Sergio Favier^{*} and Felipe Zó^{*}, Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis, Avenida Ejército de los Andes 950, 5700 San Luis, Argentina. email: sfavier@unsl.edu.ar and fzo@unsl.edu.ar

A LEBESGUE TYPE DIFFERENTIATION THEOREM FOR BEST APPROXIMATIONS BY CONSTANTS IN ORLICZ SPACES

Abstract

The best approximation operator by constants is extended from an Orlicz space $L^{\varphi}(\mathbb{R}^m)$ to the space $L^{\varphi'}(\mathbb{R}^m)$, and some properties of this extended operator are established. Let $f_{\varepsilon}(x)$ be any best approximation of $f \in L^{\varphi'}(\mathbb{R}^m)$ on a suitable set $B_{\varepsilon}(x) \subset \mathbb{R}^m$. Weak and strong inequalities are proved for the maximal function associated with the family $\{f_{\varepsilon}(x)\}$ which are used in the study of pointwise convergence of $f_{\varepsilon}(x)$ to f(x).

1 Introduction and Results.

Let Φ be the set of all non negative convex functions $\varphi \in C^1[0,\infty)$ such that $\varphi(0) = 0$ and $\varphi \not\equiv 0$. Let Ω be a bounded measurable set in \mathbb{R}^m and as usual, we denote by $L^{\varphi}(\Omega)$ the class of all Lebesgue measurable functions defined on \mathbb{R}^m such that the integral $\int_{\Omega} \varphi(\lambda | f(x) |) dx$ is finite for some $\lambda > 0$, where dx is Lebesgue measure on \mathbb{R}^m . We write |E| for the Lebesgue measure of a measurable set E in \mathbb{R}^m .

The space $L^{\varphi'}(\Omega)$ is analogously defined, where φ' is the derivative of the function φ . Observe that for $\varphi \in \Phi$, we have $\varphi(x) \leq x\varphi'(x) \leq \varphi(2x), x \geq 0$. Therefore $L^{\varphi}(\Omega) \subseteq L^{\varphi'}(\Omega)$ for any bounded set Ω .

Given a function $f \in L^{\varphi}(\Omega)$ we denote by $\mu_{\varphi}(f)$ the set of all real constants c which minimizes the integral $\int_{\Omega} \varphi(|f(x) - c|) dx$. It is easy to prove that $\mu_{\varphi}(f) \neq \emptyset$ for $f \in L^{\varphi}(\Omega)$. The mapping which assigns to each $f \in L^{\varphi}(\Omega)$ the

Key Words: Orlicz spaces, best approximations, maximal functions, a.e. convergence Mathematical Reviews subject classification: Primary 41A50, Secondary 42B25, 46E30 Received by the editors June 14, 2003 Communicated by: Clifford E. Weil

^{*}This research was supported by CONICET and Universidad Nacional de San Luis.

set $\mu_{\varphi}(f)$ is monotone; that is, if $f_1 \leq f_2$ pointwise, $c_1 \in \mu_{\varphi}(f_1)$ and $c_2 \in \mu_{\varphi}(f_2)$, then $\min(c_1, c_2) \in \mu_{\varphi}(f_1)$ and $\max(c_1, c_2) \in \mu_{\varphi}(f_2)$, (see [4]). Since the set $\mu_{\varphi}(f)$ of the best approximations of the function f is a closed bounded interval, we can restate the above definition of monotonicity as follows. If $f \leq g$, then $\min \mu_{\varphi}(f) \leq \min \mu_{\varphi}(g)$ and $\max \mu_{\varphi}(f) \leq \max \mu_{\varphi}(f)$. We will use this characterization of monotony.

A function φ satisfies the Δ_2 condition if there exists k > 0 such that $\varphi(2t) \leq k\varphi(t)$, for all t > 0, and in this case we write $\varphi \in \Delta_2$. It is straightforward to prove that $\mu_{\varphi}(f) \neq \emptyset$, if $\varphi \in \Phi \cap \Delta_2$.

Let Φ^* be the set of all functions $\varphi \in \Phi$ such that $\varphi'(x+1) \leq c\varphi'(x)$ for $x \geq 1$ and some fixed c > 0.

Let $\varphi \in \Phi$. We will write $\widetilde{L}^{\varphi}(\Omega)$ for the set of all measurable functions f such that $\int_{\Omega} \varphi(|f|) dx < \infty$. Similarly we define $\widetilde{L}^{\varphi'}(\Omega)$.

The next characterization of $\mu_{\varphi}(f)$ is well known when $\varphi(t) = t^p, \ p \ge 1$.

Lemma 1. Let $\varphi \in \Phi^*$. Then for each $f \in \widetilde{L}^{\varphi}(\Omega)$ the following are equivalent:

- 1. $c \in \mu_{\varphi}(f)$.
- 2. $|\int_{\{f \neq c\} \cap \Omega} \varphi'(|f-c|) \operatorname{sgn}(f-c) dx| \le \varphi'(0) |\{f=c\} \cap \Omega|.$

We denoted by $\varphi'(0)$ the right derivative of φ at 0. Here we have used, for example, the notation $|\{f = c\} \cap \Omega|$ to emphasize the set Ω , since sometimes the function f will be defined on a larger set than Ω .

