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SOME CLASSES OF STRONGLY
QUASICONTINUOUS FUNCTIONS

Abstract

Some classes of strongly quasicontinuous functions are investigated.

Let R, Q and N be the set of all real, rational and positive integer numbers,
respectively. For a set A C R denote by Int A and Cl A the interior and the
closure of A, respectively. Recall that a function f : R — R is quasi-continuous
at a point x € R if for each ¢ > 0 and for each neighborhood U of z there
is a nonempty open set G C U such that f(G) C (f(z) —¢, f(z) +¢) ([3]).
Denote by Q(f) (C(f)) the set of all quasi-continuity (continuity) points of
f. Tt is well-known that the set Q(f) \ C(f) is of the first category but it
need not be measurable or of measure zero (e.g., if T is a closed nowhere
dense set of positive measure and S C T is dense in T" and nonmeasurable (of
measure zero), then for its characteristic function Xg the set Q(Xg)\ C(Xg) is
nonmeasurable (of positive measure).

Let ¢. (£) denote the outer Lebesgue measure (Lebesgue measure) in R.
Let

dy(A,z) =limsuple (AN (x — h,x + h))/2h

h—0t

(d(A,x) = liminf £(A N ( — h, + h)/2h)

the upper (lower) outer density of A C R at a point = € R.

Z. Grande in [1] introduced properties A(x) and B(z) of functions:

A function f : R — R has property A(z) at a point « € R if there exists
an open set U such that d, (U, z) > 0 and the restricted function f[(U U {z})
is continuous at xz. We will write f € A(x) if f has the property A(z) at a
point x.
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690 JAN BORSIK

A function f: R — R has property B(z) at € R (abbreviated f € B(x))
if for € > 0 we have d,(Int{y : |f(y) — f(z)| < e}, z) > 0.

Denote by A(f) the set {x € R: f € A(z)} and by B(f) the set {z € R:
f € B(x)}. Z. Grande has shown that C(f) C A(f) C B(f) C Q(f) and that
the measure of B(f)\ C(f) is zero.

Definition 1. Let f : R — R be a function and let » € [0,1). We put

A.(f) = {z € R : there is an open set U such that d,(U,z) > r and
f 1 (UU{x}) is continuous at x},

AL(f) = {x € R : there is an open set U such that d;(U,z) > r and
f 1 (UU{x}) is continuous at x},
B

(f) = {z € R : for each € > 0 there is an open set U such that
du(U, ) > rand f(U) C (f(x) =&, f(2) +€)},

BL(f) = {x € R : for each ¢ > 0 there is an open set U such that
&(U,x) >rand f(U) C (f(z) = ¢, f(z) +e)}.

Eviden‘cly7 AL(f) € A.(f) C B.(f) and AL(f) C BL(f) C B.(f) for each
r € [0,1). Further, A,.(f) C A(f), B-(f) C Bs(f), AL(f) < AL(f), and
BL(f) € BL(f) for 0 < s < r < 1. Thus, the sets A.(f) \ C(f), AL(f)\ C(f),
B.(f)\C(f) and Bl( )\ C(f) are sets of first category and of measure zero.
We shall show that B,(f) C As(f) and BL(f) C AL(f) for0<s<r <1.

Lemma 1. Let 0 < <1, a >0, x € R and let A be a measurable set. If
AN (z—a,x+a)) > B, then there is ¢ € (0,a) such that for each b € (0,c¢)

AN ((z—a,z—=b)U(x+b,z+a))) > 5.

PRrROOF. Put 4(AN (z —a,z 4+ a)) = a > (. Then there is ¢ > 0 such that
a — 2¢c > (. Since 2¢ < a < 2a, we have ¢ < a. Let 0 < b < ¢. Then
a=0AN(r—az+a) =LAN((r —a,z—b)U(z+bx+a)))+ AN
(x —byz+0b) <LAN((z —a,x —b) U (xr+ b,x + a))) + 2b. Therefore
AN ((z —a,z—b)U(z+b,z+a))) >a—2b> 0. O

Theorem 1. Let f : R — R be a function and let 0 < s < r < 1. Then
B, (f) € As(f) and BL(f) C AL(f).

