
Publ. Mat. 59 (2015), 373–448

DOI: 10.5565/PUBLMAT 59215 06
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Abstract: We study higher-order compact Sobolev embeddings on a domain Ω ⊆ Rn

endowed with a probability measure ν and satisfying certain isoperimetric inequal-

ity. Given m ∈ N, we present a condition on a pair of rearrangement-invariant

spaces X(Ω, ν) and Y (Ω, ν) which suffices to guarantee a compact embedding of the
Sobolev space VmX(Ω, ν) into Y (Ω, ν). The condition is given in terms of compact-

ness of certain one-dimensional operator depending on the isoperimetric function

of (Ω, ν). We then apply this result to the characterization of higher-order compact
Sobolev embeddings on concrete measure spaces, including John domains, Maz’ya

classes of Euclidean domains and product probability spaces, whose standard exam-
ple is the Gauss space.
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1. Introduction

Embeddings of Sobolev spaces into other function spaces play a very
important role in modern functional analysis. Although Sobolev spaces
on the Euclidean space Rn and on bounded Euclidean domains having
a Lipschitz boundary are discussed most frequently, it turns out that
Sobolev spaces on various other domains, possibly endowed with more
general measures than just with the Lebesgue one, are of interest as well.
For instance, the class of John domains (see Section 3 for a definition),
which is strictly larger than the class of domains having a Lipschitz
boundary, appears in connection with the study of holomorphic dynam-
ical systems and quasiconformal mappings. It was shown that Sobolev
inequalities on John domains have the same form as in the standard
case of Lipschitz domains, see [4, 12, 15, 9]. Furthermore, among quite
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a wide class of Euclidean domains, John domains are exactly those for
which the Sobolev inequality holds in this form [7]. Another impor-
tant example is the Gauss space, that is, Rn endowed with the Gauss
measure γn defined by

dγn(x) = (2π)−
n
2 e
−|x|2

2 dx.

In contrast to the Euclidean setting, Sobolev inequalities on the Gauss
space are dimension-free, which yields the possibility to extend them
also to infinite dimensions. This is of use in the study of quantum fields,
since this study can often be reduced to Sobolev inequalities in infinitely
many variables.

One possible way how to prove Sobolev embeddings is to derive them
from isoperimetric inequalities for the underlying domains. This con-
nection between Sobolev embeddings and isoperimetric inequalities was
first found by Maz’ya in [18] and [19]. His discovery then led to an ex-
tensive research on this topic, which resulted in a number of important
contributions that are considered classical these days (see, e.g., those by
Moser [21], Talenti [25], Aubin [1], and Brézis and Lieb [6]), and which
has continued until now.

Let us note that, until a very recent time, almost all available re-
sults on the interplay between Sobolev embeddings and isoperimetric
inequalities involved only first-order embeddings. In our recent paper
with Andrea Cianchi and Luboš Pick [9] we have developed a method
based on deriving higher-order Sobolev embeddings via subsequent it-
eration of first-order ones, which enables us to derive also higher-order
Sobolev embeddings from isoperimetric inequalities. Furthermore, and
more significantly, for customary underlying domains (e.g., for John do-
mains and for the Gauss space, which we have already briefly mentioned)
the results obtained by this method are sharp in the context of the class
of rearrangement-invariant spaces.

In the present paper we show that not only continuous higher-order
Sobolev embeddings but also the compact ones, can be derived from
isoperimetric properties of the underlying domains, and that the results
obtained in this way are sharp in many customary situations.

Let us now describe the subject of the paper more precisely. We shall
study compact Sobolev embeddings on a domain Ω in Rn endowed with
a probability measure ν which is absolutely continuous with respect to
the Lebesgue measure. We also require that the density of ν fulfils some
technical assumptions, see Section 3 for more details. For any ν-measur-
able set E ⊆ Ω we denote by Pν(E,Ω) its perimeter in Ω with respect
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to ν (a precise definition can be found in Section 3 again). The isoperi-
metric properties of (Ω, ν) are described by the so-called isoperimetric
function of (Ω, ν), denoted IΩ,ν . It is the largest function on [0, 1] with
values in [0,∞] which is nondecreasing on [0, 1

2 ], nonincreasing on [ 1
2 , 1]

and for which the isoperimetric inequality

Pν(E,Ω) ≥ IΩ,ν(ν(E))

holds for every ν-measurable E ⊆ Ω.
The question of finding the exact form of IΩ,ν is very difficult and

has been solved only in few special cases, such as the Euclidean ball [20]
and the Gauss space [5]. The asymptotic behaviour of IΩ,ν at 0, in
which we are interested, can be however evaluated more easily, and is
therefore known for quite a wide class of domains, including Euclidean
John domains (see [12] combined with [20, Corollary 5.2.3, p. 297]) or
product probability spaces [2], which extend the Gauss space.

Given m ∈ N and a rearrangement-invariant space X(Ω, ν), we will
consider the m-th order Sobolev space V mX(Ω, ν) consisting of all m-
times weakly differentiable functions on Ω whose m-th order weak deriva-
tives belong to the space X(Ω, ν). A precise definition of the notion
rearrangement-invariant space can be found in Section 2, we just briefly
recall that a rearrangement-invariant space is, roughly speaking, a Ba-
nach space consisting of ν-measurable functions on Ω in which the norm
of a function depends only on the measure of its level sets. A basic
example of rearrangement-invariant spaces are Lebesgue spaces; besides
them, the class of rearrangement-invariant spaces includes many further
families of function spaces, such as Orlicz spaces, Lorentz spaces, etc.

In [9] we have shown that a continuous embedding of the Sobolev
space V mX(Ω, ν) into a rearrangement-invariant space Y (Ω, ν) is im-
plied by a certain one-dimensional inequality depending on the repre-
sentation norms ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) of X(Ω, ν) and Y (Ω, ν), respec-
tively, on m and on the asymptotic behaviour of IΩ,ν at 0, described in
terms of a nondecreasing function I giving a lower bound for the isoperi-
metric function at 0. We remark that this inequality can be understood
as boundedness of a certain integral operator from the representation
space X(0, 1) into Y (0, 1). The above mentioned operator will be de-
noted by Hm

I in what follows and has the form

(1.1) Hm
I f(t) =

1

(m− 1)!

∫ 1

t

|f(s)|
I(s)

(∫ s

t

dr

I(r)

)m−1

ds, t ∈ (0, 1),
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for any Lebesgue measurable function f on (0, 1). Moreover, if the func-
tion I satisfies the additional assumption

(1.2)

∫ s

0

dr

I(r)
≈ s

I(s)
, s ∈ (0, 1),

(here, and in what follows, the symbol ≈ denotes the equivalence up to
multiplicative constants), then Hm

I can be replaced by a considerably
simpler operator, Km

I , defined at every Lebesgue measurable function f
on (0, 1) by

Km
I f(t) =

∫ 1

t

|f(s)| s
m−1

(I(s))m
ds, t ∈ (0, 1).

We note that while Hm
I is (possibly) a kernel operator, Km

I is just a
weighted Hardy-type operator, which is far easier to work with. We also
recall that important customary examples are available for the cases
when (1.2) is valid as well as for the cases when (1.2) fails.

The main aim of the present paper is to prove that compactness of the
operator Hm

I from X(0, 1) into Y (0, 1) implies the compact embedding
of V mX(Ω, ν) into Y (Ω, ν) (Theorem 5.1). We will also show (Theo-
rem 5.3) that if (1.2) is fulfilled, then the same result holds with Hm

I

replaced by Km
I . The proof of Theorem 5.1 strongly depends on the use

of almost-compact embeddings, called also absolutely continuous embed-
dings in some literature. They have been studied, e.g., in [11] and [24].
It is well known that such embeddings have a great significance for de-
riving compact Sobolev embeddings.

In many customary situations, the sufficient condition in terms of the
operator Hm

I turns out to be also necessary for compactness of the corre-
sponding Sobolev embedding. We demonstrate this fact on the cases of
Euclidean John domains, product probability spaces, and Maz’ya classes
of domains. The latter classes consist of those bounded Euclidean do-
mains whose isoperimetric function is bounded from below by a multiple
of some fixed power function. Unlike the case of John domains and prod-
uct probability spaces, in which the necessity holds for each individual
domain, for Maz’ya classes the sharpness is fulfilled in a wider sense:
there is one domain in each class for which the necessity holds.

The structure of the paper is as follows. In the next section we intro-
duce rearrangement-invariant spaces and their almost-compact embed-
dings. Section 3 contains a description of the measure spaces that will
come into play, of their isoperimetric properties and of Sobolev spaces
built upon rearrangement-invariant spaces over these measure spaces.
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We also recall those results of the paper [9] that are used in the proofs
of our theorems.

Section 4 contains one-dimensional results which play a key role in
the proofs of our main results, appearing in Section 5. We prove several
theorems concerning compactness of the operator Hm

J which is defined
as in (1.1) but with I replaced by a more general function J (which,
in particular, is not a-priori assumed to be non-decreasing on (0, 1]).
These results, thanks to the versatility of J , can be later used to handle
compactness of both operators Hm

I and Km
I , and to provide thereby a

unique scheme appropriate for the proofs of both main Theorems 5.1
and 5.3.

An important result of Section 4 is Theorem 4.2, in which we charac-
terize compactness of Hm

J from a rearrangement-invariant space X(0, 1)
into another rearrangement-invariant space Y (0, 1), denoted by

(1.3) Hm
J : X(0, 1)→→ Y (0, 1),

by the fact that Hm
J maps the unit ball of X(0, 1) into a set of functions

which is of uniformly absolutely continuous norm in Y (0, 1). A charac-
terization of (1.3) given in terms of the operator associate to Hm

J and
its uniform absolute continuity from the associate space to Y (0, 1), de-
noted by Y ′(0, 1), into X ′(0, 1), is provided in Theorem 4.6. Each of the
above mentioned conditions can be reformulated as an almost-compact
embedding between certain rearrangement-invariant spaces. These two
characterizations of (1.3) are the key step in the proof of our main re-
sults.

We note that Theorems 4.2 and 4.6 which characterize compact-
ness of Hm

J from X(0, 1) into Y (0, 1) require certain restrictions on the
spaces involved, namely that Y (0, 1) 6= L∞(0, 1) (Theorem 4.2) and
X(0, 1) 6= L1(0, 1) (Theorem 4.6). We also find, in Theorem 4.1, an
(almost) universal condition which characterizes (1.3). It has the form

(1.4) lim
a→0+

sup
‖f‖X(0,1)≤1

∥∥Hm
J (χ(0,a)f)

∥∥
Y (0,1)

= 0.

There are still few special situations in which this new condition is not
equivalent to (1.3). However, as observed in the first part of Theorem 5.1,
this cannot happen in the most important case when J is nondecreasing
on (0, 1]. Furthermore, it turns out that in the cases when (1.3) and (1.4)
are not equivalent, condition (1.4) is even more suitable to character-
ize compact Sobolev embeddings (see Theorem 5.3 and Remarks 5.4,
part (i)).
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Section 5 contains the main results of the paper that have been already
described above.

In Section 6 we apply the results of Section 5 to the characteriza-
tion of compact Sobolev embeddings on John domains (Theorem 6.1),
on Maz’ya classes of domains (Theorem 6.2) and on product probabil-
ity spaces (Theorem 6.4). The final Section 7 then provides examples
of compact Sobolev embeddings for concrete pairs of rearrangement-
invariant spaces over the measure spaces discussed in Section 6.

2. Rearrangement-invariant spaces

In this section we recall some basic facts from the theory of rearrange-
ment-invariant spaces. Our standard general reference is [3].

Let (R,µ) be a nonatomic measure space satisfying µ(R) = 1. In fact,
R will always be a domain in Rn for some n ∈ N. If the measure µ is
omitted, we assume that it is the n-dimensional Lebesgue measure on R.
We denote byM(R,µ) the collection of all µ-measurable functions on R
having its values in [−∞,∞]. We also set M+(R,µ) = {f ∈ M(R,µ) :
f ≥ 0 on R}.

Suppose that f ∈M(R,µ). Then the distribution function µf of the
function f is given by

µf (λ) = µ({x ∈ R : |f(x)| > λ}), λ ∈ [0,∞),

and the nonincreasing rearrangement f∗µ of f is defined by

f∗µ(t) = inf{λ ∈ [0,∞) : µf (λ) ≤ t}, t ∈ (0, 1).

Furthermore, we define f∗∗µ , the maximal function of f∗µ, by

f∗∗µ (t) =
1

t

∫ t

0

f∗µ(s) ds, t ∈ (0, 1).