Other characterizations of the best approximations may be found in [5], for the case of $\varphi(t) = t^p$, p > 1, and a rather exhaustive set of characterizations has recently appeared in [6], for the case p = 1. In both papers the approximation class is a σ lattice of functions. We state the next theorem for the particular case when the approximation class is the set of real constants.

Theorem 2. Let $\varphi \in \Phi^*$ and $f \in \widetilde{L}^{\varphi}(\Omega)$. Then any of the following three statements are equivalent to $c \in \mu_{\varphi}(f)$:

- (1) (a) $\int_{\{f>c\}\cap\Omega} \varphi'(|f-c|) \, dx \leq \int_{\{f\leq c\}\cap\Omega} \varphi'(|f-c|) \, dx.$ (b) $\int_{\{f< c\}\cap\Omega} \varphi'(|f-c|) \, dx \leq \int_{\{f>c\}\cap\Omega} \varphi'(|f-c|) \, dx.$
- (2) (a) $\int_{\Omega} \varphi'(|f-c|) dx \le 2 \int_{\{f \le c\} \cap \Omega} \varphi'(|f-c|) dx.$
 - (b) $\int_{\Omega} \varphi'(|f-c|) dx \leq 2 \int_{\{f \geq c\} \cap \Omega} \varphi'(|f-c|) dx.$
- (3) (a) For any $\alpha > c$ we have $\int_{\Omega} \varphi'(|f-c|) dx \leq 2 \int_{\{f < \alpha\} \cap \Omega} \varphi'(|f-c|) dx$.
 - (b) For any $\alpha < c$ we have $\int_{\Omega} \varphi'(|f-c|) dx \leq 2 \int_{\{f > \alpha\} \cap \Omega} \varphi'(|f-c|) dx$.

From the proof of Theorem 2 it is easy to see the next remark.

Remark. The conditions (1), (2) and (3) of Theorem 2 are equivalent even for $f \in \widetilde{L}^{\varphi'}(\Omega)$, when $\varphi \in \Phi^*$.

Note that $\Phi \cap \Delta_2 \subsetneq \Phi^*$. For example $\varphi(x) = e^{\sqrt{x+1}} - \sqrt{x+1} - e + 1$ is a function in Φ^* which is not a Δ_2 function. For the remain results we will not analyze spaces generated by functions in $\Phi^* - \Delta_2$. Also observe that $\widetilde{L}^{\varphi}(\Omega) = L^{\varphi}(\Omega)$ if $\varphi \in \Delta_2$.

Definition 1. Let $\varphi \in \Phi \cap \Delta_2$. We say that a constant c is a best approximation of f for $f \in L^{\varphi'}(\Omega)$ if the real number c satisfies any of the three conditions in Theorem 2, and we denote by $\mu_{\varphi'}(f)$ the set of the best approximations of f.

Given $\varphi \in \Phi$ and assume φ' be a strictly increasing function. Then the set $\mu_{\varphi}(f)$ has only one element. If $\varphi \in \Phi \cap \Delta_2$ and $\varphi'(0) = 0$ the characterization of $\mu_{\varphi}(f)$ is particularly simple, in this case a constant c is a best approximation of the function $f \in L^{\varphi}(\Omega)$ if and only if

$$\int_{\Omega} \varphi'(|f-c|) \operatorname{sgn}(f-c) \, dx = 0.$$
(1.1)

Definition 2. Let Φ_0 be the set of all functions $\varphi \in \Phi \cap \Delta_2$ such that $\varphi'(0) = 0$.

In order to get sharper estimates for the best approximation operator which is originally defined in some function space it is suitable to extend the operator to a wider space. For example in [5] the authors extend the best approximation operator from L^p to L^{p-1} when p > 1 and the approximation class is a σ lattice of functions. In [6] it is considered an extension from L^1 to the set of all measurable functions which are finite almost everywhere and the approximation class is again a σ lattice of functions. The same authors in [7] extend the best approximation operator by constants from L^p to L^{p-1} , for $p \ge 1$, where L^0 means the set of measurable functions which are finite a. e..

Now for a function $f \in L^{\varphi'}(\Omega)$, $\varphi \in \Phi_0$ it is easy to see that there exists an unique solution for (1.1), provided φ' is a strictly increasing function, which will be called the best approximation of f. For the case $\varphi \in \Phi \cap \Delta_2$ and $f \in L^{\varphi'}(\Omega)$ to show that $\mu_{\varphi'}(f) \neq \emptyset$ requires more work; see Lemma 10.

For f locally in $L^{\varphi'}(\mathbb{R}^m)$ we write $f \in L^{\varphi'}_{loc}(\mathbb{R}^m)$ and for any $x \in \mathbb{R}^m$ we consider a family $\{B_{\varepsilon}(x)\}$ of bounded measurable sets with $0 < |B_{\varepsilon}(x)|$. Also we set $\mu^{\varepsilon}_{\varphi'}(f)$ for the set $\mu_{\varphi'}(f)$ of the best approximations of f by constants on the set $B_{\varepsilon}(x)$.

