., dl(

⋃∞
n=1 In

i , 0) ≥ α·2−i.
(ii): The proof is similar.
(iii): It follows from the construction.

Proposition 2. Let 0 ≤ r < s < 1. Then there is a function f : R → [0, 1]
such that f is continuous at each point different from zero and 0 ∈ Al

r(f) \
Bs(f).

Proof. Let In
i , Jn

i be closed disjoint intervals from Lemma 2 for α = s. Put
A =

⋃
i,n∈N Int In

i and B =
⋃

i,n∈N Int Jn
i . Then Cl A ∩ Cl B = {0} and there

is a continuous function g : R \ {0} → [0, 1] such that g(x) = 0 for x ∈ A and
g(x) = 1 for x ∈ B. Let f : R → R be a function such that f(x) = g(x) for
x 6= 0 and f(0) = 0. Then f is continuous at each point different from zero.

The set A is open and dl(A, 0) ≥
∞∑

i=1

dl(
∞⋃

n=1
Int In

i , 0) ≥
∞∑

i=1

s · 2−i = s > r.

Since f is constant on A ∪ {0}, we have 0 ∈ Al
r(f).

Now, let U be an open set such that du(U, 0) > s. We have dl(B, 0) ≥
∞∑

i=1

dl(
∞⋃

n=1
Int Jn

i , 0) ≥
∞∑

i=1

(1 − s)2−i = 1 − s. If B ∩ U = ∅, then 1 − s ≤

dl(B, 0) ≤ dl(R \U, 0) < 1− s, a contradiction. Therefore B ∩U 6= ∅ and this
yields 0 /∈ Bs(f).

Proposition 3. Let r ∈ [0, 1). Then there is a function f : R → [0, 1] such
that f is continuous at each point different from zero and 0 ∈ Al

r(f) \ C(f).

Proof. Let In
i , Jn

i be closed disjoint intervals from Lemma 2 for α = 0.
Put A =

⋃
i,n∈N Int In

i and B =
⋃

i,n∈N Int Jn
i . Then there is a function

f : R → [0, 1] such that f(0) = 0, f(x) = 0 for x ∈ B, f(x) = 1 for x ∈ A
and f is continuous at each point different from zero. Then B is an open set
and dl(B, 0) ≥

∑∞
i=1 2−i = 1 > r. Since f is constant on B ∪ {0}, we have

0 ∈ Al
r(f). Since 0 ∈ Cl A, we have 0 /∈ C(f).

Proposition 4. There is a function f : R → [0, 1] such that f is continuous
at each point different from zero and 0 ∈ Q(f) \B0(f).
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Proof. Let A and B be the same as in Proposition 3. Then there is a function
f : R → [0, 1] such that f(0) = 0, f(x) = 0 for x ∈ A, f(x) = 1 for x ∈ B
and f is continuous at each point different from zero. Since 0 ∈ Cl A, we have
0 ∈ Q(f). Now let U be an open set such that du(U, 0) > 0. If B ∩ U = ∅,
then 1 ≤ dl(B, 0) ≤ dl(R \ U, 0) < 1, a contradiction. Therefore B ∩ U 6= ∅
and 0 /∈ B0(f).

Proposition 5. Let r ∈ [0, 1). Then there is a function f : R → [0, 1] such
that f is continuous at each point different from zero and 0 ∈ Bl

r(f) \Ar(f).

Proof. Let In
i , Jn

i be closed disjoint intervals from Lemma 2 for α = r.
Put A =

⋃
i,n∈N Int In

i and B =
⋃

i,n∈N Int Jn
i . Then there is a function

f : R → [0, 1] such that f(0) = 0, f(x) = 0 for x ∈ A, f(x) = 1/i for x ∈ Jn
i

and f is continuous at each point different from zero.
Let ε > 0. Choose i ∈ N with 1/i < ε. Then D = A ∪

⋃∞
n=1 Int Jn

i is an
open set and f(D) ⊂ (−ε, ε). Since A ∩ (

⋃∞
n=1 Int Jn

i ) = ∅, we obtain

dl(D, 0) ≥ dl(A, 0) + dl(
∞⋃

n=1

Int Jn
i , 0) ≥ r + (1− r)2−i > r.

Therefore 0 ∈ Bl
r(f).