PROOF. The inclusion B, (f) C As(f):

Let © € B,(f). Then for each n € N there is an open set A, such that
dy(An,z) >rand f(A,) C (f(x)—1/n, f(x)+1/n). There is a sequence (h});
such that 0 < A, ; <A, Zlilgo R =0 and ¢(A, N (z—hl,z+h))/(2R}) >r
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Let vg = h}. Since £(A; N (x — vg,x + vg)) > 270y, according to Lemma 1
there is ¢; € (0,v9) such that £(A; N ((x —vg, 2 —b) U (z+ b,z +vy))) > 2ruvg
for each b € (0,¢1). Let j € N be such that h? < c¢1/2 and let vy = h?. Assume
that we have positive numbers vg, vy, ..., v, such that 0 < v; < v;_1/2, v; €
(R RS R Y and £(A N (2 — vim1, 2 — vi) U (@ + 0, @+ 0i41)) >
2rv;_q for each i € {1,2,...,n}. Since v, = h;”l for some j € N, so £((Ap+10N
(x — v, x4+vy,)) > 2rv, and according to Lemma 1 there is ¢,,+1 € (0,v,) such
that £((An+1 N ((x —vp,x —b)U (x+ b,z +v,))) > 2rv, for each b € (0,¢p41)
There is k € N such that h}t? < ¢,,41/2 and put v,41 = b2,

Now put V,, = A, N ((x — vp—1,2 — vp) U (T + Vp,z + vp—1)) and V =
U>2, V. Then V is an open set. We shall show that d,(V,z) > s. We see
that V N (2 — vn,z + vn) = U1 (Vi N (2 — v,z + v,)) = Uiz, Vi and

&)

therefore {(V N (z —vp,z+vy)) = > UV;) > €(Viy1) > 2rv,. This yields

i=n+1
vl ;Zn,iﬂ + ) > 227;)0" =r and thus d,(V,z) > r > s.

Now we shall show that f F(VU{J:}) is continuous at z. Let € > 0. Choose
ne€Nwith 1/n <e. f y € VN (2 — vy, + vy,), then y € V; for some j > n.
Then f(y) € f(V}) C f(A;) € (F(x) — 1/j, F(@) + 1/5) C (f(z) — =, f(x) +e);
ie, f 1 (VU{x}) is continuous at .

The inclusion BL(f) c AL(f):

Let € BL(f). Then for each n € N there is an open set A, such that
B = di(An,2) > 7 and f(An) C (f(z) — 1/n, f(z) +1/n). Since /By < 1,
for each n € N there is k,, > 2 such that

kn—1> { T T }
1 max 1/ﬂn”/ﬂn+1 )
ﬁn_r

Put n, = 3 > 0. Evidently 8, —n,, > r. Since d;(A,,x) > 3, —nn, there

is hy, >0, such that LA, N (z—h,x+h)) > 2(8, —nn)h for each h € (0, hy).
We can assume that h,11 < h,/2. Put pg = hy. According to Lemma 1
there is ¢; € (0,pp) such that £(A; N ((z — po,z — b) U (x + b,x + pp))) >
2(B1 — m)po for each b € (0,¢1). Further, since dj(A1,x) < 1 + 11, there is
p1 < min{ecy, ha} such that £(A; N ((x — p1,2 +p1)) < 2(61 +n1)p1-
Assume that we have positive numbers pg, p1,...,p, such that for each
i€{1,2,...,n}

pi < min{p;_1, hiy1},
L((A; N (z —pi,x+pi)) < 2(6; +ni)pi and

AN ((x = pi—1,2 —pi) U (T +piy® +pi-1))) > 2(8i — 0i)pi1-
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Since pp, < hpg1, U A1 N(X =P, 2+ Dn)) > 2(Bnt1 — Nnt1)Pn and according
to Lemma 1 there is ¢, 11 € (0,py,) such that for each b € (0, ¢p41)

E(An-ﬁ-l N ((J? — Pn, T — b) U (33 + b,.’L‘ +pn)) > Q(ﬁn-i-l - 77n+1)pn-
Further there is p,+1 < min{c,41, Ant2} such that
e(An—i-l N ((J? — Pn+1,T +pn+1)) < Q(ﬁn-‘rl + nn-‘rl)pn—i-l-