If two functions f, g ∈M(R,µ) fulfil µf = µg (or, equivalently, f∗µ = g∗µ),
we say that f and g are equimeasurable and write f ∼µ g.

The Hardy–Littlewood inequality [3, Chapter 2, Theorem 2.2] tells us
that ∫

R

|fg| dµ ≤
∫ 1

0

f∗µ(s)g∗µ(s) ds

is satisfied for all f, g ∈M(R,µ).
A functional ‖ · ‖X(0,1) : M(0, 1) → [0,∞] is called a rearrangement-

invariant norm if, for all functions u, v ∈ M(0, 1) and f, g ∈ M+(0, 1),
for all sequences (fk)∞k=1 in M+(0, 1) and for all constants a ≥ 0, the
following properties are satisfied:
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(P1) ‖f‖X(0,1) = 0⇔ f = 0 a.e., ‖af‖X(0,1) = a‖f‖X(0,1),
‖f + g‖X(0,1) ≤ ‖f‖X(0,1) + ‖g‖X(0,1);

(P2) f ≤ g a.e. ⇒ ‖f‖X(0,1) ≤ ‖g‖X(0,1);

(P3) fk ↑ f a.e. ⇒ ‖fk‖X(0,1) ↑ ‖f‖X(0,1);

(P4) ‖1‖X(0,1) <∞;

(P5)
∫ 1

0
f(x) dx ≤ C‖f‖X(0,1) for some constant C>0 independent of f ;

(P6) u ∼ v ⇒ ‖u‖X(0,1) = ‖v‖X(0,1).

Suppose that ‖ · ‖X(0,1) is a rearrangement-invariant norm. The col-
lection of all functions f ∈M(R,µ) for which

‖f‖X(R,µ) = ‖f∗µ‖X(0,1) <∞

is then called the rearrangement-invariant space X(R,µ). We recall that
the functional ‖ · ‖X(R,µ) defines a norm on X(R,µ) and that X(R,µ) is
a Banach space with respect to this norm. We say that the space X(0, 1)
is the representation space of X(R,µ).

We now summarize some basic properties of rearrangement-invariant
spaces. We first note that each function f ∈ X(R,µ) is finite µ-a.e. on R.
Furthermore, the Fatou lemma [3, Chapter 1, Lemma 1.5(iii)] yields that
whenever (fk)∞k=1 is a sequence in X(R,µ) converging to some function f
µ-a.e. and fulfilling that lim infk→∞ ‖fk‖X(R,µ) < ∞, then f ∈ X(R,µ)
and

‖f‖X(R,µ) ≤ lim inf
k→∞

‖fk‖X(R,µ).

Moreover, if (fk)∞k=1 is a sequence which converges to some function f in
the norm of the space X(R,µ), then (fk)∞k=1 converges to f in measure.
In particular, there is a subsequence of (fk)∞k=1 which converges to f
µ-a.e. on R.

Given a rearrangement-invariant norm ‖ · ‖X(0,1), we shall consider
the functional ‖ · ‖X′(0,1) : M(0, 1)→ [0,∞] defined by

‖f‖X′(0,1) = sup
‖g‖X(0,1)≤1

∫ 1

0

|f(x)g(x)| dx, f ∈M(0, 1).

Then ‖ · ‖X′(0,1) is also a rearrangement-invariant norm, called the as-
sociate norm of ‖ · ‖X(0,1). The corresponding rearrangement-invariant
space X ′(R,µ) is called the associate space of X(R,µ). It is not hard to
observe that

‖f‖X′(0,1) = sup
‖g‖X(0,1)≤1

∫ 1

0

f∗(s)g∗(s) ds, f ∈M(0, 1).
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If ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) are rearrangement-invariant norms, then
the continuous embedding X(R,µ) ↪→ Y (R,µ) holds if and only if
X(R,µ) ⊆ Y (R,µ), see [3, Chapter 1, Theorem 1.8]. We shall write
X(R,µ) = Y (R,µ) if the set of functions belonging to X(R,µ) coin-
cides with the set of functions belonging to Y (R,µ). In this case, the
norms ‖ · ‖X(R,µ) and ‖ · ‖Y (R,µ) are equivalent, in the sense that there
are positive constants C1, C2 such that

C1‖f‖X(R,µ) ≤ ‖f‖Y (R,µ) ≤ C2‖f‖X(R,µ), f ∈M(R,µ).

Furthermore, according to [3, Chapter 1, Proposition 2.10], the embed-
ding X(R,µ) ↪→ Y (R,µ) is fulfilled if and only if Y ′(R,µ) ↪→ X ′(R,µ).

Suppose that ‖ · ‖X(0,1) is a rearrangement-invariant norm. Then the
fundamental function ϕX of ‖ · ‖X(0,1) is defined by

ϕX(t) = ‖χ(0,t)‖X(0,1), t ∈ (0, 1].

Owing to [3, Corollary 5.3, Chapter 2], ϕX is quasiconcave, in the sense

that ϕX is nondecreasing on (0, 1] and ϕX(t)
t is nonincreasing on (0, 1].

We say that a function f ∈ X(R,µ) has an absolutely continuous
norm in X(R,µ) if for every sequence (Ek)∞k=1 of µ-measurable subsets
of R fulfilling χEk → 0 µ-a.e. we have

lim
k→∞

‖χEkf‖X(R,µ) = 0.

An easy observation yields that this can be equivalently reformulated by

lim
a→0+

‖χ(0,a)f
∗
µ‖X(0,1) = 0.

The collection of all functions having an absolutely continuous norm
in X(R,µ) is denoted by Xa(R,µ).

Further, we say that a subset S of X(R,µ) is of uniformly absolutely
continuous norm in X(R,µ) if for every sequence (Ek)∞k=1 of µ-measur-
able subsets of R fulfilling χEk → 0 µ-a.e.,

lim
k→∞

sup
f∈S
‖χEkf‖X(R,µ) = 0,

or, equivalently,

lim
a→0+

sup
f∈S
‖χ(0,a)f

∗
µ‖X(0,1) = 0.

Suppose that ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) are rearrangement-invariant
norms. We say that X(R,µ) is almost-compactly embedded into Y (R,µ)

and write X(R,µ)
∗
↪→ Y (R,µ) if

lim
k→∞

sup
‖f‖X(R,µ)≤1

‖χEkf‖Y (R,µ) = 0
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is satisfied for every sequence (Ek)∞k=1 of µ-measurable subsets of R

fulfilling χEk → 0 µ-a.e. Observe that X(R,µ)
∗
↪→ Y (R,µ) holds if and

only if the unit ball ofX(R,µ) is of uniformly absolutely continuous norm

in Y (R,µ). We shall make use of two characterizations of X(R,µ)
∗
↪→

Y (R,µ), namely,

lim
a→0+

sup
‖f‖X(R,µ)≤1

sup
µ(E)≤a

‖χEf‖Y (R,µ) = 0

and

lim
a→0+

sup
‖f‖X(0,1)≤1

‖χ(0,a)f
∗‖Y (0,1) = 0.

Note that the relation X(R,µ)
∗
↪→ Y (R,µ) always implies X(R,µ) ↪→

Y (R,µ). Another necessary condition for X(R,µ)
∗
↪→ Y (R,µ) is the

following:

lim
a→0+

ϕY (a)

ϕX(a)
= 0,

[11, Section 3]. Furthermore, X(R,µ)
∗
↪→ Y (R,µ) is fulfilled if and only

if Y ′(R,µ)
∗
↪→ X ′(R,µ), see [11, Section 4, Property 5].

Let us now give some examples of rearrangement-invariant norms. A
basic example are the Lebesgue norms ‖ · ‖Lp(0,1), p ∈ [1,∞], defined for
all f ∈M(0, 1) by

‖f‖Lp(0,1) =


(∫ 1

0
|f(x)|p dx

)1/p

, p <∞;

ess supx∈(0,1) |f(x)|, p =∞.

The corresponding rearrangement-invariant spaces Lp(R,µ) are then
called the Lebesgue spaces. Recall that for each rearrangement-invariant
space X(R,µ) the embeddings

(2.1) L∞(R,µ) ↪→ X(R,µ) ↪→ L1(R,µ)

hold. We denote by CX the constant from the latter embedding, that
is, we have

(2.2) ‖f‖L1(R,µ) ≤ CX‖f‖X(R,µ), f ∈ X(R,µ),

and CX is the least real number for which (2.2) is satisfied.
It is a well-known fact that a rearrangement-invariant space X(R,µ)

is different from L∞(R,µ) if and only if lims→0+
ϕX(s) = 0. Further-

more, owing to [24, Theorems 5.2 and 5.3], L∞(R,µ)
∗
↪→ X(R,µ) is

characterized by X(R,µ) 6= L∞(R,µ), and X(R,µ)
∗
↪→ L1(R,µ) holds if

and only if X(R,µ) 6= L1(R,µ).
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One can consider also more general functionals ‖ · ‖Lp,q(0,1) and
‖ · ‖Lp,q;α(0,1) which were studied, e.g., in [10] and [22]. They are given
for any f ∈M(0, 1) by

‖f‖Lp,q(0,1) =
∥∥∥f∗(s)s 1

p−
1
q

∥∥∥
Lq(0,1)

and

‖f‖Lp,q;α(0,1) =

∥∥∥∥f∗(s)s 1
p−

1
q

(
log

2

s

)α∥∥∥∥
Lq(0,1)

,

respectively. Here, we assume that p ∈ [1,∞], q ∈ [1,∞], α ∈ R, and
use the convention that 1/∞ = 0. Note that ‖ · ‖Lp(0,1) = ‖ · ‖Lp,p(0,1)

and ‖ · ‖Lp,q(0,1) = ‖ · ‖Lp,q;0(0,1) for every such p and q. However, it
turns out that under these assumptions on p, q, and α, ‖ · ‖Lp,q(0,1) and
‖·‖Lp,q;α(0,1) do not have to be rearrangement-invariant norms. To ensure
that ‖ · ‖Lp,q;α(0,1) is equivalent to a rearrangement-invariant norm, we
need to assume that one of the following conditions is satisfied:

p = q = 1, α ≥ 0;(2.3)

1 < p <∞;(2.4)

p =∞, q <∞, α+
1

q
< 0;(2.5)

p = q =∞, α ≤ 0.(2.6)

In this case, ‖·‖Lp,q(0,1) is called a Lorentz norm, ‖·‖Lp,q;α(0,1) is called a
Lorentz–Zygmund norm and the corresponding rearrangement-invariant
spaces Lp,q(R,µ) and Lp,q;α(R,µ) are called Lorentz spaces and Lorentz–
Zygmund spaces, respectively.

Furthermore, if ‖ · ‖Lp1,q1;α1 (0,1) and ‖ · ‖Lp2,q2;α2 (0,1) are equivalent to
rearrangement-invariant norms then

Lp1,q1;α1(R,µ) ↪→ Lp2,q2;α2(R,µ)

holds if and only if p1 > p2, or p1 = p2 and one of the following conditions
is satisfied:

p1 <∞, q1 ≤ q2, α1 ≥ α2;

p1 =∞, q1 ≤ q2, α1 +
1

q1
≥ α2 +

1

q2
;

q2 < q1, α1 +
1

q1
> α2 +

1

q2
.

(2.7)
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3. Sobolev spaces

Let n ∈ N and let Ω be a domain in Rn endowed with a measure ν
satisfying ν(Ω) = 1. We assume that ν is absolutely continuous with
respect to the n-dimensional Lebesgue measure λn, and we denote by ω
the density of ν with respect to λn (that is, whenever E ⊆ Ω is ν-mea-
surable, we have ν(E) =

∫
E
ω(x) dx). The function ω is supposed to

be Borel measurable and fulfilling that for a.e. x ∈ Ω there is an open
ball Bx centered in x such that Bx ⊆ Ω and

ess infBx ω > 0.

Notice that a subset of Ω (or a function defined on Ω) is ν-measurable if
and only if it is Lebesgue measurable. We shall write measurable instead
of Lebesgue measurable in what follows.

For every measurable E ⊆ Ω we define its perimeter in (Ω, ν) by

Pν(E,Ω) =

∫
Ω∩∂ME

ω(x) dHn−1(x),

where ∂ME stands for the essential boundary of E, in the sense of geo-
metric measure theory (see, e.g., [20]), and Hn−1 denotes the (n−1)-di-
mensional Hausdorff measure. The isoperimetric function IΩ,ν : [0, 1]→
[0,∞] is then defined by

IΩ,ν(s) = inf

{
Pν(E,Ω) : E ⊆ Ω, s ≤ ν(E) ≤ 1

2

}
if s ∈ [0, 1

2 ], and by IΩ,ν(s) = IΩ,ν(1− s) if s ∈ ( 1
2 , 1].