Theorem 3. Let $\varphi \in \Phi_0$, $f \in L^{\varphi'}(\mathbb{R}^m)$, $\varepsilon > 0$ and $f_{\varepsilon}(x) \in \mu_{\varphi'}^{\varepsilon}(f)$. Then we have the following estimates.

1.
$$\varphi'(|f_{\varepsilon}(x)|) \leq \frac{3k^2}{2}|B_{\varepsilon}(x)|^{-1}\int_{B_{\varepsilon}(x)}\varphi'(|f(y)|)\,dy.$$

2. $\varphi'(|f_{\varepsilon}(x) - f(x)|) \leq \frac{3k^2}{2}|B_{\varepsilon}(x)|^{-1}\int_{B_{\varepsilon}(x)}\varphi'(|f(y) - f(x)|)\,dy$

where the constant k is the one given by the Δ_2 condition on φ .

We say that a family $\{B_{\varepsilon}(x)\}$ differentiates $L^{\varphi'}(\mathbb{R}^m)$ if for every $f \in L_{loc}^{\varphi'}(\mathbb{R}^m)$,

$$\lim_{\varepsilon \to 0} \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x)} \varphi'(|f(y) - f(x)|) \, dy = 0,$$

for almost every $x \in \mathbb{R}^m$. Many families can be found in the literature which differentiate specific examples of $L^{\varphi'}$. The classical example among others is the family of balls centered at x and radius ε or cubes containing x with side ε and where the space of functions is $L^1_{loc}(\mathbb{R}^m)$, (see [1]). It is wort noting that in our set up sometimes the family $\{B_{\varepsilon}(x)\}$ is asked to differentiate a bigger space than $L^1_{loc}(\mathbb{R}^m)$. As a corollary of (2) in Theorem 3 we obtain the next result.

Theorem 4. Let $\phi \in \Phi_0$ with $\varphi'(t) > 0$, t > 0 and $\{B_{\varepsilon}(x)\}$ be a family that differentiates $L^{\varphi'}(\mathbb{R}^m)$. Then for every $f \in L^{\varphi'}_{loc}(\mathbb{R}^m)$ and for almost every $x \in \mathbb{R}^m$ we have

$$\lim_{\varepsilon \to 0} (\sup\{|f_{\varepsilon}(x) - f(x)| : f_{\varepsilon}(x) \in \mu_{\varphi'}^{\varepsilon}(f)\}) = 0.$$

Given a function $f \in L^1_{loc}(\mathbb{R}^m)$ we denote by $M_H(f)$ the Hardy-Littlewood maximal function $\sup_{\varepsilon>0} \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x)} |f(y)| dy$, and for $f \in L^{\varphi'}_{loc}(\mathbb{R}^m)$ set

$$Mf(x) = \sup_{\varepsilon > 0} \{ |f_{\varepsilon}(x)| : f_{\varepsilon}(x) \in \mu_{\varphi'}^{\varepsilon}(f) \}.$$

The next theorem is a direct consequence of part 1 in Theorem 3.

Theorem 5. Let $\varphi \in \Phi_0$ and $f \in L^{\varphi'}_{loc}(\mathbb{R}^m)$. Then we have

$$\varphi'(Mf(x)) \le \frac{3k^2}{2} M_H(\varphi' \circ f)(x),$$

where the constant k corresponds to the Δ_2 condition on φ .

According to [3] we say that a function φ satisfies the ∇_2 condition, and we write $\varphi \in \nabla_2$, if there exists a constant r > 1 such that $\varphi(t) < \frac{1}{2r}\varphi(rt)$, for all $t \ge 0$. From now on the family $\{B_{\varepsilon}(x)\}, \ \varepsilon > 0, \ x \in \mathbb{R}^m$ should be more

32

specific, for example we will take the standard balls centered at x with radius ε , however other different families of sets can be used.

Let Ψ denote the set of all increasing functions ψ from $[0,\infty)$ into itself such that $\psi(0^+) = 0$, $\lim_{t\to\infty} \psi(t) = \infty$. The following result is proved in [2]. Given $\psi \in \Psi$. Then the ∇_2 condition on ψ is equivalent to the strong inequality

$$\int_{\mathbb{R}^m} \psi(M_H(f)(x)) \, dx \le C \int_{\mathbb{R}^m} \psi(Cf(x)) \, dx,$$

for all $f \in L^1_{loc}(\mathbb{R})$, and where the constant C depends only on ψ . The next theorem is consequence of the above result and Theorem 5.

Theorem 6. Let $\varphi \in \Phi_0$, $f \in L^{\varphi'}_{loc}(\mathbb{R}^m)$. Then for any $\psi \in \Psi \cap \nabla_2$ we have

$$\int_{\mathbb{R}^m} \psi(\varphi'(Mf(x))) \, dx \le C \int_{\mathbb{R}^m} \psi(C\varphi'(f(x))) \, dx,$$

where the constant C depends on φ and ψ .

Corollary 7. For $\varphi \in \Phi_0 \cap \nabla_2$ and $\varphi(t)/t \to \infty$, as $t \to \infty$, let $f \in L^{\varphi}(\mathbb{R}^m)$. Then

$$\int_{\mathbb{R}^m} \varphi(Mf(x)) \, dx \le C \int_{\mathbb{R}^m} \varphi(f(x)) \, dx,$$

where C is independent of f.