Then Pn+1 < Dn and K(An—i-l N ((1‘ — Pn, T — pn-‘rl) U (Z‘ + Pn+1,7 + pn)) >

2(ﬂn+1 *nn+1)pn- Put V, = A, N ((I —Pn-1,7 7pn) U ($+pn7 x+pn—1)> and

V =U,2, Va. Then V is an open set. We shall show that d;(V,z) > s. Let

0 < h < hy. Since 0 < pjr1 < p;j and lim p; = 0, there is n € N such that
J—00

Pn < h<pp_1. Then h > Z:ﬂpn or h < ,lz:ipn

k,+1
a) Let h > - i_ T Pne Then k,h—h—k,pp —pn = (kn—1)h— (kn+1)p,, >
ke +1
(kn — 1)k" —1__ [Pn— (kn + 1)p, = 0. Further, h < p,—1 < h,, and hence

280 — )b <b((ApN(z—h,z+h)) =LA, N (T —pn, T+ pn))
+ (A, N ((x—hyz—pp)U (x4 pp,x+h))
<2(/3n + nn)pn + E(An N ((.%‘ —h,z— pn) U (CC + Dn, T+ h)))
Therefore

A, N ((x—h,z—pp) U (x4 pp,z+h) > 280 — )b — 2(Bn + 1) Pn
=2r(h — pp) + 2k;1(knﬁnh — Buh 4+ rh — knpn — Bnpn + 100 — Tknh + rkypr)
=2r(h — p,) + 2k (B — 1) (knh — h — knpp — pn) > 2r(h — py).

Further we see that £(V,,41) = (At 1N((—Dny T—Pr1) (@ +Dpt1, T+Dn)) >
2(Bn+1 — Mn+1)Pn > 2rp,. Therefore we obtain
(VO (@ =yt 1) 2 6V O (2 = By = posa) U (& + Py + B)
=4(Vpt1) +L(An N ((z = hyz — pp) U (z+ pn,z+ h))
> 2rpy, + 2r(h — p,) = 2rh.

k

knfl(ﬁ B ):knfl.(kn+171)ﬂn+1+r
kn +1 n+1 Tn+1 kn +1 kn+1

kn—1 kpy1—1 [ r T
> . > . -_— =T
kn +1 kn+1 + 15n+1 6n+1 6n+1 ﬂn—&-l "

b) Now let h < k"ﬂpn. We see that
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This yields

(VN ((x—hh+h)>LVit1)
= g(An-i-l N ((J} — Pn,T _pn-l—l) U (l‘ +pn+17x +pn))
k,—1

h > 2rh.
T £ 1 > 2r

> 2(ﬂn+1 - 77n+1)pn > 2(ﬁn+1 - 77n+1)

Therefore for each h € (0,h;) we have £(V N (x — hyxz + h)) > 2rh; ie.,
di(V,x) > r > s. Similarly as above we can prove that f [ (V U {z}) is
continuous at x. O

Theorem 2. Let f: R — R be a function and let 0 < s <r < 1. Then

Ar(f) —= B:(f) As(f) Q(f)

]

C(f) —= AL(f) — BL(f) —= AL(f)

and each of inclusions can be proper.

PROOF. The inclusions follow from previous remarks and Theorem 1. The
following examples show that the inclusions can be proper. O

Proposition 1. Let r,s € [0,1). Then there is a function f:R — [0,1] such
that f is continuous at each point different from zero and 0 € A,.(f) \ BL(f).

PROOF. Put a, = 5. bn = iy €0 = gy a0d dn = (g0gy;- Then

0 <dpt1 <ap <b, <cp, <dp, <1 Put A= U ((an,bn) U (=bn,—ayn))
n=1

and B= | ((cn,dn)U(—=dp,—cp)). Then A and B are open disjoint sets and

n=1
ClANCIB = {0}. Hence there is a continuous function g : R\ {0} — [0, 1]
such that g(z) = 0 for x € B and g(z) = 1 for x € A. Now let f: R — [0,1]
be such that f(x) = g(x) for z # 0 and f(0) = 0. We shall show that f is our
function.

We have AN (0,b,) = s, (ai,b;) and therefore

1 1 4dn—1

E(A N (_bnao)) = é(A n (Oabn)) > e((awubn)) = (4n — 1)| - (471)' = (4”)'

and (AN (“baba))  ((4n—DD(En—1) _dn 1

2b,, (4n)! 4n
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Since lim b, = 0, we obtain
n—oo

du(A.0) > tim AN Cbub)) oy dn =1

n—00 2b,, n—oo 4n

Similarly we can show that d,(B,0) = 1. Evidently, f is continuous at each
point different from zero. The set B is open, d,(B,0) =1 > r and f(x) =
for x € BU {0}, thus 0 € A,(f).