Definition 3.1. Let (Ω, ν) be as above, and let I : (0, 1] → (0,∞) be
a function. We say that (Ω, ν, I) is a compatible triplet if the following
conditions are satisfied:

(C1) I is nondecreasing on (0, 1];
(C2) I satisfies

(3.1) inf
t∈(0,1]

I(t)

t
> 0;

(C3) there exists c ∈ (0, 2) such that

(3.2) IΩ,ν(t) ≥ cI(ct), t ∈ (0, 1/2].

We note that if I fulfils (C1) and there is a constant D > 0 for which

IΩ,ν(t) ≥ DI(t), t ∈ (0, 1/2],

then (C3) is fulfilled as well, since

IΩ,ν(t) ≥ DI(t) ≥ min{D, 1}I(min{D, 1}t), t ∈ (0, 1/2],

owing to (C1).
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Let us now give a few examples of compatible triplets.

Suppose that n ∈ N, n ≥ 2. We recall that a bounded domain Ω ⊆
Rn is called a John domain if there exist a constant c ∈ (0, 1) and a
point x0 ∈ Ω such that for every x ∈ Ω there are l > 0 and a rectifiable
curve $ : [0, l] → Ω, parametrized by arclength, such that $(0) = x,
$(l) = x0, and

dist($(r), ∂Ω) ≥ cr, r ∈ [0, l].

In what follows, we shall consider (with no loss of generality) only John
domains whose Lebesgue measure is equal to 1.

It is known that each John domain satisfies

IΩ(t) ≈ t 1
n′ , t ∈ [0, 1/2],

where n′ = n
n−1 . Therefore, if we denote I(t) = t

1
n′ , t ∈ (0, 1], then

(Ω, λn, I) is a compatible triplet.

Let α ∈ [ 1
n′ , 1]. We denote by Jα the Maz’ya class of all bounded

Euclidean domains Ω ⊆ Rn with λn(Ω) = 1 fulfilling that there is a
positive constant C, possibly depending on Ω, such that

IΩ(s) ≥ Csα, s ∈ [0, 1/2].

Set Iα(t) = tα, t ∈ (0, 1]. Then (Ω, λn, Iα) is another example of a
compatible triplet.

As a final example we mention product probability spaces, namely, Rn
with the product probability measure defined as follows.

Assume that Φ: [0,∞) → [0,∞) is a strictly increasing convex func-

tion such that it is twice continuously differentiable on (0,∞),
√

Φ is
concave on [0,∞) and Φ(0) = 0. Define the one-dimensional probability
measure µΦ = µΦ,1 by

(3.3) dµΦ(x) = cΦe
−Φ(|x|) dx,

where the constant cΦ > 0 is chosen in such a way that µΦ(R) = 1. We
also define the product measure µΦ,n on Rn, n ≥ 2, by

(3.4) µΦ,n = µΦ × · · · × µΦ︸ ︷︷ ︸
n-times

.

Then (Rn, µΦ,n) is a probability space for every n ∈ N and we have

dµΦ,n(x) = (cΦ)ne−(Φ(|x1|)+Φ(|x2|)+···+Φ(|xn|)) dx.
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Define the function FΦ : R→ (0, 1) by

FΦ(t) =

∫ ∞
t

cΦe
−Φ(|r|) dr, t ∈ R,

the function IΦ : (0, 1)→ (0,∞) by

IΦ(t) = cΦe
−Φ(|F−1

Φ (t)|), t ∈ (0, 1),

and the function LΦ : (0, 1]→ (0,∞) by

(3.5) LΦ(t) = tΦ′
(

Φ−1

(
log

2

t

))
, t ∈ (0, 1].

Then the isoperimetric function of (Rn, µΦ,n) satisfies

(3.6) IRn,µΦ,n
(t) ≈ IΦ(t) ≈ LΦ(t), t ∈ (0, 1/2],

see [2, Proposition 13 and Theorem 15]. Further, it was shown in [9, Lem-
ma 11.1(i)] that LΦ is nondecreasing on (0, 1]. Therefore, (Rn, µΦ,n, LΦ)
is a compatible triplet.

The main example of product probability measures we have just de-
fined is the n-dimensional Gauss measure

dγn(x) = (2π)−
n
2 e
−|x|2

2 dx,

which can be obtained by setting

Φ(t) =
1

2
t2, t ∈ [0,∞),

into (3.3) (if n=1) or (3.4) (if n > 1).
More generally, measures associated with

Φ(t) =
1

β
tβ , t ∈ [0,∞),

for some β ∈ [1, 2] are also examples of product probability measures.
They are called the Boltzmann measures. For each β ∈ [1, 2], such
n-dimensional measure is denoted by γn,β . We of course have γn,2 = γn.

We shall now define Sobolev spaces built upon rearrangement-invari-
ant spaces over (Ω, ν). The measure space (Ω, ν) is required to satisfy
all the above mentioned properties and, moreover, the inequality

(3.7) IΩ,ν(t) ≥ Ct, t ∈ [0, 1/2],

has to be fulfilled for some positive constant C independent of t. Notice
that condition (3.7) is satisfied whenever there is a function I for which
(Ω, ν, I) is a compatible triplet.

Let m ∈ N and let u be an m-times weakly differentiable function
on Ω. Given k ∈ {1, 2, . . . ,m}, we denote by ∇ku the vector of all k-th
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order weak derivatives of u. Moreover, we set ∇0u = u. Then the m-th
order Sobolev space built upon a rearrangement-invariant space X(Ω, ν)
is the set

V mX(Ω, ν)={u : u is an m-times weakly differentiable function on Ω

such that |∇mu|∈X(Ω, ν)}.

According to [9, Corollary 4.3], the inclusions V mX(Ω, ν) ⊆ L1(Ω, ν)
and V mX(Ω, ν) ⊆ V kL1(Ω, ν), k = 1, 2, . . . ,m− 1, are satisfied. Hence,
the expression

(3.8) ‖u‖VmX(Ω,ν) =

m−1∑
k=0

‖|∇ku|‖L1(Ω,ν) + ‖|∇mu|‖X(Ω,ν)

defines a norm on V mX(Ω, ν).
In what follows we shall denote by

(3.9) V mX(Ω, ν) ↪→ Y (Ω, ν)

the continuous embedding of the Sobolev space V mX(Ω, ν) into a rear-
rangement-invariant space Y (Ω, ν), and we shall write

V mX(Ω, ν) ↪→↪→ Y (Ω, ν)

in order to denote that the embedding (3.9) is compact.

We now state a theorem and a proposition which were proved in [9]
and which will be used in what follows.

Theorem 3.2 ([9, Theorem 5.1]). Suppose that (Ω, ν, I) is a compatible
triplet. Let m ∈ N and let ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) be rearrangement-
invariant norms. If there exists a constant C1 > 0 such that

(3.10)

∥∥∥∥∥
∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds

∥∥∥∥∥
Y (0,1)

≤ C1‖f‖X(0,1)

for every nonnegative f ∈ X(0, 1), then

(3.11) V mX(Ω, ν) ↪→ Y (Ω, ν)

and, equivalently, there is a constant C2 > 0 such that

(3.12) ‖u‖Y (Ω,ν) ≤ C2‖|∇mu|‖X(Ω,ν)

for every u∈V mX(Ω, ν) fulfilling
∫

Ω
∇ku dν=0 for k=0, 1, . . . ,m− 1.
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We finally mention that, given m ∈ N and a rearrangement-invariant
norm ‖ · ‖X(0,1), one can define the more customary Sobolev space
WmX(Ω, ν) by

WmX(Ω, ν)={u : u is an m-times weakly differentiable function on Ω

such that |∇ku|∈X(Ω, ν) for k=0, 1, . . . ,m}.

The set WmX(Ω, ν) equipped with the norm

‖u‖WmX(Ω,ν) =

m∑
k=0

‖|∇ku|‖X(Ω,ν)

is easily seen to be a normed linear space. We always have the continuous
embedding WmX(Ω, ν) ↪→ V mX(Ω, ν). The reverse embedding is not
true in general, however, we have the following:

Proposition 3.3 ([9, Proposition 4.5]). Suppose that (Ω, ν) is as in the
first paragraph of the present section and, moreover, that∫ 1

2

0

ds

IΩ,ν(s)
<∞.

Let m ∈ N and let ‖ · ‖X(0,1) be a rearrangement-invariant norm. Then

V mX(Ω, ν) = WmX(Ω, ν),

up to equivalent norms.

In particular, if (Ω, ν, I) is a compatible triplet such that∫ 1

0

ds

I(s)
<∞,

then V mX(Ω, ν) = WmX(Ω, ν) for every m ∈ N and for every rearrange-
ment-invariant norm ‖ · ‖X(0,1). Indeed, property (C3) of compatible
triplets yields that there is c ∈ (0, 2) for which∫ 1

2

0

ds

IΩ,ν(s)
≤ 1

c

∫ 1
2

0

ds

I(cs)
=

1

c2

∫ c
2

0

ds

I(s)
≤ 1

c2

∫ 1

0

ds

I(s)
<∞.

The result now follows from Proposition 3.3.

4. Compact operators

In this section we give several characterizations of compactness of cer-
tain one-dimensional operator on rearrangement-invariant spaces. These
characterizations play a central role in the proofs of our main results in
the following Section 5. Moreover, the results of this section will be
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used to characterize compactness of this operator on concrete classes of
rearrangement-invariant spaces (see Section 7).

Let J : (0, 1]→ (0,∞) be a measurable function satisfying

(4.1) inf
t∈(0,1]

J(t)

t
> 0.

We set

(4.2) Ja = inf
t∈[a,1]

J(t), a ∈ (0, 1),

and observe that for every a ∈ (0, 1),

Ja ≥ Ca > 0,

where C = inft∈(0,1] J(t)/t.
We shall consider the operator HJ defined by

(4.3) HJf(t) =

∫ 1

t

|f(s)|
J(s)

ds, f ∈M(0, 1), t ∈ (0, 1),

and the operator RJ defined by

RJf(t) =
1

J(t)

∫ t

0

|f(s)| ds, f ∈M(0, 1), t ∈ (0, 1).

Furthermore, given j ∈ N, we define the operators Hj
J and Rjj by

(4.4) Hj
J = HJ ◦HJ ◦ · · · ◦HJ︸ ︷︷ ︸

j-times

and RjJ = RJ ◦RJ ◦ · · · ◦RJ︸ ︷︷ ︸
j-times

.

Then

(4.5) Hj
Jf(t) =

1

(j − 1)!

∫ 1

t

|f(s)|
J(s)

(∫ s

t

dr

J(r)

)j−1

ds,

f ∈M(0, 1), t ∈ (0, 1),

and

RjJf(t)=
1

(j − 1)!J(t)

∫ t

0

(∫ t

s

dr

J(r)

)j−1

|f(s)| ds, f ∈M(0, 1), t∈(0, 1),

see [9, Remarks 8.2]. For technical reasons, we also set H0
J = R0

J = Id.

We remark that the operators Hj
J and RjJ are associate in the sense

that for every f ∈M+(0, 1) and g ∈M+(0, 1) we have

(4.6)

∫ 1

0

f(s)Hj
Jg(s) ds =

∫ 1

0

g(s)RjJf(s) ds.
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We also observe that whenever j ∈ N and f ∈ M(0, 1) then Hj
Jf is

nonincreasing on (0, 1). Finally, given a ∈ (0, 1], the equality

Hj
J(χ(0,a))(t) = χ(0,a)(t)

1

(j − 1)!

∫ a

t

1

J(s)

(∫ s

t

dr

J(r)

)j−1

ds

= χ(0,a)(t)
1

j!

(∫ a

t

dr

J(r)

)j
, t ∈ (0, 1),

(4.7)

which follows from the change of variables formula, will be of use.

Given two rearrangement-invariant norms ‖·‖X(0,1) and ‖·‖Y (0,1), we
shall write

Hj
J : X(0, 1)→ Y (0, 1)

in order to denote that the operator Hj
J is bounded from X(0, 1) into

Y (0, 1). Our goal is to find necessary and sufficient conditions for com-

pactness of Hj
J from X(0, 1) into Y (0, 1), denoted by

(4.8) Hj
J : X(0, 1)→→ Y (0, 1).

The first result in this connection is the following:

Theorem 4.1. Let J : (0, 1] → (0,∞) be a measurable function satis-
fying (4.1) and let j ∈ N. Suppose that ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) are
rearrangement-invariant norms. Consider the following two conditions:

(i) Hj
J : X(0, 1)→→ Y (0, 1);

(ii) lima→0+
sup‖f‖X(0,1)≤1 ‖H

j
J(χ(0,a)f)‖Y (0,1) = 0.