Note that the statements of Theorem 6 and Corollary 7 have a meaning even if the maximal function Mf is not measurable. It is easy to prove that if $\varphi \in \Phi_0$ and φ' is a strictly increasing function, then there exists an unique constant satisfying (1.1); i. e., $\mu_{\varphi'}^{\varepsilon}(f)$ is a singleton. Besides, given a sequence x_n tending to x it follows that the sequence $f_{\varepsilon}(x_n)$ is bounded. By the uniqueness of the set $\mu_{\varphi'}^{\varepsilon}(f)$, a standard argument shows that $f_{\varepsilon}(x_n) \to f_{\varepsilon}(x)$. Thus $f_{\varepsilon}(x)$ is a continuous function of x and therefore Mf is a measurable function. The measurability of Mf for $\varphi \in \Phi$ is an open problem.

Given $f \in L^{\varphi}(\mathbb{R}^m)$ we have

$$\varphi(|f(x) - f_{\varepsilon}(x)|)|B_{\varepsilon}(x)| = \int_{B_{\varepsilon}(x)} \varphi(|f(x) - f(y) + f(y) - f_{\varepsilon}(x)|) \, dy.$$

Since $f_{\varepsilon}(x)$ is a best constant approximation to f and taking into account the Δ_2 condition on φ , we obtain

$$\varphi(|f(x) - f_{\varepsilon}(x)|) \le 2C \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x)} \varphi(|f(y) - f(x)|) \, dy.$$

Thus $f_{\varepsilon}(x) \to f(x)$, as $\varepsilon \to 0$, for a. e. x. By Corollary 7 we also have $f_{\varepsilon} \to f$ in the norm of $L^{\varphi}(\mathbb{R}^m)$.

In the next theorem $|E|^*$ will denote the outer Lebesgue measure of a set $E \subseteq \mathbb{R}^m$.

Theorem 8. Let $\varphi \in \Phi \cap \Delta_2$ and $\varphi'(0) > 0$. Then there exists C > 0 such that

$$|\{x \in \mathbb{R}^m : Mf(x) > t\}|^* \le \frac{C}{\varphi'(0)} \int_{\{|f| > t\}} \varphi'(|f(y)|) \, dy,$$

for every $f \in L^{\varphi'}(\mathbb{R}^m)$ and t > 0.

Theorem 9. Let $\phi \in \Phi \cap \Delta_2$ with $\varphi'(0) > 0$, and $\{B_{\varepsilon}(x)\}$ be the family of balls centered at x with radius ε . Then for every $f \in L^{\varphi'}_{loc}(\mathbb{R}^m)$ we have

$$\lim_{\varepsilon \to 0} (\sup\{|f_{\varepsilon}(x) - f(x)| : f_{\varepsilon}(x) \in \mu_{\varphi'}^{\varepsilon}(f)\}) = 0,$$

almost everywhere $x \in \mathbb{R}^m$.

2 Proof of the Results.

For completeness reasons we will sketch a proof of Lemma 1.

PROOF OF LEMMA 1. Set $h(t) = \int_{\Omega} \varphi(|f(x) - t|) dx$. Since h is a convex function, it has a minimum at c if and only if $h'(c^+) \ge 0$ and $h'(c^-) \le 0$. Now a direct calculation gives

$$0 \le h'(c^+) = \varphi'(0) |\{f = c\} \cap \Omega| - \int_{\{f \ne c\} \cap \Omega} \varphi'(|f(x) - c|) \, sgn(f(x) - c) \, dx,$$

and

$$0 \ge h'(c^{-}) = -\varphi'(0)|\{f = c\} \cap \Omega| - \int_{\{f \ne c\} \cap \Omega} \varphi'(|f(x) - c|) \operatorname{sgn}(f(x) - c) \, dx.$$

Thus the above inequalities give part 2.

Theorem 2 is known for the case that $\varphi(t) = t$ and its proof is quite involved when the approximant class of the real constants is replaced by a σ -lattice of functions, as it is done in [6]. In our case the proof is simpler.

PROOF OF THEOREM 2. Observe that the inequalities in (1) are a restatement of those in Lemma 1. Moreover the statement (2) is clearly equivalent to (1). Since (2) implies (3), we will prove that (2) is a consequence of (3). In fact set $\alpha = c + 1/n$ in (3) (a), and a straightforward limit procedure gives (2) (a). By setting $\alpha = c - 1/n$ in (3) (b) we obtain (2) (b), and the proof is completed.

The next lemma allows us to extend the best approximation operator from L^{φ} to $L^{\varphi'}.$

Lemma 10. Let $\varphi \in \Phi \cap \Delta_2$ and $f \in L^{\varphi'}(\Omega)$. Then there exits a constant c which satisfies (3) of Theorem 2.