Now let U be an open set such that d;((U,0) > s. Then d,(R\ U,0) <
1—-s<1. If AnU = 0 then d,(A4,0) < d,(R\ U,0) < 1, a contradiction,
Therefore ANU # () and this yields 0 ¢ BL(f). O

Lemma 2. Let 0 < o < 1. Then there are disjoint closed intervals I, J]* C
(=1,0)U(0,1), i,n € N, such that:

(i) di(U;—; Int I7",0) > - 27 for each i € N,
(i) di(Us, Int J*,0) > (1 — @)27¢ for each i € N,
(Z”) Cl(Un 1 Uz 174 ) N Cl(Un 1 Uz 1 ) {0}

PROOF. There are disjoint closed intervals K*, L} C (n%rl, 1),1<i<n,

such that ((K") = n"(‘f_gl) and ((L}) = % for each ¢, 1 < i < n (For
a = 0 we require that £(K) > 0 and (L) = n(Qn_;l)). If I = [a,b] is an

interval, denote by —I the interval [—b, —a]. Put IF = (—1)’“‘1[(;“(1971)/2]
and JF = (—1)k+1L§+[(k71)/2] for i,k € N, where [z] is the integer part of
x. Then all intervals I¥, JF are mutually disjoint. We shall show that they
satisfy (i), (ii), and (iii). (i): Let ¢ > 0 and ¢ € N. Choose p € N such that
p>iand 1/p <e. Let 0 < h < 1/p. Then there is n € N, n > p, such that
1/(n+1) <h < 1/n. We see that

IFN(0,h) D
1 k

(@
C8

IFn(0,1/(n+1) U KF

k 1 k=n+1

and therefore

rnon) = |J KH= > «r})=
1 k=n+1 k=n+1

_ 1 a- 27"
=2 Zﬂk(lwrl) nt+ 1

27"

“ kk—l—l

(@

k
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Similarly we can show that £( {J IF N (—h,0)) > %2 and hence £( | I,

k=1 k=1
(—h,h)) > 2= ?[1 Since 0 < h < 1/n, we obtain

(U IF N (=h, b)) i
k=1 a-27"'-n

>
2h - n+1

. 1 ,
a-27(1—=)>a-27"(1—¢).
p

Thus d;(U;—, I7',0) > a-27%(1—¢) for each e > 0; i.e., d; (U, I7',0) > a-27"
(ii): The proof is similar.
(iii): It follows from the construction. O

Proposition 2. Let 0 < r < s < 1. Then there is a function f : R — [0,1]
such that f is continuous at each point different from zero and 0 € AL(f)\

Bi(f)-

PRroor. Let I*, J* be closed disjoint intervals from Lemma 2 for a = s. Put
A=U;penInt I and B = J; ,cyInt J7*. Then C1ANCIB = {0} and there
is a continuous function g : R\ {0} — [0, 1] such that g(x) =0 for z € A and
g(z) =1 for x € B. Let f: R — R be a function such that f(x) = g(x) for
x # 0 and f(0) = 0. Then f is continuous at each point different from zero.
The set A is open and d;(A,0) > S d)(J Int IP,0) > S 5270 =5 > 7.
=1 n=1 i=1

Since f is constant on A U {0}, we have 0 € AL(f).

Now let U be an open set such that d,(U,0) > s. We have d;(B,0) >

Zdl(UInt )>Z(1—s)21—1—s If BNU =0, then 1 —s <

dl(B O) < d;(R\ U,0) < 1 — s, a contradiction. Therefore BNU # §) and this
yields 0 ¢ B,(f).
O

Proposition 3. Let r € [0,1). Then there is a function f : R — [0,1] such
that f is continuous at each point different from zero and 0 € AL(f)\ C(f).