If X(0, 1)=L1(0, 1), Y (0, 1)=L∞(0, 1), j=1, and

lim
a→0+

ess supt∈(0,a)

1

J(t)
= 0,

then (ii) is satisfied but (i) is not. In all other cases, (i) holds if and
only if (ii) holds.

Theorem 4.1 provides a full characterization of compactness of the
operator Hj

J . By modifications of condition (ii) of Theorem 4.1 we obtain
two more necessary and sufficient conditions for (4.8). Their equivalence
to (4.8) holds in a slightly less general setting, but the strength of these
characterizations rests on the possibility to reformulate them as almost-
compact embeddings between certain rearrangement-invariant spaces.
This connection between compactness of Hj

J and almost-compactness
of an embedding becomes a key tool for the proof of our main result,
Theorem 5.1.
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We shall now introduce a family of rearrangement-invariant spaces
whose almost-compact embeddings are suitable for characterization
of (4.8).

Let ‖ · ‖X(0,1) be a rearrangement-invariant norm. For every f ∈
M(0, 1) we define the functional ‖ · ‖(Xrj,J )′(0,1) by

‖f‖(Xrj,J )′(0,1) = ‖RjJf
∗‖X′(0,1)

=
1

(j − 1)!

∥∥∥∥∥ 1

J(s)

∫ s

0

(∫ s

t

dr

J(r)

)j−1

f∗(t) dt

∥∥∥∥∥
X′(0,1)

.
(4.9)

Then, according to [9, Proposition 8.3], ‖ · ‖(Xrj,J )′(0,1) is a rearrange-

ment-invariant norm and its associate norm ‖ · ‖Xrj,J (0,1) fulfils

(4.10) Hj
J : X(0, 1)→ Xr

j,J(0, 1).

Moreover, Xr
j,J(0, 1) is the optimal range for X(0, 1) with respect to the

operator Hj
J , that is, Xr

j,J(0, 1) is the smallest rearrangement-invariant

space for which (4.10) is satisfied.

The following theorem characterizes (4.8) by means of the space
Xr
j,J(0, 1).

Theorem 4.2. Let J : (0, 1] → (0,∞) be a measurable function satis-
fying (4.1) and let j ∈ N. Suppose that ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) are
rearrangement-invariant norms. If

(4.11) Y (0, 1) 6= L∞(0, 1) or

∫ 1

0

dr

J(r)
=∞,

then the following conditions are equivalent:

(i) Hj
J : X(0, 1)→→ Y (0, 1);

(ii) lima→0+
sup‖f‖X(0,1)≤1 ‖χ(0,a)H

j
Jf‖Y (0,1) = 0;

(iii) Xr
j,J(0, 1)

∗
↪→ Y (0, 1).

Remarks 4.3. (a) Condition (ii) of Theorem 4.2 tells us that the set

{Hj
Jf : ‖f‖X(0,1) ≤ 1} is of uniformly absolutely continuous norm

in Y (0, 1).

(b) Suppose that Y (0, 1) = L∞(0, 1). Then we easily observe that
none of conditions (ii) and (iii) of Theorem 4.2 can be satisfied, no matter

what J , j, and ‖ · ‖X(0,1) are. If, moreover,
∫ 1

0
dr
J(r) = ∞, it follows

from Theorem 4.2 that condition (i) is also never fulfilled (since it is
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equivalent to (ii) and (iii)). However, this is no longer true in the case

when
∫ 1

0
dr
J(r) <∞, because

(4.12) Hj
J : L∞(0, 1)→→ L∞(0, 1)

holds for every j ∈ N in this situation. Indeed, by (4.7) we have

lim
a→0+

sup
‖f‖L∞(0,1)≤1

∥∥∥Hj
J(χ(0,a)f)

∥∥∥
L∞(0,1)

= lim
a→0+

∥∥∥Hj
J(χ(0,a))

∥∥∥
L∞(0,1)

= lim
a→0+

1

j!

∥∥∥∥∥χ(0,a)(t)

(∫ a

t

dr

J(r)

)j∥∥∥∥∥
L∞(0,1)

= lim
a→0+

1

j!

(∫ a

0

dr

J(r)

)j
= 0.

Hence, due to Theorem 4.1, condition (4.12) is satisfied.

Remark 4.4. Suppose that J : (0, 1] → (0,∞) is a measurable function
fulfilling (4.1), j ∈ N and ‖ · ‖X(0,1) is a rearrangement-invariant norm
such that

(4.13) Hj
J : X(0, 1)→ L∞(0, 1).

Then

(4.14) Hj
J : X(0, 1)→→ Y (0, 1)

is fulfilled for all rearrangement-invariant spaces Y (0, 1) 6= L∞(0, 1).
Indeed, since L∞(0, 1) is the smallest rearrangement-invariant space
over (0, 1) and (4.13) is satisfied, L∞(0, 1) is the optimal range forX(0, 1)

with respect to the operator Hj
J , and therefore Xr

j,J(0, 1) = L∞(0, 1).

The assumption Y (0, 1) 6= L∞(0, 1) yields that L∞(0, 1)
∗
↪→ Y (0, 1).

Thus, according to Theorem 4.2, we obtain (4.14).
Furthermore, having only the information that (4.13) holds, we cannot

decide whether (4.14) is satisfied with Y (0, 1) = L∞(0, 1) or not. As an
example, consider the function J = 1 on (0, 1] and the rearrangement-in-
variant norm ‖ · ‖X(0,1) = ‖ · ‖L1(0,1). In this case, condition (4.13) is
easily seen to be satisfied for every j ∈ N. Due to Theorem 4.1, (4.14) is
fulfilled if and only if

(4.15) lim
a→0+

sup
‖f‖L1(0,1)≤1

‖Hj
J(χ(0,a)f)‖L∞(0,1) = 0.
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For every a ∈ (0, 1) we have

sup
‖f‖L1(0,1)≤1

‖Hj
J(χ(0,a)f)‖L∞(0,1) = sup

‖f‖L1(0,1)≤1

1

(j − 1)!

∫ a

0

|f(s)|sj−1 ds

=
1

(j − 1)!
‖χ(0,a)(s)s

j−1‖L∞(0,1)

=
1

(j − 1)!
aj−1,

and hence (4.15) does not hold for j = 1, but it holds for j > 1.

We shall now define another family of rearrangement-invariant spaces
whose almost-compact embeddings will be used for characterization
of (4.8).

Let ‖ · ‖Y (0,1) be a rearrangement-invariant norm fulfilling

(4.16)

∥∥∥∥∥
(∫ 1

t

dr

J(r)

)j∥∥∥∥∥
Y (0,1)

<∞.

For every f ∈M(0, 1) define the functional ‖ · ‖Y dj,J (0,1) by

‖f‖Y dj,J (0,1) = sup
h∼f
‖Hj

Jh‖Y (0,1) + ‖f‖L1(0,1)

= sup
0≤h∼f

1

(j − 1)!

∥∥∥∥∥
∫ 1

t

h(s)

J(s)

(∫ s

t

dr

J(r)

)j−1

ds

∥∥∥∥∥
Y (0,1)

+ ‖f‖L1(0,1).

(4.17)

Then ‖ ·‖Y dj,J (0,1) is a rearrangement-invariant norm and the correspond-

ing rearrangement-invariant space Y dj,J(0, 1) is the optimal domain for

Y (0, 1) with respect to the operator Hj
J , in the sense of the following:

Proposition 4.5. Let J : (0, 1]→ (0,∞) be a measurable function satis-
fying (4.1) and let j ∈ N. Suppose that ‖ · ‖Y (0,1) is a rearrangement-in-
variant norm fulfilling (4.16). Then ‖ · ‖Y dj,J (0,1) is a rearrangement-in-

variant norm and

(4.18) Hj
J : Y dj,J(0, 1)→ Y (0, 1).

Moreover, Y dj,J(0, 1) is the largest rearrangement-invariant space for

which (4.18) is satisfied.
Conversely, if ‖·‖Y (0,1) is a rearrangement-invariant norm which does

not fulfil (4.16) then there is no rearrangement-invariant space Y dj,J(0, 1)

such that condition (4.18) is satisfied.

The last result of this section provides a necessary and sufficient con-
dition for compactness of the operator Hj

J given in terms of the optimal
domain space.



Compactness of Higher-Order Sobolev Embeddings 393

Theorem 4.6. Let J : (0, 1] → (0,∞) be a measurable function satis-
fying (4.1) and let j ∈ N. Suppose that ‖ · ‖X(0,1) is a rearrangement-

invariant norm such that X(0, 1) 6= L1(0, 1) and ‖·‖Y (0,1) is a rearrange-
ment-invariant norm fulfilling (4.16). Then the following conditions are
equivalent:

(i) Hj
J : X(0, 1)→→ Y (0, 1);

(ii) lima→0+
sup‖f‖X(0,1)≤1 supλ1(E)≤a ‖H

j
J(χEf)‖Y (0,1) = 0;

(iii) X(0, 1)
∗
↪→ Y dj,J(0, 1).

Remarks 4.7. (a) Using the definition of the associate norm and (4.6)
we deduce that condition (ii) of Theorem 4.6 is equivalent to equality

lim
a→0+

sup
‖f‖Y ′(0,1)≤1

sup
λ1(E)≤a

‖χERjJf‖X′(0,1) = 0,

which tells us that the set {RjJf : ‖f‖Y ′(0,1) ≤ 1} is of uniformly abso-
lutely continuous norm in X ′(0, 1).

(b) It is not hard to verify that conditions (ii) and (iii) of Theorem 4.6
are never fulfilled with X(0, 1) = L1(0, 1). However, this is not the case
of condition (i) since we have already observed in Remark 4.4 that (i) is
satisfied with J ≡ 1, X(0, 1) = L1(0, 1), and Y (0, 1) = L∞(0, 1) when-
ever j > 1. Furthermore, in contrast to Theorem 4.2, which holds in
the exceptional case Y (0, 1) = L∞(0, 1) for quite a wide class of func-
tions J , there are only very few functions J for which Theorem 4.6 is
fulfilled with X(0, 1) = L1(0, 1). We shall now characterize all nonde-
creasing functions having this property (recall that the case when the
function J is nondecreasing is the most significant from the point of view
of applications to compact Sobolev embeddings).

Fix a nondecreasing function J fulfilling (4.1). Then Theorem 4.6
is not true for X(0, 1) = L1(0, 1) if and only if there is j ∈ N and a
rearrangement-invariant norm ‖ · ‖Y (0,1) such that

(4.19) Hj
J : L1(0, 1)→→ Y (0, 1).

Notice that whenever a rearrangement-invariant norm ‖ · ‖Y (0,1) satis-
fies (4.19) then, in particular,

(4.20) Hj
J : L1(0, 1)→ Y (0, 1),

and therefore (4.16) holds (consequently, ‖ · ‖Y (0,1) satisfies the assump-
tion of Theorem 4.6). Indeed, if (4.16) was not fulfilled then, due
to Proposition 4.5, there would be no rearrangement-invariant space
Y dj,J(0, 1) such that (4.18) is fulfilled. This would contradict (4.20).
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Fix j ∈ N. In order to decide whether there is a rearrangement-
invariant space Y (0, 1) for which (4.19) holds, it is enough to study
whether

(4.21) Hj
J : L1(0, 1)→→ L1(0, 1),

since L1(0, 1) is the largest rearrangement-invariant space over (0, 1).
Due to Theorem 4.1, condition (4.21) is equivalent to

lim
a→0+

sup
‖f‖L1(0,1)≤1

‖Hj
J(χ(0,a)f)‖L1(0,1) = 0,

which is characterized in the last section of the present paper (see The-
orem 7.1(b)) by

lim
t→0+

t

J(t)
= 0,

(no matter what j is). Combining this with (4.1) we deduce that the only
case when (4.21) is not fulfilled for some j ∈ N (and hence Theorem 4.6 is
fulfilled with X(0, 1) = L1(0, 1)) is the one when there is a set M ⊆ (0, 1)
such that 0 ∈M and

J(s) ≈ s on M.