PROOF. Let f be in $L^{\varphi'}(\Omega)$ and set $f_{mn} = \min(\max(f, -m), n)$. Since f_{mn} is bounded, by Theorem 2 (2) (b),

$$\int_{\Omega} \varphi'(|f_{mn} - c_{mn}|) \, dx \le 2 \int_{\{f_{mn} \ge c_{mn}\} \cap \Omega} \varphi'(|f_{mn} - c_{mn}|) \, dx, \qquad (2.1)$$

where $c_{mn} \in \mu_{\varphi}(f_{mn})$ are selected in such a way that the sequence $(c_{mn})_n$ is increasing, for example take $c_{mn} = \min \mu_{\varphi}(f_{mn})$.

For a fix m we have $f_{mn} \nearrow f_m = \max(f, -m)$, as $n \to \infty$ and set $c_m = \lim_{n\to\infty} c_{mn}$. We will first proof that c_m is finite. From (2.1) and the fact that φ' is monotone we have

$$\int_{\Omega} \varphi'(|f_{mn} - c_{mn}|) \, dx \le 2 \int_{\{f_{mn} > \alpha\} \cap \Omega} \varphi'(|f_{mn} - \alpha|) \, dx,$$

for every $\alpha < c_{mn}$. Now, using the Fatou's Lemma on the left hand side of the above inequality and the Lebesgue Theorem on the right hand side we get

$$\int_{\Omega} \varphi'(|f_m - c_m|) \, dx \le 2 \int_{\{f_m > \alpha\} \cap \Omega} \varphi'(|f_m - \alpha|) \, dx. \tag{2.2}$$

Therefore $c_m \in \mathbb{R}$.

Since Theorem 2 (3) (b) holds for the pair f_{mn} and c_{mn} , by taking n tending to infinity we have

$$\int_{\Omega} \varphi'(|f_m - c_m|) \, dx \le 2 \int_{\{f_m > \alpha\} \cap \Omega} \varphi'(|f_m - c_m|) \, dx, \tag{2.3}$$

for any $\alpha < c_m$. Now, since $(c_{mn})_m$ is a decreasing sequence, the sequence $(c_m)_m$ is also decreasing. Let $c = \lim_{m \to \infty} c_m$ and taking the limit in (2.2) we get that $c \in \mathbb{R}$. Given $\alpha < c$ choose an integer k such that $\alpha < \alpha + 1/k < c$, and since $c_m \ge c$, by (2.3) we have that

$$\int_{\Omega} \varphi'(|f_m - c_m|) \, dx \le 2 \int_{\{f_m > \alpha + 1/k\} \cap \Omega} \varphi'(|f_m - c_m|) \, dx.$$

Then, if $B_k = \bigcap_{m=1}^{\infty} \{f_m > \alpha + 1/k\}$, we have

$$\int_{\Omega} \varphi'(|f-c|) \, dx \le 2 \int_{B_k \cap \Omega} \varphi'(|f-c|) \, dx. \tag{2.4}$$

Since $\{f > \alpha + 1/k\} \subseteq B_k \subseteq \{f \ge \alpha + 1/k\}$, by taking k tending to infinity in (2.4) we get

$$\int_{\Omega} \varphi'(|f-c|) \, dx \le 2 \int_{\{f > \alpha\} \cap \Omega} \varphi'(|f-c|) \, dx;$$

that is, we have proved condition (3) (b) of Theorem 2 for the pair f and c. It remains to prove condition (3) (a) for f and c. For the function f_{mn} and its best approximant c_{mn} we know that

$$\int_{\Omega} \varphi'(|f_{mn} - c_{mn}|) \, dx \le 2 \int_{\{f_{mn} < \alpha\} \cap \Omega} \varphi'(|f_{mn} - c_{mn}|) \, dx, \tag{2.5}$$

for any $\alpha > c_{mn}$.

Given $\alpha > c_m$ take an integer k such that $\alpha - 1/k > c_m \ge c_{mn}$ and by (2.5) we have

$$\int_{\Omega} \varphi'(|f_{mn} - c_{mn}|) \, dx \le 2 \int_{\{f_{mn} < \alpha - 1/k\} \cap \Omega} \varphi'(|f_{mn} - c_{mn}|) \, dx. \tag{2.6}$$

Now set $A_{mk} = \bigcap_{n=1}^{\infty} \{f_{mn} < \alpha - 1/k\}$. Then $\{f_m < \alpha - 1/k\} \subseteq A_{mk} \subseteq \{f_m \le \alpha - 1/k\}$. Thus $A_{mk} \to \{f_m < \alpha\}$, and taking $n \to \infty$ in (2.6) and further letting $k \to \infty$ we get

$$\int_{\Omega} \varphi'(|f_m - c_m|) \, dx \le 2 \int_{\{f_m < \alpha\} \cap \Omega} \varphi'(|f_m - c_m|) \, dx, \tag{2.7}$$

for $\alpha > c_m$. Now if $\alpha > c$ and recalling that f_m is a decreasing sequence, by taking limit in (2.7) we get

$$\int_{\Omega} \varphi'(|f-c|) \, dx \le 2 \int_{\{f < \alpha\} \cap \Omega} \varphi'(|f-c|) \, dx.$$

Lemma 11. Let $\varphi \in \Phi \cap \Delta_2$ and $f \in L^{\varphi'}(\Omega)$. Then the set $\mu_{\varphi'}(f)$ is a closed bounded interval.