PROOF. Let I, J! be closed disjoint intervals from Lemma 2 for a = 0.
Put A = Um NInt[ and B = J; ,eyIntJ*. Then there is a function
f: R — [0,1] such that f(0) = 0, f(z )*OforxGB,f(x):lforxeA
and f is continuous at each point different from zero. Then B is an open set
and d;(B,0) > 372,27 =1 > r. Since f is constant on B U {0}, we have
0 € AL(f). Since 0 € C1 A, we have 0 ¢ C(f). O

Proposition 4. There is a function f : R — [0,1] such that f is continuous
at each point different from zero and 0 € Q(f) \ Bo(f).
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PROOF. Let A and B be the same as in Proposition 3. Then there is a function
f:R — [0,1] such that f(0) =0, f(x) =0 forxz € A, f(z) =1forz € B
and f is continuous at each point different from zero. Since 0 € Cl A, we have
0 € Q(f). Now let U be an open set such that d,(U,0) > 0. If BNU = 0,
then 1 < d;(B,0) < d;(R\ U,0) < 1, a contradiction. Therefore BN U #
and 0 ¢ Bo(f). O

Proposition 5. Let r € [0,1). Then there is a function f : R — [0,1] such
that f is continuous at each point different from zero and 0 € BL(f) \ A.(f).

PrROOF. Let I, J! be closed disjoint intervals from Lemma 2 for a = r.
Put A = U, ,eyInt ' and B = {J; ,cyInt J;*. Then there is a function
f:R—[0,1] suchthatf( ) =0, f(z )—()forxG/L flz)=1/i for x € J"
and f is continuous at each point different from zero.

Let £ > 0. Choose i € N with 1/i < e. Then D = AU(J,—, Int J! is an

open set and f(D) C (—¢,e). Since AN (J,—, Int J*) = 0, we obtain

di(D,0) > di(A,0) + dy(| ] Int J7,0) > r+ (1 =7)27" > 1.

n=1

Therefore 0 € BL(f).

Now let U be an open set such that ¢ = d,,(U,0) > r. Let V be arbitrary
open neighborhood of 0. Then d,(UNV,0) =t. Put ¢ = (t —r)/2 and let
1 > 0 be such that 2n < ¢. Let j € N be such that 277 < ¢ and denote by
C=U/_,U,2, Int J. Since I and J* are disjoint, we obtain

<.

z]: Glnt 21—7« =(1-r)(1-279).

Then also d;(CNV,0) > (1—7r)(1—277) > (1 —7r)(1—277) —n. Hence there
is a 6 > 0 such that for each h € (0,9)

U(~h, W) NV NC)
2h

>(1—-r)(1-279) -1

Since d,,(U NV, 0) >t —n, there is a sequence (h, ), converging to zero such
that
U(=hom, ) NV AT
2hpm

>t—n.
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We can assume that h,, € (0,9). Assume that UNV N C = . Then

(s hn)) - (P hn) OV OU) (P ) 1V 0 C)
2h,, - 2h,, 2hm

>(1—r)(1=27)=n+t—n>0-r)(1-q)+t—2p

>1—r—q+t—2n=1+4q—2n.

1:

This yields ¢ < 27, a contradiction. Therefore UNV NC # (). This means that
each neighborhood V' of 0 contains a point z € V N U such that f(z) > 1/5;
ie,0¢ A.(f). O

Corollary 1. For each s € [0,1) we have
A= U A= U B(f),

1>r>s 1>r>s
Al = U AH= U B
1>r>s 1>r>s

and for each s € (0,1) we have

Bs(f)C ﬂ AT'(f): ﬂ Br(f)7

0<r<s 0<r<s
Bif)c N A= N BuS).
0<r<s 0<r<s

The inclusion can be proper.

ProoF. Evidently | A.(f)c U B-(f)and ) A.(f)c N B-(f).

1>r>s 1>r>s 0<r<s 0<r<s
From Theorem 1 we obtain |J B,(f) C As(f) and Bs(f) € () A (f). If
1>r>s 0<r<s

x € As(f), then there is an open set U such that d,, (U, z) > sand f | (UU{z})
is continuous at z. Now there is r > s such that d,(U,x) > r and hence
zeA.(f)c U A.(f). Finally,if x € () B,(f) and 0 <t < s, then for

1>r>s 0<r<s
r € (t,s) we have = € B,(f) and by Theorem 1 2 € A;(f); ie.,z € [ A,
0<r<s
The function from Proposition 2 is such that AL(f) = R for each r € [0,1);
ie, N A.(f) =Rbut 0¢ By(f). O