Remark 4.8. Suppose that J : (0, 1] → (0,∞) is a measurable function
satisfying (4.1) and j ∈ N. If ‖ · ‖Y (0,1) is a rearrangement-invariant
norm such that

(4.22) Hj
J : L1(0, 1)→ Y (0, 1),

then

(4.23) Hj
J : X(0, 1)→→ Y (0, 1)

is fulfilled for all rearrangement-invariant spaces X(0, 1) 6= L1(0, 1). To
verify this, we first recall that the rearrangement-invariant norm ‖·‖Y (0,1)

satisfies (4.16) (a proof of this fact was given in Remarks 4.7(b)). Thus,
we can consider the rearrangement-invariant norm ‖ · ‖Y dj,J (0,1) defined

by (4.17). Since L1(0, 1) is the largest rearrangement-invariant space
over (0, 1) and (4.22) is satisfied, L1(0, 1) is the optimal domain for

Y (0, 1) with respect to the operator Hj
J , and hence it follows from Propo-

sition 4.5 that Y dj,J(0, 1) = L1(0, 1). The assumption X(0, 1) 6= L1(0, 1)

yields thatX(0, 1)
∗
↪→ L1(0, 1). Using the last two facts and Theorem 4.6,

we obtain (4.23).
Furthermore, having only the information that (4.22) holds, we cannot

decide whether (4.14) is satisfied with X(0, 1) = L1(0, 1) or not. An
example supporting this was already presented in Remark 4.4.
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Remark 4.9. The classical result due to Luxemburg and Zaanen [17]
relates compactness of a kernel integral operator to its absolute continu-
ity, and to absolute continuity of the associate operator. Let us describe
this result in some more detail, and then compare it to our Theorems 4.2
and 4.6.

Let X(0, 1) and Y (0, 1) be rearrangement-invariant spaces, let T be
a kernel integral operator, and let T ′ be the operator associate to T (in

a similar sense in which our operator RjJ is associate to Hj
J , see [17] for

a precise definition). Assume that Tf ∈ Ya(0, 1) for every f ∈ X(0, 1),
and T ′g ∈ X ′a(0, 1) for every g ∈ Y ′(0, 1). In [17] it is proved (even in a
more general setting) that we have the equivalence of the following three
conditions:

(a) T : X(0, 1)→→ Y (0, 1).
(b) The set {Tf : ‖f‖X(0,1) ≤ 1} is of uniformly absolutely continuous

norm in Y (0, 1).
(c) The set {T ′g : ‖g‖Y ′(0,1) ≤ 1} is of uniformly absolutely continuous

norm in X ′(0, 1).

If we set T = Hj
J , then its associate operator T ′ is the operator RjJ .

We have observed in Remarks 4.3 and 4.7 that in this case condition (b)
is exactly condition (ii) of Theorem 4.2 and condition (c) is identical to
condition (ii) of Theorem 4.6. The main difference between our result
and the one proved in [17] is the following: when proving that (a) im-

plies (b) or (c), we do not need to assume that either the operator Hj
J ,

or RjJ , has its range in the set of functions of absolutely continuous
norm, since this fact already follows from (a) (under the indispensable
assumption that Y (0, 1) 6= L∞(0, 1) or X(0, 1) 6= L1(0, 1), respectively).
It can be easily observed that such a claim fails when T is an arbitrary
kernel integral operator.

We shall now prove the results of this section. We start with the
following:

Lemma 4.10. Let J : (0, 1]→ (0,∞) be a measurable function satisfy-
ing (4.1), let j∈N, and let α∈ [0, j]. Suppose that ‖·‖X(0,1) and ‖·‖Y (0,1)

are rearrangement-invariant norms. Consider the following conditions:

(i) Hj
J : X(0, 1)→→ Y (0, 1);

(ii) lima→0+
sup‖f‖X(0,1)≤1 ‖H

j
J(χ(0,a)f)‖Y (0,1) = 0;

(iii) lima→0+

∥∥∥χ(0,a)(t)
(∫ 1

t
dr
J(r)

)α∥∥∥
Y (0,1)

= 0.

Then (i) implies (ii). Furthermore, provided that (4.11) is satisfied,
(ii) implies (iii).
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Proof: Suppose that (i) holds. Then Hj
J is bounded from X(0, 1) into

Y (0, 1), so, in particular, for every k ∈ N

sup
‖f‖X(0,1)≤1

‖Hj
J(χ(0,1/k)f)‖Y (0,1) ≤ sup

‖f‖X(0,1)≤1

‖Hj
Jf‖Y (0,1) <∞.

Therefore, given k ∈ N, we can find a nonnegative measurable function fk
on (0, 1) such that ‖fk‖X(0,1) ≤ 1 and

(4.24) sup
‖f‖X(0,1)≤1

‖Hj
J(χ(0,1/k)f)‖Y (0,1) < ‖Hj

J(χ(0,1/k)fk)‖Y (0,1) +
1

k
.

Since the sequence (χ(0,1/k)fk)∞k=1 is bounded in X(0, 1), the assump-
tion (i) yields that there is a subsequence (fk`)

∞
`=1 of (fk)∞k=1 such that

(Hj
J(χ(0,1/k`)fk`))

∞
`=1 converges to some function f in the norm of the

space Y (0, 1). Moreover, the subsequence can be found in such

a way that (Hj
J(χ(0,1/k`)fk`))

∞
`=1 converges to f a.e. on (0, 1). But

Hj
J(χ(0,1/k`)fk`)=0 on (1/k`, 1), which implies thatHj

J(χ(0,1/k`)fk`)→ 0
pointwise. Thus, f = 0 a.e. on (0, 1). This yields

lim
`→∞

‖Hj
J(χ(0,1/k`)fk`)‖Y (0,1) = 0.

Now, the inequality (4.24) gives

lim
`→∞

sup
‖f‖X(0,1)≤1

‖Hj
J(χ(0,1/k`)f)‖Y (0,1) = 0.

Since the function

a 7→ sup
‖f‖X(0,1)≤1

‖Hj
J(χ(0,a)f)‖Y (0,1)

is nondecreasing on (0, 1), we obtain (ii), as required.

Now, suppose that (ii) holds and (4.11) is satisfied. If
∫ 1

0
dr
J(r) < ∞,

then necessarily Y (0, 1) 6= L∞(0, 1), so

lim
a→0+

∥∥∥∥∥χ(0,a)(t)

(∫ 1

t

dr

J(r)

)α∥∥∥∥∥
Y (0,1)

≤
(∫ 1

0

dr

J(r)

)α
lim
a→0+

∥∥χ(0,a)

∥∥
Y (0,1)

=0.

Conversely, assume that
∫ 1

0
dr
J(r) = ∞. Given a ∈ (0, 1), there is

b ∈ (0, a) such that

max

(
1,

∫ 1

a

dr

J(r)

)
≤
∫ a

t

dr

J(r)
, t ∈ (0, b).

Then, in particular,

1 ≤
∫ 1

t

dr

J(r)
, t ∈ (0, b),
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and therefore also

1 ≤
(∫ 1

t

dr

J(r)

)j−α
, t ∈ (0, b).

Thus,

lim sup
d→0+

∥∥∥∥∥χ(0,d)(t)

(∫ 1

t

dr

J(r)

)α∥∥∥∥∥
Y (0,1)

≤ lim sup
d→0+

∥∥∥∥∥χ(0,d)(t)

(∫ 1

t

dr

J(r)

)j∥∥∥∥∥
Y (0,1)

= lim sup
d→0+

∥∥∥∥∥χ(0,d)(t)

(∫ a

t

dr

J(r)
+

∫ 1

a

dr

J(r)

)j∥∥∥∥∥
Y (0,1)

≤ lim sup
d→0+

2j

∥∥∥∥∥χ(0,d)(t)

(∫ a

t

dr

J(r)

)j∥∥∥∥∥
Y (0,1)

≤ 2j

∥∥∥∥∥χ(0,a)(t)

(∫ a

t

dr

J(r)

)j∥∥∥∥∥
Y (0,1)

= j!2j
∥∥∥Hj

J(χ(0,a))
∥∥∥
Y (0,1)

(by (4.7))

= j!2j‖1‖X(0,1)

∥∥∥∥Hj
J

(
χ(0,a)

1

‖1‖X(0,1)

)∥∥∥∥
Y (0,1)

≤ j!2j‖1‖X(0,1) sup
‖f‖X(0,1)≤1

∥∥∥Hj
J(χ(0,a)f)

∥∥∥
Y (0,1)

.

Passing to limit when a tends to 0, we obtain (iii), as required.

Proof of Theorem 4.2: (i)⇒ (ii) According to Lemma 4.10, condition (i)
implies

lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hj
J(χ(0,a)f)‖Y (0,1) = 0.
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Fix b ∈ (0, 1). For every t ∈ (0, 1), we have

Hj
J(χ(b,1)f)(t) =

1

(j − 1)!

∫ 1

max(b,t)

|f(s)|
J(s)

(∫ s

t

dr

J(r)

)j−1

ds

≤ 1

(j − 1)!Jb

(∫ 1

t

dr

J(r)

)j−1 ∫ 1

b

|f(s)| ds

≤ 1

(j − 1)!Jb

(∫ 1

t

dr

J(r)

)j−1

‖f‖L1(0,1)

≤ CX
(j − 1)!Jb

(∫ 1

t

dr

J(r)

)j−1

‖f‖X(0,1).

(4.25)

Hence,

lim sup
a→0+

sup
‖f‖X(0,1)≤1

∥∥∥χ(0,a)H
j
Jf
∥∥∥
Y (0,1)

≤ lim sup
a→0+

sup
‖f‖X(0,1)≤1

∥∥∥χ(0,a)H
j
J(χ(0,b)f)

∥∥∥
Y (0,1)

+ lim sup
a→0+

sup
‖f‖X(0,1)≤1

∥∥∥χ(0,a)H
j
J(χ(b,1)f)

∥∥∥
Y (0,1)

≤ sup
‖f‖X(0,1)≤1

∥∥∥Hj
J(χ(0,b)f)

∥∥∥
Y (0,1)

+ lim sup
a→0+

CX
(j − 1)!Jb

∥∥∥∥∥χ(0,a)(t)

(∫ 1

t

dr

J(r)

)j−1
∥∥∥∥∥
Y (0,1)

= sup
‖f‖X(0,1)≤1

∥∥∥Hj
J(χ(0,b)f)

∥∥∥
Y (0,1)

,

thanks to Lemma 4.10. Passing to limit when b tends to 0, we get

lim
a→0+

sup
‖f‖X(0,1)≤1

∥∥∥χ(0,a)H
j
Jf
∥∥∥
Y (0,1)

= 0,

as required.

(ii) ⇒ (i) The proof is completely analogous to that of [23, Theo-
rem 3.1, implication (ii) ⇒ (i)], even with simplifications following from
the fact that we consider rearrangement-invariant spaces over a finite
interval.



Compactness of Higher-Order Sobolev Embeddings 399

(ii) ⇔ (iii) Using the definition of the associate norm and the equal-
ity (4.6), we get

lim
a→0+

sup
‖f‖Y ′(0,1)≤1

‖χ(0,a)f
∗‖(Xrj,J )′(0,1)

= lim
a→0+

sup
‖f‖Y ′(0,1)≤1

∥∥∥RjJ(χ(0,a)f
∗)
∥∥∥
X′(0,1)

= lim
a→0+

sup
‖f‖Y ′(0,1)≤1

sup
‖g‖X(0,1)≤1

∫ 1

0

|g(s)|RjJ(χ(0,a)f
∗)(s) ds

= lim
a→0+

sup
‖g‖X(0,1)≤1

sup
‖f‖Y ′(0,1)≤1

∫ 1

0

χ(0,a)(s)f
∗(s)Hj

Jg(s) ds

= lim
a→0+

sup
‖g‖X(0,1)≤1

sup
‖f‖Y ′(0,1)≤1

∫ 1

0

f∗(s)
(
χ(0,a)H

j
Jg
)∗

(s) ds

= lim
a→0+

sup
‖g‖X(0,1)≤1

‖χ(0,a)H
j
Jg‖Y (0,1).

Note that the second last equality holds because χ(0,a)H
j
Jg is nonincreas-

ing on (0, 1) for every a ∈ (0, 1) and g ∈ X(0, 1). Thus, we have proved

that (ii) holds if and only if Y ′(0, 1)
∗
↪→ (Xr

j,J)′(0, 1). Since the latter

condition is equivalent to (iii), the proof is complete.

Proof of Theorem 4.1: According to Lemma 4.10, (i) implies (ii) (with
no restriction on ‖ · ‖X(0,1), ‖ · ‖Y (0,1), J , and j).

Suppose that condition (4.11) is satisfied. Then the implication (ii)
⇒ (i) follows from the proof of Theorem 4.2. So, assume that Y (0, 1) =

L∞(0, 1),
∫ 1

0
dr
J(r) < ∞ and (ii) holds. We observe that to prove (i),

it is enough to show that for every a ∈ (0, 1), the operator Hj
J,a : f 7→

Hj
J(χ(a,1)f) is compact from X(0, 1) into L∞(0, 1). Indeed, thanks to (ii)

we have

lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hj
Jf −H

j
J,af‖L∞(0,1)

= lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hj
J(χ(0,a)f)‖L∞(0,1) = 0,

so Hj
J will be a norm limit of compact operators, and thus itself a com-

pact operator.