Now let U be an open set such that t = du(U, 0) > r. Let V be arbitrary
open neighborhood of 0. Then du(U ∩ V, 0) = t. Put q = (t − r)/2 and let
η > 0 be such that 2η < q. Let j ∈ N be such that 2−j < q and denote by
C =

⋃j
i=1

⋃∞
n=1 Int Jn

i . Since In
i and Jn

i are disjoint, we obtain

dl(C, 0) ≥
j∑

i=1

dl(
∞⋃

n=1

Int Jn
i , 0) ≥

j∑
i=1

(1− r)2−i = (1− r)(1− 2−j).

Then also dl(C ∩ V, 0) ≥ (1− r)(1− 2−j) > (1− r)(1− 2−j)− η. Hence there
is a δ > 0 such that for each h ∈ (0, δ)

`((−h, h) ∩ V ∩ C)
2h

> (1− r)(1− 2−j)− η.

Since du(U ∩ V, 0) > t− η, there is a sequence (hm)m converging to zero such
that

`((−hm, hm) ∩ V ∩ U)
2hm

> t− η.
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We can assume that hm ∈ (0, δ). Assume that U ∩ V ∩ C = ∅. Then

1 =
`((−hm, hm))

2hm
≥ `((−hm, hm) ∩ V ∩ U)

2hm
+

`((−hm, hm) ∩ V ∩ C)
2hm

> (1− r)(1− 2−j)− η + t− η > (1− r)(1− q) + t− 2η

> 1− r − q + t− 2η = 1 + q − 2η.

This yields q < 2η, a contradiction. Therefore U ∩V ∩C 6= ∅. This means that
each neighborhood V of 0 contains a point z ∈ V ∩ U such that f(z) ≥ 1/j;
i.e., 0 /∈ Ar(f).

Corollary 1. For each s ∈ [0, 1) we have

As(f) =
⋃

1>r>s
Ar(f) =

⋃
1>r>s

Br(f),

Al
s(f) =

⋃
1>r>s

Al
r(f) =

⋃
1>r>s

Bl
r(f)

and for each s ∈ (0, 1) we have

Bs(f) ⊂
⋂

0≤r<s

Ar(f) =
⋂

0≤r<s

Br(f),

Bl
s(f) ⊂

⋂
0≤r<s

Al
r(f) =

⋂
0≤r<s

Bl
r(f).

The inclusion can be proper.

Proof. Evidently
⋃

1>r>s
Ar(f) ⊂

⋃
1>r>s

Br(f) and
⋂

0≤r<s

Ar(f) ⊂
⋂

0≤r<s

Br(f).

From Theorem 1 we obtain
⋃

1>r>s
Br(f) ⊂ As(f) and Bs(f) ⊂

⋂
0≤r<s

Ar(f). If

x ∈ As(f), then there is an open set U such that du(U, x) > s and f � (U∪{x})
is continuous at x. Now there is r > s such that du(U, x) > r and hence
x ∈ Ar(f) ⊂

⋃
1>r>s

Ar(f). Finally, if x ∈
⋂

0≤r<s

Br(f) and 0 ≤ t < s, then for

r ∈ (t, s) we have x ∈ Br(f) and by Theorem 1 x ∈ At(f); i.e., x ∈
⋂

0≤r<s

Ar.

The function from Proposition 2 is such that Al
r(f) = R for each r ∈ [0, 1);

i.e.,
⋂

0≤r<s

Ar(f) = R but 0 /∈ Bs(f).

Lemma 3. Let f, g : R → R, r ∈ [0, 1) and c 6= 0. Then we have

C(f) ∩Ar(g) ⊂ Ar(f + g) and Ar(f) = Ar(cf),

C(f) ∩Al
r(g) ⊂ Al

r(f + g) and Al
r(f) = Al

r(cf),
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C(f) ∩Br(g) ⊂ Br(f + g) and Br(f) = Br(cf),

C(f) ∩Bl
r(g) ⊂ Bl

r(f + g) and Bl
r(f) = Bl

r(cf).

Proof. Obvious.

Remark 1. The set Bl
r(f) \ Ar(f) can be dense. Let r ∈ [0, 1) and let

f : R → [0, 1] be the function from Proposition 5 (i.e., C(f) = R \ {0}
and 0 ∈ Bl

r(f) \ Ar(f)). Let D = {d1, d2, . . . , dn, . . . } be a countable dense
set in R. For each i ∈ N, let fi(x) = f(x − di). Then C(fi) = R \ {di}
and di ∈ Bl

r(fi) \ Ar(fi). Put g =
∑∞

n=1 2−nfn. The function
∑

n 6=i 2−nfn is
continuous at di and hence by Lemma 3 we get di ∈ Bl

r(g). Since R\D ⊂ C(g),
we get Bl

r(g) = R. Further di /∈ Ar(fi) and hence by Lemma 3 di /∈ Ar(g);
i.e., Bl

r(g) \Ar(g) = D.