0<r<s

Lemma 3. Let f,g: R — R, r €[0,1) and ¢ # 0. Then we have
C(f)NAr(g) C Ar(f +g) and A (f) = Ar(cf),
C(f)NAL(g) C AL(f +9g) and AL(f) = AL(cf),
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C(f)N Br(g) C By(f + g) and B.(f) = B;(cf),
C(f) N Bl(g) C BL(f +g) and BL(f) = BL(cf).
PRroOOF. Obvious. O

Remark 1. The set B.(f) \ A,(f) can be dense. Let r € [0,1) and let
f : R — [0,1] be the function from Proposition 5 (i.e., C(f) = R\ {0}
and 0 € BL(f)\ A.(f)). Let D = {dy,da,...,dn,...} be a countable dense
set in R. For each ¢ € N, let f;(x) = f(x —d;). Then C(f;) = R\ {d;}
and d; € BL.(fi) \ Ar(f;). Put g = >"0°, 27" f,. The function 3, ., 27" f, is
continuous at d; and hence by Lemma 3 we get d; € B(g). Since R\D C C(g),
we get Bl(g) = R. Further d; ¢ A,.(f;) and hence by Lemma 3 d; ¢ A,(g);
e, Bl(g) \ Ar(g) = D.

Let us denote by C and Q the family of all continuous and quasicontinuous
functions, respectively, and define the following classes of functions

Definition 2. Let r € [0,1). We put
A-={f:R—=R; 4,(f) =R},
AL ={f:R—R;AL(f) =R},
B.={f:R—R;B.(f) =R},
B.={f:R—=R;B/(f) =R}

Theorem 3. Let 0 < s<r<1. Then

A —= B, —> A, o)
C— A — B — A

and all inclusions are proper.

ProOOF. The inclusions follow from Theorem 2. Propositions 1-5 show that
the inclusions are proper. O

Corollary 2. For each s € [0,1) we have
fhuj LJ fL-: LJ Bm

1>r>s 1>r>s

AD U A= U B

1>r>s 1>r>s
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and for each s € (0,1) we have

Bsc N A= N B,

0<r<s 0<r<s
l l _ l
B,c N A.= N B
0<r<s 0<r<s

The inclusions are proper.

PrOOF. The inclusions follow from Theorem 2. The function f from Propo-

sition 2 belongs to (] AL\ Bs. The rest follows from Theorem 4. O
0<r<s

Let p(f,g9) = min{1,sup{|f(z) — g(z)| : = € R}. We shall show that the
inclusions in Theorem 3 and Corollary 2 mean, “is nowhere dense subset of”
(with possible exception for A, C B, and Al C B.) in the topology of the
uniform convergence.

Proposition 6. Let s € [0,1). Then the sets B, B., | B, and | B
1>r>s 1>r>s
are closed in the topology of the uniform convergence.

ProoF. Let f, : R = R, f, € U B, and let (f,), uniformly converge
1>r>s
to f: R —- R. Let z € R and € > 0. Then there is ng € N such that

|fr(y) — f(y)| < €/3 for each n > ng and for each y € R. Since f,, € U B,
1>r>s

there is r € (s,1) such that f,, € B, and there is an open set U such that
dy(U,z) > rand | fn, (y) = fro ()| < €/3 for each y € U. Therefore for each y €
U we have | f(y)=f(z)| < [f(y)=Fno W)+ fro (W)= Fro (@) [+ fno (2) = f(2)| <&

ie, feB.C |J B,. Similarly we can show other cases. O
1>r>s

The sets A, and AL are not closed.

Proposition 7. For each r € [0,1) there is a sequence (fy)n of functions
belonging to Al such that its uniform limit does not belong to A,..

Proor. Let I', J be closed disjoint intervals from Lemma 2 for a@ = 7.
Define functions f, fx : R — R (k € N) by

0 forze{O}Uu U U I,

i=1n=1
flx)y={ 1 forxe Y JP,
n=1
linear on components of R\ ({0}u |y U I*uly U JP),

K3 K3
i=1n=1 1=1n=1
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0 foer{O}UU UI" U U Jn),
i=1n=1 i=k+1n=1

fe() =< 1 for z € U JI'and ¢ <k,

linear on components of R\ ({0}u ly U I?u U U JP).