PROOF. Given $f \in L^{\varphi'}(\Omega)$ we will see that if a constant c_1 satisfies (1) (a) of Theorem (2), so does any constant $c \geq c_1$. In fact

$$\begin{split} \int_{\{f > c\}} \varphi'(|f - c|) \, dx &\leq \int_{\{f > c_1\}} \varphi'(|f - c_1|) \, dx \leq \int_{\{f \leq c_1\}} \varphi'(|f - c_1|) \, dx \\ &\leq \int_{\{f \leq c\}} \varphi'(|f - c|) \, dx \end{split}$$

Similarly if a constant c_2 satisfies (1) (b) of Theorem 2 so does any constant $c \leq c_2$. Thus $\mu_{\varphi'}(f)$ is an interval, and using (3) of Theorem 2 we see that it is closed. To see that it is bounded from above we use (2) (b) of Theorem 2 and we have, for any $\alpha < c$, $c \in \mu_{\varphi'}(f)$,

$$\int_{\Omega} \varphi'(|f-c|) \, dx \le 2 \int_{\{f \ge c\} \cap \Omega} \varphi'(|f-c|) \, dx.$$

Thus

$$\int_{\Omega} \varphi'(|f-c|) \, dx \le 2 \int_{\{f \ge \alpha\} \cap \Omega} \varphi'(|f-\alpha|) \, dx,$$

which shows that the set $\mu_{\varphi'}(f)$ has an upper bound.

Similarly condition (2) (a) implies that the set $\mu_{\varphi'}(f)$ is bounded from below.

Now we prove that the best approximation operator extended to the space $L^{\varphi'}(\Omega)$ is a monotone operator.

Lemma 12. If $\varphi \in \Phi \cap \Delta_2$, then the multivalued operator $\mu_{\varphi'}(f)$ is monotone on $L^{\varphi'}(\Omega)$.

PROOF. Let $c_1 \in \mu_{\varphi}(f_1)$, $c_2 \in \mu_{\varphi}(f_2)$ and be $f_1 \leq f_2$. We will assume that $\min(c_1, c_2) = c_2$. Then

$$\int_{\{f_1 > c_2\} \cap \Omega} \varphi'(|f_1 - c_2|) \, dx \le \int_{\{f_2 > c_2\} \cap \Omega} \varphi'(|f_2 - c_2|) \, dx$$
$$\le \int_{\{f_2 \le c_2\} \cap \Omega} \varphi'(|f_2 - c_2|) \, dx$$
$$\le \int_{\{f_1 \le c_2\} \cap \Omega} \varphi'(|f_1 - c_2|) \, dx.$$

Thus

$$\int_{\{f_1 > \min(c_1, c_2)\} \cap \Omega} \varphi'(|f_1 - \min(c_1, c_2)|) \, dx$$

$$\leq \int_{\{f_1 \le \min(c_1, c_2)\} \cap \Omega} \varphi'(|f_1 - \min(c_1, c_2)|) \, dx.$$

Therefore we have proved condition (1) (a) of Theorem 2, for the constant $\min(c_1, c_2)$. Similarly it follows (1) (b) for $\min(c_1, c_2)$ which implies $\min(c_1, c_2)$ belongs to $\mu_{\varphi'}(f_1)$. It is shown analogously that $\max(c_1, c_2) \in \mu_{\varphi'}(f_2)$. \Box

Lemma 13. Let $\varphi \in \Phi$ such that $\varphi(2t) \leq k\varphi(t), t > 0$. Then $\varphi'(a+b) \leq \frac{k^2}{2}(\varphi'(a) + \varphi'(b)), a, b > 0$.

PROOF. Since φ' is an increasing function, we have $\varphi(x) \leq x\varphi'(x) \leq \varphi(2x)$. Moreover from the convexity and the Δ_2 condition on φ we have $\varphi(a+b) \leq \frac{k}{2}(\varphi(a) + \varphi(b))$. Now

$$\begin{aligned} (a+b)\varphi'(a+b) &\leq \varphi(2(a+b)) \leq k\varphi(a+b) \leq \frac{k^2}{2}(\varphi(a)+\varphi(b)) \\ &\leq \frac{k^2}{2}(a\varphi'(a)+b\varphi'(b)) \leq (a+b)\frac{k^2}{2}(\varphi'(a)+\varphi'(b)). \end{aligned}$$

PROOF OF THEOREM 3. Given $f_{\varepsilon}(x) \in \mu_{\varphi'}^{\varepsilon}(f)$ we may assume $f_{\varepsilon}(x) \geq 0$. In fact, for a general $f_{\varepsilon}(x)$ there exist best approximations $0 \leq c_{1,\varepsilon} \in \mu_{\varphi'}^{\varepsilon}(|f|)$, and a non positive constant $c_{2,\varepsilon} \in \mu_{\varphi'}^{\varepsilon}(-|f|)$ such that $c_{2,\varepsilon} \leq f_{\varepsilon}(x) \leq c_{1,\varepsilon}$. Set $c_{\varepsilon}(|f|) = \max(c_{1,\varepsilon}, -c_{2,\varepsilon})$, and taking into account that $c \in \mu_{\varphi'}(f)$ if and only if $-c \in \mu_{\varphi'}(-f)$, we have $c_{\varepsilon}(|f|) \in \mu_{\varphi'}^{\varepsilon}(|f|)$ and $|f_{\varepsilon}(x)| \leq c_{\varepsilon}(|f|)$.