400 L. Slav́ıková

Fix a ∈ (0, 1). For every f ∈ X(0, 1) we can consider the func-

tion Hj
J,af to be defined by (4.5) (with f replaced by χ(a,1)f) on the en-

tire [0, 1]. Then Hj
J,af is continuous on [0, 1], and it follows from (4.25)

(with b = a) and from the fact that
∫ 1

0
dr
J(r) <∞ that the image by Hj

J,a

of the unit ball of X(0, 1) is bounded in C([0, 1]) with the standard

supremum norm by CX
(j−1)!Ja

(∫ 1

0
dr
J(r)

)j−1

.

Now, assume that j > 1. Let 0 ≤ t1 < t2 ≤ 1. Then, using the result
of the previous paragraph with j replaced by j − 1, we get

sup
‖f‖X(0,1)≤1

∣∣∣Hj
J,af(t1)−Hj

J,af(t2)
∣∣∣

= sup
‖f‖X(0,1)≤1

∫ t2

t1

Hj−1
J (χ(a,1)f)(s)

J(s)
ds

≤ sup
‖f‖X(0,1)≤1

∥∥∥Hj−1
J (χ(a,1)f)

∥∥∥
L∞(0,1)

∫ t2

t1

ds

J(s)

≤ CX
(j − 2)!Ja

(∫ 1

0

dr

J(r)

)j−2 ∫ t2

t1

ds

J(s)
.

The last expression goes to 0 when t2 − t1 tends to 0 thanks to the
absolute continuity of the Lebesgue integral. This proves that the image
by Hj

J,a of the unit ball of X(0, 1) is equicontinuous.

Let j = 1 and X(0, 1) 6= L1(0, 1). Then we deduce that

sup
‖f‖X(0,1)≤1

|Hj
J,af(t1)−Hj

J,af(t2)|= sup
‖f‖X(0,1)≤1

∫ t2

t1

χ(a,1)(s)|f(s)|
J(s)

ds

≤ 1

Ja
sup

‖f‖X(0,1)≤1

∫ t2

t1

|f(s)| ds

≤ 1

Ja
sup

‖f‖X(0,1)≤1

sup
λ1(E)≤t2−t1

‖χEf‖L1(0,1),

which goes to 0 when t2−t1 tends to 0 thanks to the almost-compact em-

bedding X(0, 1)
∗
↪→ L1(0, 1). This proves the equicontinuity in this case.

Arzela–Ascoli theorem now yields that Hj
J,a maps the unit ball of X(0, 1)

into a relatively compact set in C([0, 1]). Since the space C([0, 1]) is

continuously embedded into L∞(0, 1), the operator Hj
J,a is compact

from X(0, 1) into L∞(0, 1), as required.
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Finally, suppose that X(0, 1)=L1(0, 1), Y (0, 1)=L∞(0, 1), and j=1.
We have

lim
a→0+

sup
‖f‖X(0,1)≤1

∥∥HJ(χ(0,a)f)
∥∥
Y (0,1)

≈ lim
a→0+

sup
‖f‖L1(0,1)≤1

∥∥HJ(χ(0,a)f)
∥∥
L∞(0,1)

= lim
a→0+

sup
‖f‖L1(0,1)≤1

∫ a

0

|f(s)|
J(s)

ds

= lim
a→0+

∥∥∥∥χ(0,a)
1

J

∥∥∥∥
L∞(0,1)

= lim
a→0+

ess supt∈(0,a)

1

J(t)
,

(4.26)

hence, condition (ii) is satisfied if and only if lima→0+
ess supt∈(0,a)

1
J(t) =

0. Thus, the implication (ii) ⇒ (i) holds in the case that X(0, 1) =
L1(0, 1), Y (0, 1) = L∞(0, 1), j = 1, and lima→0+ ess supt∈(0,a)

1
J(t) 6= 0,

because the assumption (ii) is not fulfilled.
To complete the proof, we will show that ifX(0, 1)=L1(0, 1), Y (0, 1)=

L∞(0, 1), and j = 1 then condition (i) is not satisfied. Indeed, since
1
J > 0 on (0, 1), there is ε > 0 and a set M ⊆ (0, 1) of measure 1

2 such

that 1
J ≥ ε on M . Let (xn)∞n=1 be a sequence of points in [0, 1) fulfilling

λ1((xn, 1) ∩M) = 1
2n , n ∈ N. Given n ∈ N, set fn = 2nχ(xn,xn+1]∩M .

Then

‖fn‖X(0,1)≈‖fn‖L1(0,1) = 2nλ1((xn, xn+1] ∩M)

= 2n(λ1((xn, 1) ∩M)− λ1((xn+1, 1) ∩M))=
1

2
.

Therefore, the sequence (fn)∞n=1 is bounded in X(0, 1). Let m,n ∈ N,
m < n. Since both HJfm and HJfn are continuous on (0, 1), we have

‖HJfn −HJfm‖Y (0,1) ≈ ‖HJfn −HJfm‖L∞(0,1)

≥ |HJfn(xn)−HJfm(xn)|

= 2n
∫ xn+1

xn

χM (s)

J(s)
ds ≥ ε

2
.

Consequently, there is no subsequence (fnk)∞k=1 of (fn)∞n=1 for which
(HJfnk)∞k=1 is convergent in Y (0, 1). Hence, HJ is not compact from
X(0, 1) into Y (0, 1). The proof is complete.
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Proof of Proposition 4.5: Suppose that ‖ · ‖Y (0,1) is a rearrangement-in-
variant norm fulfilling (4.16). We start by showing that ‖ · ‖Y dj,J (0,1) is

a rearrangement-invariant norm. Properties (P5), (P6) as well as the
first two properties in (P1) trivially hold. Since the functional ‖ ·‖L1(0,1)

satisfies the axioms of rearrangement-invariant norms, we only have to
verify that the functional ‖ · ‖Z(0,1) defined by

‖f‖Z(0,1) = sup
h∼f
‖Hj

Jh‖Y (0,1), f ∈M(0, 1),

fulfils the triangle inequality and properties (P2)–(P4). However, (P2)
and (P3) can be proved exactly in the same way as it is done in [8,
proof of Lemma 4.2]. Furthermore, using the fact that each nonnega-
tive function equimeasurable to 1 is equal to 1 a.e., and applying the
equality (4.7) with a = 1, we get

(4.27) ‖1‖Z(0,1) = ‖Hj
J(1)‖Y (0,1) =

1

j!

∥∥∥∥∥
(∫ 1

t

dr

J(r)

)j∥∥∥∥∥
Y (0,1)

<∞,

which proves (P4). Thus, it only remains to verify the triangle inequality.
Suppose that u, v are nonnegative simple functions on (0, 1). We will

show that

(4.28) ‖u+ v‖Z(0,1) ≤ ‖u‖Z(0,1) + ‖v‖Z(0,1).

Assume that a nonnegative function h on (0, 1) satisfies h ∼ u+v. Then
it is not hard to observe that there exist nonnegative simple functions hu
and hv on (0, 1) such that h = hu + hv, hu ∼ u, and hv ∼ v. Hence,

‖Hj
Jh‖Y (0,1) ≤ ‖Hj

Jhu‖Y (0,1) + ‖Hj
Jhv‖Y (0,1) ≤ ‖u‖Z(0,1) + ‖v‖Z(0,1).

Passing to supremum over all h we get (4.28).
Let f, g ∈ M+(0, 1). Then there are two sequences of nonnegative

simple functions (un)∞n=1 and (vn)∞n=1 such that un ↑ f and vn ↑ g.
Then also un + vn ↑ f + g. Thus, using the property (P3) for ‖ · ‖Z(0,1)

(which has already been verified) and the inequality (4.28), we obtain

‖f + g‖Z(0,1) = lim
n→∞

‖un + vn‖Z(0,1) ≤ lim
n→∞

(
‖un‖Z(0,1) + ‖vn‖Z(0,1)

)
= lim
n→∞

‖un‖Z(0,1)+ lim
n→∞

‖vn‖Z(0,1) =‖f‖Z(0,1) + ‖g‖Z(0,1),

as required.
The assertion (4.18) follows from the definition of the space Y dj,J(0, 1).

Furthermore, let ‖ · ‖X(0,1) be a rearrangement-invariant norm such that
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Hj
J : X(0, 1) → Y (0, 1). Then there is a constant C > 0 such that for

every f ∈ X(0, 1),

‖Hj
Jf‖Y (0,1) ≤ C‖f‖X(0,1).

Thus,

‖f‖Y dj,J (0,1) = sup
h∼f
‖Hj

Jf‖Y (0,1) + ‖f‖L1(0,1) ≤ (C + CX)‖f‖X(0,1).

Hence, we obtain X(0, 1) ↪→ Y dj,J(0, 1), that is, Y dj,J(0, 1) is the largest

rearrangement-invariant space for which (4.18) is satisfied.
Finally, suppose that a rearrangement-invariant norm ‖ · ‖Y (0,1) does

not fulfil (4.16). By (4.7) applied with a = 1,

‖Hj
J(1)‖Y (0,1) =

1

j!

∥∥∥∥∥
(∫ 1

t

dr

J(r)

)j∥∥∥∥∥
Y (0,1)

=∞,

so Hj
J(1) /∈ Y (0, 1). Since the constant function 1 belongs to each

rearrangement-invariant space over (0, 1), there is no rearrangement-in-
variant space Y dj,J(0, 1) for which (4.18) is satisfied.

Proof of Theorem 4.6: Due to Theorem 4.1, condition (i) is equivalent
to

(4.29) lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hj
J(χ(0,a)f)‖Y (0,1) = 0.

Obviously, we have (ii) ⇒ (4.29). Conversely, suppose that (4.29) holds
and fix b ∈ (0, 1). Using the first part of (4.25) applied to χEf instead
of f , we get

lim sup
a→0+

sup
‖f‖X(0,1)≤1

sup
λ1(E)≤a

∥∥∥Hj
J(χEf)

∥∥∥
Y (0,1)

≤ lim sup
a→0+

sup
‖f‖X(0,1)≤1

sup
λ1(E)≤a

∥∥∥Hj
J(χ(0,b)χEf)

∥∥∥
Y (0,1)

+ lim sup
a→0+

sup
‖f‖X(0,1)≤1

sup
λ1(E)≤a

∥∥∥Hj
J(χ(b,1)χEf)

∥∥∥
Y (0,1)

≤ sup
‖f‖X(0,1)≤1

∥∥∥Hj
J(χ(0,b)f)

∥∥∥
Y (0,1)

+
1

(j−1)!Jb

∥∥∥∥∥
(∫ 1

t

dr

J(r)

)j−1
∥∥∥∥∥
Y (0,1)

lim sup
a→0+

sup
‖f‖X(0,1)≤1

sup
λ1(E)≤a

‖χEf‖L1(0,1)

= sup
‖f‖X(0,1)≤1

∥∥∥Hj
J(χ(0,b)f)

∥∥∥
Y (0,1)

,
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becauseX(0, 1)
∗
↪→ L1(0, 1) (thanks to the assumptionX(0, 1) 6=L1(0, 1))

and∥∥∥∥∥
(∫ 1

t

dr

J(r)

)j−1
∥∥∥∥∥
Y (0,1)

≤

∥∥∥∥∥χ(0, 12 )(t)

(∫ 1

t

dr

J(r)

)j−1
∥∥∥∥∥
Y (0,1)

+

∥∥∥∥∥χ( 1
2 ,1)(t)

(∫ 1

t

dr

J(r)

)j−1
∥∥∥∥∥
Y (0,1)

≤ 1∫ 1
1
2

dr
J(r)

∥∥∥∥∥χ(0, 12 )(t)

(∫ 1

t

dr

J(r)

)j∥∥∥∥∥
Y (0,1)

+

(∫ 1

1
2

dr

J(r)

)j−1 ∥∥∥χ( 1
2 ,1)(t)

∥∥∥
Y (0,1)

<∞,

thanks to (4.16) and to the fact that 0 <
∫ 1

1
2

dr
J(r) <∞. Passing to limit

when b tends to 0, we obtain (ii).
It remains to show that (ii) holds if and only if (iii) holds. Fix a ∈

(0, 1). Then

sup
‖f‖X(0,1)≤1

sup
λ1(E)≤a

‖Hj
J(χEf)‖Y (0,1)

≤ sup
‖f‖X(0,1)≤1

sup
λ1(E)≤a

(
sup

h∼χEf
‖Hj

Jh‖Y (0,1) + ‖χEf‖L1(0,1)

)

≤ sup
‖f‖X(0,1)≤1

sup
λ1(E)≤a

‖Hj
J(χEf)‖Y (0,1)

+ sup
‖f‖X(0,1)≤1

sup
λ1(E)≤a

‖χEf‖L1(0,1).