K3
i=1ln=1 1=1n=1

We shall show that f, € AL for each k € N, (f3)x uniformly converges to f
and f ¢ A,. Let k 6 N EV1dent1y, fx is continuous at each point different

from zero. If D = U U Int I7" U U Int Ji! |, then D is open and

i=1n=1
oo 0o
d(D,0) > di(| J | Wt I}", 0) + di UInth+1)>r+( —r)2 k>
i=1n=1 n=1

Since fk 1s constant on {0} U D, we have 0 € A! (fk) and fr € AL, If x €
{O}UUUIZ" then fy(z) = f(z) = 0. If z € UJfandZSkthen
n=1

i=1n=1

ful@) = f@) = 1/i. Tz e @ T and j > k, then |fu(z) — f(z)| = 1/i < 1/k.

Finally, let  belongs to a component of R\ ({0} U U U Iy U U J).

i=1n=1 i=1n=1

Therefore x € (p,q) for some p, ¢ and = = tp + (1 — t)gq for some t € (0,1).
Then f(z) = t- f(p) + (1 — £)/(a) and f() = t- fy(p) + (1 — £) fu(q). From
the definition of f and fx, if 2 € {p,q} and f(z) =0or f(z) =1/i and i > k
then fr(z) = 0 and if f(z) = 1/i and 7 < k, then fi(z) = 1/i. Therefore for
2 € {p,q} we have | u(2)— £(2)] < 1/k. Then | fu(z)— F(@)] < t]fic(p)— F(p)|+
1 =0)fe(q) — f(@)| < t/k+ (1 —1t)/k =1/k. Therefore |fr(z) — f(z)| < 1/k
for each = € R; i.e., (fr)r uniformly converges to f. Since f is the function
from Proposition 5, f ¢ A,. O

Problem 1. Characterize uniform limits of A, and A!. Is true that each
function from B, (Bl) can be written as the uniform limit of functions from
A, (AL)? (Z. Grande in [1] has shown that this is true for By.)

Theorem 4. Let s € [0,1). Then |J B, is nowhere dense set in As and
1>r>s

U BL is nowhere dense set in AL.
1>r>s
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PROOF. According to Proposition 6, the set | J B, is closed. Therefore it is

1>r>s
sufficient to prove that its complement is dense in A;. Let f € |J B, and
1>r>s
let 1 > ¢ > 0. Then thereis r € (s,1) such that f € B,. Since the set R\ C(f)
is of the first category, there is a countable set H = {21,22,...,2pn,...} C
C(f) such that z,41 — 2z, > 1 for each n € N. According to Proposition 2
for each t € (s,1) there is hy : R — [0,1] such that C(h;) = R\ {0} and
0 € As(ht) \ Bi(ht). Put ng = min{n € N: s+ 1/n < 1}. Now define
h:R —[0,1] by

D1 /n (T — 23) for x € [z, — 1/4, 2z, + 1/4] and n > ny,
h(z) = Pspi/ng(® — 2n,)  for o < z,, —1/4,
linear on [z, + 1/4, z, + 3/4] and n > ny.

Then R\ {2y, 2ng+1,--- } C C(h) and z, € As(h)\ Byy1/n(h) for each n > no.

Now put g = f+ (¢/2)h. Then p(f,g) < e. If n > ng, then z, € C(f) and
zn € Ag(h). Hence by Lemma 3 we obtain z, € As(g). If © # 2z, (n > ng),
then z € C(h) and x € B,(f). Therefore x € B.(g) C As(g). Thus As(g) =R
and g € As. Now let t € (s,1). Then there is n > n, such that s +1/n < t.
Then z, ¢ Bsp1/n(h), 2z, € C(f) and hence z, ¢ B,y1/,(9) and z, ¢ Bi(g).
Therefore g ¢ B, for each t € (s,1),1e. g¢ U B.. O

1>r>s
Similarly, using Propositions 1, 3 and 4 and Lemma 3 we can show that for
each 7 € [0,1), BLNA, (and thus also AL) is nowhere dense subset of A,., BL is
nowhere dense subset of B, C is nowhere dense subset of AL and By is nowhere

dense subset of Q. Therefore, (B;),¢,1) is the family of closed subsets of Q
such that B, is nowhere dense subset of Bs whenever 0 < s < r < 1.
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