Now $\varphi'(f_{\varepsilon}(x))$ can be written as

$$\begin{split} \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x)} &\varphi'(f_{\varepsilon}(x)) \, dy = \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x) \cap \{f_{\varepsilon}(x) > f\}} \varphi'((f_{\varepsilon}(x) - f(y)) + f(y)) \, dy \\ &+ \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x) \cap \{f_{\varepsilon}(x) \le f\}} \varphi'(f_{\varepsilon}(x)) \, dy, \end{split}$$

and using Lemma 13 the above expression can be estimated by

$$\frac{k^{2}}{2} \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x) \cap \{f_{\varepsilon}(x) > f\}} \varphi'(f_{\varepsilon}(x) - f(y)) \, dy \\ + \frac{k^{2}}{2} \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x) \cap \{f_{\varepsilon}(x) > f\}} \varphi'(f(y)) \, dy + \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x) \cap \{f_{\varepsilon}(x) \le f\}} \varphi'(f_{\varepsilon}(x)) \, dy.$$

$$(2.8)$$

By (1) (b) of Theorem 2 we have

$$\begin{split} \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x) \cap \{f_{\varepsilon}(x) > f\}} \varphi'(f_{\varepsilon}(x) - f(y)) \, dy \\ & \leq \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x) \cap \{f_{\varepsilon}(x) \leq f\}} \varphi'(f(y) - f_{\varepsilon}(x)) \, dy. \end{split}$$

Then we can estimate (2.8) by

$$k^2 \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x) \cap \{f_{\varepsilon}(x) \le f\}} \varphi'(f(y)) \, dy + \frac{k^2}{2} \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x)} \varphi'(f(y)) \, dy \le \frac{k^2}{2} \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x)} \varphi'(f(y)) \, dy \le \frac{k^2}{2} \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x)} \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}$$

LEBESGUE TYPE DIFFERENTIATION THEOREM

$$\frac{3k^2}{2}\frac{1}{|B_{\varepsilon}(x)|}\int_{B_{\varepsilon}(x)}\varphi'(f(y))\,dy$$

To prove part (2), observe that if $f_{\varepsilon}(x) \in \mu_{\varphi'}^{\varepsilon}(f)$, then

$$f_{\varepsilon}(x) - f(x) \in \mu_{\varphi'}^{\varepsilon}(f - f(x)).$$

Thus applying part (1) to the function f - f(x), the proof is completed. \Box

Given $\varphi \in \Psi$ we set $\tilde{\varphi}(s) = \sup\{st - \varphi(t); t > 0\}$ for the complementary function of φ . Observe that $\tilde{\varphi}(0) = 0$, and if $\varphi(t)/t \to \infty$, as $t \to \infty$ we have $\tilde{\varphi} \in \Psi$, see [1] or [8].

PROOF OF COROLLARY 7. For $f \in L^{\varphi}(\mathbb{R}^m)$ we get

$$\int_{\mathbb{R}^m} \varphi(Mf(x)) \, dx \leq \int_{\mathbb{R}^m} Mf(x) \, \varphi'(Mf(x)) \, dx.$$

Now for $0<\varepsilon<1$ and by the Young inequality the last integral is bounded by

$$\varepsilon \int_{\mathbb{R}^m} \varphi(Mf(x)) \, dx + \int_{\mathbb{R}^m} \widetilde{\varphi}\Big(\frac{1}{\varepsilon} \varphi'(Mf(x))\Big) \, dx.$$

Recalling that $\widetilde{\varphi} \in \Delta_2$ if and only if $\varphi \in \nabla_2$ we get

$$(1-\varepsilon)\int_{\mathbb{R}^m}\varphi(Mf(x))\,dx\leq C\int_{\mathbb{R}^m}\widetilde{\varphi}(\varphi'(Mf(x)))\,dx,$$

and applying Theorem 6 we get

$$\int_{\mathbb{R}^m} \varphi(Mf(x)) \, dx \le C \int_{\mathbb{R}^m} \widetilde{\varphi}(C\varphi'(f(x))) \, dx \le C \int_{\mathbb{R}^m} \varphi(f(x)) \, dx,$$

where the last inequality follows from $\tilde{\varphi}(\varphi'(x)) \leq C\varphi(x)$, with C > 1. In fact, since $\varphi \in \Delta_2$ there exists $\alpha > 1$ such that $x\varphi'(x) \leq \alpha\varphi(x)$, (see Theorem 4.1, pg. 24 in [3]). Moreover we always have $x\varphi'(x) = \varphi(x) + \tilde{\varphi}(\varphi'(x))$. Then $\tilde{\varphi}(\varphi'(x)) \leq (\alpha - 1)\varphi(x)$.

Lemma 14. Given $\varphi \in \Phi \cap \Delta_2$, $\varphi'(0) > 0$ and a nonnegative $f \in L^{\varphi'}(\mathbb{R}^m)$. Then every $c \in \mu_{\varphi'}(f)$ is a nonnegative constant.