(4.30)

Note that the second inequality is true thanks to the fact that whenever
a function f fulfils ‖f‖X(0,1) ≤ 1, a set E ⊆ (0, 1) satisfies λ1(E) ≤ a and
h is a function equimeasurable to χEf , then h = χ{|h|>0}h, h belongs to
the unit ball ofX(0, 1) and λ1({|h| > 0})=λ1({χE |f | > 0})≤λ1(E) ≤ a.

Assume that (ii) holds. Since X(0, 1) 6= L1(0, 1), we have X(0, 1)
∗
↪→

L1(0, 1), that is,

lim
a→0+

sup
‖f‖X(0,1)≤1

sup
λ1(E)≤a

‖χEf‖L1(0,1) = 0.
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Thus, according to the second inequality in (4.30), we obtain

lim
a→0+

sup
‖f‖X(0,1)≤1

sup
λ1(E)≤a

‖χEf‖Y dj,J (0,1)

= lim
a→0+

sup
‖f‖X(0,1)≤1

sup
λ1(E)≤a

(
sup

h∼χEf
‖Hj

Jh‖Y (0,1) + ‖χEf‖L1(0,1)

)
= 0,

which yields (iii).
Conversely, assume that (iii) holds. Then the first inequality in (4.30)

yields (ii). The proof is complete.

5. Main results

In the present section we state and prove the main results of this
paper. They concern derivation of m-th compact Sobolev embeddings
from compactness of the one-dimensional operator Hm

I defined in the
previous section. Here, I stands for a function which is related to the
underlying measure space (Ω, ν) by the fact the (Ω, ν, I) is a compatible
triplet (recall that the notion of a compatible triplet was introduced in
Definition 3.1).

Theorem 5.1. Assume that (Ω, ν, I) is a compatible triplet. Let m ∈ N
and let ‖·‖X(0,1) and ‖·‖Y (0,1) be rearrangement-invariant norms. Then

(5.1) Hm
I : X(0, 1)→→ Y (0, 1)

holds if and only if

(5.2) lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
I (χ(0,a)f)‖Y (0,1) = 0

holds. Moreover, each of the conditions (5.1) and (5.2) implies

(5.3) V mX(Ω, ν) ↪→↪→ Y (Ω, ν).

Let us remark that further characterization of (5.1) and (5.2) can be
obtained by applying Theorems 4.2 and 4.6 with J = I and j = m.

Remark 5.2. It turns out that if we take the supremum in (5.2) over
the smaller set of all nonincreasing functions belonging to the unit ball
of X(0, 1), we do not change the validity of (5.2). In other words, (5.2)
holds if and only if

(5.4) lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
I (χ(0,a)f

∗)‖Y (0,1) = 0.
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This claim can be proved by methods of [9, Section 9]. Namely, we first
observe that, for every a ∈ (0, 1] and f ∈M(0, 1),∥∥χ(0,a)(t)R

m
I f
∗(t)

∥∥
X′(0,1)

≤
∥∥∥∥χ(0,a)(t) sup

t≤s≤a
RmI f

∗(s)

∥∥∥∥
X′(0,1)

≤ 2m+1
∥∥χ(0,a)(t)R

m
I f
∗(t)

∥∥
X′d(0,1)

≤ 2m+1
∥∥χ(0,a)(t)R

m
I f
∗(t)

∥∥
X′(0,1)

,

(5.5)

where the functional ‖ · ‖X′d(0,1) is defined by

‖f‖X′d(0,1) = sup
‖g‖X(0,1)

∫ 1

0

g∗(s)|f(s)| ds, f ∈M(0, 1).

Then it suffices to show that for every a ∈ (0, 1],

(5.6) sup
‖f‖X(0,1)≤1

‖Hm
I (χ(0,a)f)‖Y (0,1) = sup

‖f‖Y ′(0,1)≤1

‖χ(0,a)R
m
I f
∗‖X′(0,1)

and

(5.7) sup
‖f‖X(0,1)≤1

‖Hm
I (χ(0,a)f

∗)‖Y (0,1) = sup
‖f‖Y ′(0,1)≤1

‖χ(0,a)R
m
I f
∗‖X′d(0,1).

We note that the only nontrivial inequality in (5.5) is the second one,
which was proved in [9, Theorem 9.5] in the case when a = 1. Equali-
ties (5.6) and (5.7) were proved for a = 1 in [9, Corollary 9.8]. All the
proofs can be easily extended also to general a ∈ (0, 1].

Suppose that I : (0, 1] → (0,∞) is a nondecreasing function satisfy-
ing (3.1) and let m ∈ N. Set

(5.8) J(t) =
(I(t))m

tm−1
, t ∈ (0, 1].

We observe that J is measurable on (0, 1] and fulfils (4.1). We can
therefore consider operators Km

I and SmI defined by Km
I = HJ and

SmI = RJ , respectively. Then

Km
I f(t) =

∫ 1

t

|f(s)| s
m−1

(I(s))m
ds, f ∈M(0, 1), t ∈ (0, 1),

and

SmI f(t) =
tm−1

(I(t))m

∫ t

0

|f(s)| ds, f ∈M(0, 1), t ∈ (0, 1).

Although it is of use to define the operators Km
I and SmI for all func-

tions I with the properties stated above (see, e.g., Theorem 7.1), these
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operators come into play especially in the case when I satisfies

(5.9)

∫ s

0

dr

I(r)
≈ s

I(s)
, s ∈ (0, 1),

up to multiplicative constants possibly depending on I. In this situation,
conditions (5.1) and (5.2) can be equivalently reformulated using the
rather simple operator Km

I instead of the kernel integral operator Hm
I .

The corresponding result is the following theorem. Its proof strongly
depends on a result proved in [9] which relates boundedness of Hm

I to
boundedness of Km

I .

Theorem 5.3. Assume that (Ω, ν, I) is a compatible triplet and that
(5.9) is satisfied. Let m ∈ N and let ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) be rear-
rangement-invariant norms.

(a) Suppose that

(5.10) lim
t→0+

tm−1

(I(t))m
6= 0.

Then

(5.11) Km
I : X(0, 1)→→ Y (0, 1)

holds if and only if

(5.12) lim
a→0+

sup
‖f‖X(0,1)≤1

‖Km
I (χ(0,a)f)‖Y (0,1) = 0

holds. Moreover, each of the conditions (5.11) and (5.12) implies

(5.13) V mX(Ω, ν) ↪→↪→ Y (Ω, ν).

(b) Suppose that

(5.14) lim
t→0+

tm−1

(I(t))m
= 0.

Then (5.13) is satisfied for all pairs of rearrangement-invariant
norms ‖ · ‖X(0,1) and ‖ · ‖Y (0,1).

Analogously to the general case, which we dealt with in Theorem 5.1,
one can obtain further characterization of (5.11) and (5.12) by applying
Theorems 4.2 and 4.6 with J as in (5.8) and j = 1. Notice that in this
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situation,

∫ 1

0

dr

J(r)
=

∫ 1

0

rm−1

(I(r))m
dr ≤

(
sup
r∈(0,1]

r

I(r)

)m−1 ∫ 1

0

dr

I(r)

≈ 1(
infr∈(0,1]

I(r)
r

)m−1

I(1)
<∞,

thanks to (5.9) and (3.1). Therefore, (4.16) is satisfied for all rearrange-
ment-invariant norms ‖ · ‖Y (0,1), since∥∥∥∥∥

(∫ 1

t

dr

J(r)

)m∥∥∥∥∥
Y (0,1)

≤
(∫ 1

0

dr

J(r)

)m
‖1‖Y (0,1) <∞.

Remarks 5.4. (i) If I : (0, 1] → (0,∞) is a nondecreasing function satis-
fying (3.1) and m ∈ N is such that (5.14) is fulfilled, then it will follow
from the proof of Theorem 5.3 that (5.12) is satisfied for all pairs of
rearrangement-invariant norms ‖ · ‖X(0,1) and ‖ · ‖Y (0,1). However, The-
orem 4.1 applied with J as in (5.8) and j = 1 yields that (5.11) is not
satisfied if X(0, 1) = L1(0, 1) and Y (0, 1) = L∞(0, 1). Therefore, in
contrast to the part (a), in the part (b) we do not have the equivalence
of (5.11) and (5.12). Moreover, compactness of the operator Km

I seems
not to be appropriate to characterize compact Sobolev embeddings in
this case, and condition (5.12) turns out to be a suitable substitute
for (5.11).

(ii) Notice that to prove the equivalence of (5.11) and (5.12) in the
part (a), we do not need to assume that I satisfies (5.9).

(iii) The assumption (5.9) is also not necessary for the validity of
the part (b) of Theorem 5.3. Indeed, Theorem 7.1, which is stated and
proved in Section 7, yields that for any nondecreasing function I on (0, 1]
satisfying (3.1), condition (5.14) implies

lim
a→0+

sup
‖f‖L1(0,1)≤1

‖Hm
I (χ(0,a)f)‖L∞(0,1) = 0.

Then, according to Theorem 5.1, we get V mL1(Ω, ν) ↪→↪→ L∞(Ω, ν).
Thanks to embeddings X(Ω, ν) ↪→ L1(Ω, ν) and L∞(Ω, ν) ↪→ Y (Ω, ν),
which hold for all rearrangement-invariant norms ‖·‖X(0,1) and ‖·‖Y (0,1),
we obtain (5.13).
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(iv) The assumption (5.9) is essential for the proof that (5.11)
(or (5.12)) implies (5.13) in the part (a). Suppose that I is the func-

tion defined by I(t) = t
√

log 2
t , t ∈ (0, 1]. Then it follows from the

observations made in Section 3 that (Rn, γn, I) is a compatible triplet.
Furthermore, notice that I satisfies (5.10) for every m ∈ N but does not
satisfy (5.9). Moreover, if m > 2 then

lim
a→0+

sup
‖f‖L∞(0,1)≤1

‖Km
I (χ(0,a)f)‖L∞(0,1)

= lim
a→0+

sup
‖f‖L∞(0,1)≤1

∫ a

0

|f(s)|
s(log 2

s )
m
2

ds

= lim
a→0+

∫ a

0

ds

s(log 2
s )

m
2

= 0.

Hence, (5.12) is satisfied with ‖ · ‖X(0,1) = ‖ · ‖Y (0,1) = ‖ · ‖L∞(0,1).
However, (5.13) is not fulfilled with (Ω, ν) = (Rn, γn) in this case, since
even the continuous embedding V mL∞(Rn, γn) ↪→ L∞(Rn, γn) does not
hold (see [9, Theorem 7.13]).

The remaining part of this section is devoted to proofs of Theorems 5.1
and 5.3. We start with an auxiliary result which shows that, in our
setting, the unit ball of each Sobolev space is compact in measure.

Lemma 5.5. Assume that (Ω, ν) is as in Section 3. Let m ∈ N and
let ‖ · ‖X(0,1) be a rearrangement-invariant norm. Then every sequence
(uk)∞k=1 bounded in V mX(Ω, ν) contains a subsequence (uk`)

∞
`=1 converg-

ing ν-a.e. on Ω. In particular, the subsequence (uk`)
∞
`=1 is convergent in

measure.

Proof: For a.e. x ∈ Ω we can find an open ball Bx centered in x such
that Bx ⊆ Ω and ess infBx ω > 0. Denote by N the set of points in Ω
for which such a ball does not exist. Then ν(N) = 0 and we have
Ω \ N ⊆

⋃
x∈Ω\N Bx. Due to the separability of Ω \ N , there is a

sequence (xj)
∞
j=1 of points in Ω \N such that Ω \N ⊆

⋃∞
j=1Bxj . Since

the sequence (uk)∞k=1 is bounded in V mX(Ω, ν), it is also bounded in
V 1L1(Ω, ν). Hence, for every j ∈ N and k ∈ N we have

‖uk‖V 1L1(Ω,ν) ≥
∫
Bxj

(|uk(x)|+ |∇uk(x)|)ω(x) dx

≥
(

ess infBxj ω
)∫

Bxj

(|uk|+ |∇uk|) dx

=
(

ess infBxj ω
)
‖uk‖V 1L1(Bxj ).
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Therefore, (uk)∞k=1 is bounded in V 1L1(Bxj ). Denote u0
k = uk, k ∈ N.