Let us denote by C and Q the family of all continuous and quasicontinuous
functions, respectively, and define the following classes of functions

Definition 2. Let r ∈ [0, 1). We put

Ar = {f : R → R;Ar(f) = R},

Al
r = {f : R → R;Al

r(f) = R},

Br = {f : R → R;Br(f) = R},

Bl
r = {f : R → R;Bl

r(f) = R}

Theorem 3. Let 0 ≤ s < r < 1. Then

Ar
// Br

// As
// Q

C // Al
r

//

OO

Bl
r

//

OO

Al
s

OO

and all inclusions are proper.

Proof. The inclusions follow from Theorem 2. Propositions 1–5 show that
the inclusions are proper.

Corollary 2. For each s ∈ [0, 1) we have

As ⊃
⋃

1>r>s
Ar =

⋃
1>r>s

Br,

Al
s ⊃

⋃
1>r>s

Al
r =

⋃
1>r>s

Bl
r
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and for each s ∈ (0, 1) we have

Bs ⊂
⋂

0≤r<s

Ar =
⋂

0≤r<s

Br,

Bl
s ⊂

⋂
0≤r<s

Al
r =

⋂
0≤r<s

Bl
r.

The inclusions are proper.

Proof. The inclusions follow from Theorem 2. The function f from Propo-
sition 2 belongs to

⋂
0≤r<s

Al
r \ Bs. The rest follows from Theorem 4.

Let ρ(f, g) = min{1, sup{|f(x) − g(x)| : x ∈ R}. We shall show that the
inclusions in Theorem 3 and Corollary 2 mean, “is nowhere dense subset of”
(with possible exception for Ar ⊂ Br and Al

r ⊂ Bl
r) in the topology of the

uniform convergence.

Proposition 6. Let s ∈ [0, 1). Then the sets Br, Bl
r,

⋃
1>r>s

Br and
⋃

1>r>s
Bl

r

are closed in the topology of the uniform convergence.

Proof. Let fn : R → R, fn ∈
⋃

1>r>s
Br and let (fn)n uniformly converge

to f : R → R. Let x ∈ R and ε > 0. Then there is n0 ∈ N such that
|fn(y)−f(y)| < ε/3 for each n ≥ n0 and for each y ∈ R. Since fn0 ∈

⋃
1>r>s

Br,

there is r ∈ (s, 1) such that fn0 ∈ Br and there is an open set U such that
du(U, x) > r and |fn0(y)−fn0(x)| < ε/3 for each y ∈ U . Therefore for each y ∈
U we have |f(y)−f(x)| ≤ |f(y)−fn0(y)|+|fn0(y)−fno

(x)|+|fn0(x)−f(x)| < ε;
i.e., f ∈ Br ⊂

⋃
1>r>s

Br. Similarly we can show other cases.

The sets Ar and Al
r are not closed.

Proposition 7. For each r ∈ [0, 1) there is a sequence (fn)n of functions
belonging to Al

r such that its uniform limit does not belong to Ar.

Proof. Let In
i , Jn

i be closed disjoint intervals from Lemma 2 for α = r.
Define functions f, fk : R → R (k ∈ N) by

f(x) =


0 for x ∈ {0} ∪

∞⋃
i=1

∞⋃
n=1

In
i ,

1
i for x ∈

∞⋃
n=1

Jn
i ,

linear on components of R \ ({0} ∪
∞⋃

i=1

∞⋃
n=1

In
i ∪

∞⋃
i=1

∞⋃
n=1

Jn
i ),
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fk(x) =


0 for x ∈ {0} ∪

∞⋃
i=1

∞⋃
n=1

In
i ∪

∞⋃
i=k+1

∞⋃
n=1

Jn
i ),

1
i for x ∈

∞⋃
n=1

Jn
i and i ≤ k,

linear on components of R \ ({0} ∪
∞⋃

i=1

∞⋃
n=1

In
i ∪

∞⋃
i=1

∞⋃
n=1

Jn
i ).

We shall show that fk ∈ Al
r for each k ∈ N, (fk)k uniformly converges to f

and f /∈ Ar. Let k ∈ N. Evidently, fk is continuous at each point different

from zero. If D =
∞⋃

i=1

∞⋃
n=1

Int In
i ∪

∞⋃
n=1

Int Jn
k+1, then D is open and

dl(D, 0) ≥ dl(
∞⋃

i=1

∞⋃
n=1

Int In
i , 0) + dl(

∞⋃
n=1

Int Jn
k+1) ≥ r + (1− r)2−k−1 > r.