PROOF. By (1) (a) of Theorem 2 for every $c \in \mu_{\varphi'}(f)$,

$$\int_{\{f>c\}\cap\Omega} \varphi'(|f-c|) \, dx \leq \int_{\{f\leq c\}\cap\Omega} \varphi'(|f-c|) \, dx.$$

Now if some $c \in \mu_{\varphi'}(f)$ is less than 0, the inequality above gives us a contradiction.

PROOF OF THEOREM 8. By Lemma 14 and Lemma 12 $|f_{\varepsilon}(x)| \leq \max \mu_{\varphi'}^{\varepsilon}(|f|)$. So we can assume $f \geq 0$ and every $f_{\varepsilon}(x) \geq 0$. Set $E = \{x \in \mathbb{R}^m : Mf(x) > t\}$. For $x \in E$ choose $f_{\varepsilon}(x) \in \mu_{\varphi'}^{\varepsilon}(f)$ such that $f_{\varepsilon}(x) > t$. Then, by (2) (b) of Theorem 2 we have

$$|B_{\varepsilon}(x)|\varphi'(0) \leq \int_{B_{\varepsilon}(x)} \varphi'(|f - f_{\varepsilon}(x)|) \, dy \leq 2 \int_{\{f \geq f_{\varepsilon}\} \cap B_{\varepsilon}(x)} \varphi'(|f - f_{\varepsilon}(x)|) \, dy$$
$$\leq 2 \int_{\{f > t\} \cap B_{\varepsilon}(x)} \varphi'(f) \, dy.$$

Now by a standard covering lemma there exists a constant C, and a disjoint family of balls $\{B_{\varepsilon_n}(x_n)\}$ such that

$$|E|^* \le C \sum |B_{\varepsilon_n}(x_n)|, \qquad (2.9)$$

and for every n we have

$$|B_{\varepsilon_n}(x_n)| \le \frac{2}{\varphi'(0)} \int_{\{f>t\} \cap B_{\varepsilon_n}(x_n)} \varphi'(2f(y)) \, dy.$$
(2.10)

Now from (2.9) and (2.10) we get the theorem.

PROOF OF THEOREM 9. Let $f \in L^{\varphi'}(\mathbb{R}^m)$, $f_{\varepsilon}(x) \in \mu_{\varphi'}^{\varepsilon}(f)$ and s be a step function. Then, for almost every x, there exists an $\varepsilon(x)$ such that for every ε , $0 < \varepsilon < \varepsilon(x)$, we have $f_{\varepsilon}(x) = (f - s)_{\varepsilon}(x) + s(x)$. Here we have used that for a constant c we have $(f + c)_{\varepsilon}(x) = f_{\varepsilon}(x) + c$.

The remainder of the proof follows the same patterns as the proof of the Lebesgue Differentiation Theorem using the Hardy-Littlewood maximal function. Set

$$\Gamma f(x) = \limsup_{\varepsilon \to 0} (\sup\{|f_{\varepsilon}(x) - f(x)| : f_{\varepsilon}(x) \in \mu_{\varphi'}^{\varepsilon}\}).$$

Then clearly $\Gamma f(x) = \Gamma(f-s)(x)$, for a. e. $x \in \mathbb{R}^m$ and consequently $\Gamma f(x) \leq M(f-s)(x) + |f(x) - s(x)|$. Then we have

$$|\{\Gamma f > t\}|^* \le |\{M(f-s) > t/2\}|^* + |\{|f-s| > t/2\}|.$$

By Theorem 8 and the Tchebyshev inequality we have

$$|\{\Gamma f > t\}|^* \le \frac{C}{\varphi'(0)} \int_{\{|f-s| > t/2\}} \varphi'(|f-s|) \, dy + \frac{1}{\varphi'(t/2)} \int_{\mathbb{R}^m} \varphi'(|f-s|) \, dy.$$

Since $\varphi' \in \Delta_2$, the step functions are dense in $L^{\varphi'}(\mathbb{R}^m)$. Therefore $\Gamma f(x) = 0$, for a. e. $x \in \mathbb{R}^m$.

References

- [1] M. de Guzmán, Differentiation of Integrals in \mathbb{R}^n , Springer Verlag, Berlin-Heidelberg-New York, 1975.
- [2] V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Scientific, Singapore, 1991.
- [3] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd. Groningen, The Netherlands, 1961.
- [4] D. Landers and L. Rogge, Best approximants in L_{Φ} -spaces, Z. Wahrsch. Verw. Gabiete, **51** (1980), 215–237.
- [5] D. Landers and L. Rogge, *Isotonic Approximation in L_s*, Journal of Approximation Theory, **31** (1981), 199–223.
- [6] F. Mazzone and H. Cuenya, Isotonic Approximation in L₁, J. Approx. Theory, **117**, **2** (2002), 279–300.
- [7] F. Mazzone and H. Cuenya, Maximal inequalities and Lebesgue's differentiation theorem for best approximant by constant over balls, J. Approx. Theory, 110, 2 (2001), 171–179.
- [8] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991