Since fk is constant on {0} ∪ D, we have 0 ∈ Al
r(fk) and fk ∈ Al

r. If x ∈
{0} ∪

∞⋃
i=1

∞⋃
n=1

In
i , then fk(x) = f(x) = 0. If x ∈

∞⋃
n=1

Jn
i and i ≤ k, then

fk(x) = f(x) = 1/i. If x ∈
∞⋃

n=1
Jn

i and j > k, then |fk(x)− f(x)| = 1/i < 1/k.

Finally, let x belongs to a component of R \ ({0} ∪
∞⋃

i=1

∞⋃
n=1

In
i ∪

∞⋃
i=1

∞⋃
n=1

Jn
i ).

Therefore x ∈ (p, q) for some p, q and x = tp + (1 − t)q for some t ∈ (0, 1).
Then f(x) = t · f(p) + (1 − t)f(q) and fk(x) = t · fk(p) + (1 − t)fk(q). From
the definition of f and fk, if z ∈ {p, q} and f(z) = 0 or f(z) = 1/i and i > k
then fk(z) = 0 and if f(z) = 1/i and i ≤ k, then fk(z) = 1/i. Therefore for
z ∈ {p, q} we have |fk(z)−f(z)| < 1/k. Then |fk(x)−f(x)| ≤ t|fk(p)−f(p)|+
(1− t)|fk(q)− f(q)| < t/k + (1− t)/k = 1/k. Therefore |fk(x)− f(x)| < 1/k
for each x ∈ R; i.e., (fk)k uniformly converges to f . Since f is the function
from Proposition 5, f /∈ Ar.

Problem 1. Characterize uniform limits of Ar and Al
r. Is true that each

function from Br (Bl
r) can be written as the uniform limit of functions from

Ar (Al
r)? (Z. Grande in [1] has shown that this is true for B0.)

Theorem 4. Let s ∈ [0, 1). Then
⋃

1>r>s
Br is nowhere dense set in As and⋃

1>r>s
Bl

r is nowhere dense set in Al
s.
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Proof. According to Proposition 6, the set
⋃

1>r>s
Br is closed. Therefore it is

sufficient to prove that its complement is dense in As. Let f ∈
⋃

1>r>s
Br and

let 1 > ε > 0. Then there is r ∈ (s, 1) such that f ∈ Br. Since the set R\C(f)
is of the first category, there is a countable set H = {z1, z2, . . . , zn, . . . } ⊂
C(f) such that zn+1 − zn > 1 for each n ∈ N. According to Proposition 2
for each t ∈ (s, 1) there is ht : R → [0, 1] such that C(ht) = R \ {0} and
0 ∈ As(ht) \ Bt(ht). Put n0 = min{n ∈ N : s + 1/n < 1}. Now define
h : R → [0, 1] by

h(x) =

 hs+1/n(x− zn) for x ∈ [zn − 1/4, zn + 1/4] and n ≥ n0,
hs+1/n0(x− zn0) for x ≤ zn0 − 1/4,
linear on [zn + 1/4, zn + 3/4] and n ≥ n0.

Then R\{zn0 , zn0+1, . . . } ⊂ C(h) and zn ∈ As(h)\Bs+1/n(h) for each n ≥ n0.
Now put g = f + (ε/2)h. Then ρ(f, g) < ε. If n ≥ n0, then zn ∈ C(f) and

zn ∈ As(h). Hence by Lemma 3 we obtain zn ∈ As(g). If x 6= zn (n ≥ n0),
then x ∈ C(h) and x ∈ Br(f). Therefore x ∈ Br(g) ⊂ As(g). Thus As(g) = R
and g ∈ As. Now let t ∈ (s, 1). Then there is n ≥ no such that s + 1/n < t.
Then zn /∈ Bs+1/n(h), zn ∈ C(f) and hence zn /∈ Bs+1/n(g) and zn /∈ Bt(g).
Therefore g /∈ Bt for each t ∈ (s, 1), i.e. g /∈

⋃
1>r>s

Br.

Similarly, using Propositions 1, 3 and 4 and Lemma 3 we can show that for
each r ∈ [0, 1), Bl

r∩Ar (and thus also Al
r) is nowhere dense subset of Ar, Bl

r is
nowhere dense subset of Br, C is nowhere dense subset of Al

r and B0 is nowhere
dense subset of Q. Therefore, (Br)r∈[0,1) is the family of closed subsets of Q
such that Br is nowhere dense subset of Bs whenever 0 ≤ s < r < 1.
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