By induction, for every j ∈ N we will construct a subsequence (ujk)∞k=1 of

the sequence (uj−1
k )∞k=1 converging a.e. on Bxj . Suppose that, for some

j ∈ N, we have already found the sequence (uj−1
k )∞k=1. Since (uj−1

k )∞k=1

is bounded in V 1L1(Bxj ) and the compact embedding V 1L1(Bxj ) ↪→↪→
L1(Bxj ) holds, we can find a subsequence (ujk)∞k=1 of (uj−1

k )∞k=1 converg-

ing in L1(Bxj ). Passing, if necessary, to another subsequence, (ujk)∞k=1

can be found in such a way that it converges a.e. on Bxj . Now, the

diagonal sequence (ukk)∞k=1 converges a.e. (or, what is the same, ν-a.e.)
on
⋃∞
j=1Bxj = Ω \ N . Since ν(N) = 0, (ukk)∞k=1 converges ν-a.e. on Ω,

as required. Furthermore, it is a well known fact that each sequence
converging ν-a.e. is convergent in measure.

We also need the following

Lemma 5.6. Let I : (0, 1] → (0,∞) be a nondecreasing function satis-
fying (3.1) and

(5.15)

∫ 1

0

ds

I(s)
<∞.

Then

‖f‖(L∞)d1,I(0,1) ≈
∫ 1

0

f∗(s)

I(s)
ds, f ∈M(0, 1),

up to multiplicative constants depending on I.

Proof: We first observe that condition (4.16) is fulfilled with j = 1,
J = I, and ‖ · ‖Y (0,1) = ‖ · ‖L∞(0,1). Indeed, we have∥∥∥∥∫ 1

t

dr

I(r)

∥∥∥∥
L∞(0,1)

=

∫ 1

0

dr

I(r)
<∞,

thanks to (5.15). The rearrangement-invariant norm ‖ · ‖(L∞)d1,I(0,1) is

therefore well defined.
Let f ∈M(0, 1). We have

‖f‖(L∞)d1,I(0,1) = sup
0≤h∼f

∥∥∥∥∫ 1

t

h(s)

I(s)
ds

∥∥∥∥
L∞(0,1)

+ ‖f‖L1(0,1)

= sup
0≤h∼f

∫ 1

0

h(s)

I(s)
ds+ ‖f‖L1(0,1).
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Since f∗ is a nonnegative function equimeasurable to f ,∫ 1

0

f∗(s)

I(s)
ds ≤ sup

0≤h∼f

∫ 1

0

h(s)

I(s)
ds+ ‖f‖L1(0,1).

Conversely, using the Hardy–Littlewood inequality and the monotonicity
of I we obtain

sup
0≤h∼f

∫ 1

0

h(s)

I(s)
ds+ ‖f‖L1(0,1) ≤

∫ 1

0

f∗(s)

I(s)
ds+

∫ 1

0

f∗(s) ds

≤ (1 + I(1))

∫ 1

0

f∗(s)

I(s)
ds.

The proof is complete.

Proof of Theorem 5.1: Since I is nondecreasing on (0, 1], we have

ess supt∈(0,a)

1

I(t)
= lim
t→0+

1

I(t)
, a ∈ (0, 1).

Thus,

(5.16) lim
a→0+

ess supt∈(0,a)

1

I(t)
= lim
t→0+

1

I(t)
6= 0.

Theorem 4.1 now gives that (5.1) holds if and only if (5.2) holds.
Suppose that (5.1) (or, equivalently, (5.2)) is satisfied. Moreover,

assume that

Y (0, 1) 6= L∞(0, 1) or

∫ 1

0

ds

I(s)
=∞.

Then, due to Theorem 4.2, we have Xr
m,I(0, 1)

∗
↪→ Y (0, 1), or, what is

the same, Xr
m,I(Ω, ν)

∗
↪→ Y (Ω, ν).

Assume that (uk)∞k=1 is a sequence bounded in V mX(Ω, ν). Due to
Lemma 5.5, we can find its subsequence (uk`)

∞
`=1 which converges to some

function u ν-a.e. on Ω. Since Hm
I : X(0, 1) → Xr

m,I(0, 1), Theorem 3.2

implies that V mX(Ω, ν) ↪→ Xr
m,I(Ω, ν). Hence, (uk`)

∞
`=1 is bounded in

Xr
m,I(Ω, ν). By the Fatou lemma,

‖u‖Xrm,I(Ω,ν) ≤ lim inf
`→∞

‖uk`‖Xrm,I(Ω,ν) <∞,

so u ∈ Xr
m,I(Ω, ν) and (uk` − u)∞`=1 is therefore bounded in Xr

m,I(Ω, ν)

as well. We have Xr
m,I(Ω, ν)

∗
↪→ Y (Ω, ν), so, according to [24, Theo-

rem 3.1], (uk` − u) → 0 in Y (Ω, ν), i.e., uk` → u in Y (Ω, ν). Thus,
V mX(Ω, ν) ↪→↪→ Y (Ω, ν).
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Conversely, assume that Y (0, 1) = L∞(0, 1) and
∫ 1

0
1/I(s) ds < ∞

(recall that the assumption (5.1) is still in progress). We start with
the case when m = 1. The proof of Lemma 5.6 then yields that con-
dition (4.16) is fulfilled with J = I and j = 1. Furthermore, since the
operator HI is not compact from L1(0, 1) into L∞(0, 1) (see the last part
of the proof of Theorem 4.1), we have X(0, 1) 6= L1(0, 1). Thus, due to
Theorem 4.6,

(5.17) X(0, 1)
∗
↪→ (L∞)d1,I(0, 1).

Furthermore, Proposition 4.5 combined with Theorem 3.2 yield that

(5.18) V 1(L∞)d1,I(Ω, ν) ↪→ L∞(Ω, ν).

Since
∫ 1

0
1/I(s) ds <∞, we obtain by applying Proposition 3.3 that

(5.19) V 1(L∞)d1,I(Ω, ν)=W 1(L∞)d1,I(Ω, ν) and V 1X(Ω, ν)=W 1X(Ω, ν),

up to equivalent norms.
Let (uk)∞k=1 be a bounded sequence in V 1X(Ω, ν). Then it is bounded

also in W 1X(Ω, ν). Without loss of generality we may assume that

(5.20) ‖uk‖W 1X(Ω,ν) ≤ 1, k ∈ N.

Due to Lemma 5.5, there is a subsequence (vk)∞k=1 of the sequence (uk)∞k=1

which converges in measure to some function v. Our aim is to show
that (vk)∞k=1 is a Cauchy sequence in L∞(Ω, ν). Then, thanks to the
completeness of L∞(Ω, ν), (vk)∞k=1 will converge to v in the norm of the
space L∞(Ω, ν). This will prove that V 1X(Ω, ν) is compactly embedded
into L∞(Ω, ν).

Fix ε > 0 and observe that for all k, l ∈ N we have

(5.21) |vk − v`| = min{|vk − v`|, ε/2}+ max{|vk − v`| − ε/2, 0}.

Since vk, vl and the constant function ε/2 are weakly differentiable on Ω,
|vk − v`| − ε/2 is weakly differentiable on Ω as well and

∇(|vk − v`| − ε/2) = ∇|vk − v`|
= sgn(vk − v`)∇(vk − vl)=sgn(vk − v`)(∇vk −∇v`)

a.e. on Ω. Furthermore, max{|vk − v`| − ε/2, 0} is weakly differentiable
on Ω and

∇max{|vk − v`| − ε/2, 0}

=

{
sgn(vk − v`)(∇vk −∇v`) a.e. on {x ∈ Ω : |vk − v`| > ε/2},
0 a.e. on {x ∈ Ω : |vk − v`| ≤ ε/2},
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i.e.,

(5.22) ∇max{|vk−v`|−ε/2, 0} = χ{|vk−v`|>ε/2} sgn(vk−v`)(∇vk−∇v`)

a.e. on Ω. Thus,

(5.23) |∇max{|vk − v`| − ε/2, 0}| = χ{|vk−v`|>ε/2}|∇vk −∇v`|

a.e. on Ω (and therefore also ν-a.e. on Ω, since ν is absolutely continuous
with respect to the n-dimensional Lebesgue measure).

We have

‖vk − v`‖L∞(Ω,ν) ≤ ‖min{|vk − v`|, ε/2}‖L∞(Ω,ν)

+ ‖max{|vk − v`| − ε/2, 0}‖L∞(Ω,ν) (by (5.21))

≤ ε/2 + C‖max{|vk−v`|−ε/2, 0}‖W 1(L∞)d1,I(Ω,ν)

(by (5.18) and (5.19))

= ε/2 + C‖χ{|vk−v`|>ε/2}|∇vk −∇v`|‖(L∞)d1,I(Ω,ν)

+ C‖χ{|vk−v`|>ε/2}(|vk−v`|−ε/2)‖(L∞)d1,I(Ω,ν) (by (5.23))

≤ ε/2 + C‖χ{|vk−v`|>ε/2}|∇vk|‖(L∞)d1,I(Ω,ν)

+ C‖χ{|vk−v`|>ε/2}|∇v`|‖(L∞)d1,I(Ω,ν)

+ C‖χ{|vk−v`|>ε/2}vk‖(L∞)d1,I(Ω,ν) + C‖χ{|vk−v`|>ε/2}vl‖(L∞)d1,I(Ω,ν)

= ε/2 + C‖(χ{|vk−v`|>ε/2}|∇vk|)
∗
ν‖(L∞)d1,I(0,1)

+ C‖(χ{|vk−v`|>ε/2}|∇v`|)
∗
ν‖(L∞)d1,I(0,1)

+ C‖(χ{|vk−v`|>ε/2}vk)∗ν‖(L∞)d1,I(0,1)

+ C‖(χ{|vk−v`|>ε/2}vl)
∗
ν‖(L∞)d1,I(0,1)

≤ ε/2+4C sup
‖f‖X(0,1)≤1

‖χ(0,ν({|vk−v`|>ε/2}))f
∗‖(L∞)d1,I(0,1) (by (5.20)),

(5.24)

where C > 0 is the constant from the embedding W 1(L∞)d1,I(Ω, ν) ↪→
L∞(Ω, ν).

Thanks to (5.17), there is δ > 0 such that

(5.25) sup
‖f‖X(0,1)≤1

‖χ(0,δ)f
∗‖(L∞)d1,I(0,1) <

ε

8C
.
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Since (vk)∞k=1 converges in measure to v, we can find k0 ∈ N such that
for every k ≥ k0

ν({x ∈ Ω : |vk(x)− v(x)| > ε/4}) < δ/2.

We observe that for all k, ` ≥ k0,

{x ∈ Ω : |vk(x)− v`(x)| > ε/2}
⊆ {x ∈ Ω : |vk(x)− v(x)| > ε/4} ∪ {x ∈ Ω : |v`(x)− v(x)| > ε/4}.

Therefore,

(5.26) ν({x∈Ω : |vk(x)−v`(x)|>ε/2})≤ν({x∈Ω : |vk(x)−v(x)|>ε/4})
+ν({x∈Ω : |v`(x)−v(x)|>ε/4})<δ.

Consequently, by (5.24) and (5.25),

‖vk − v`‖L∞(Ω,ν) ≤ ε/2 + 4C sup
‖f‖X(0,1)≤1

‖χ(0,δ)f
∗‖(L∞)d1,I(0,1) < ε.

Hence, (vk)∞k=1 is a Cauchy sequence in L∞(Ω, ν), as required.
Finally, assume that m > 1. According to Lemma 5.6, for every

g ∈M(0, 1) we have

‖g‖(L∞)d1,I(0,1) ≈
∫ 1

0

g∗(s)

I(s)
ds = ‖HIg

∗‖L∞(0,1),

up to multiplicative constants depending on I. Thus, whenever f ∈
M(0, 1) and a ∈ (0, 1), then

‖Hm
I (χ(0,a)f)‖L∞(0,1) = ‖HI(H

m−1
I (χ(0,a)f))‖L∞(0,1)

= ‖HI(H
m−1
I (χ(0,a)f))∗‖L∞(0,1)

≈ ‖Hm−1
I (χ(0,a)f)‖(L∞)d1,I(0,1),

up to multiplicative constants depending on I. Assumption (5.2) is there-
fore equivalent to

(5.27) lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm−1
I (χ(0,a)f)‖(L∞)d1,I(0,1) = 0.

Since

lim
a→0+

‖χ(0,a)‖(L∞)d1,I(0,1) ≈ lim
a→0+

∫ a

0

ds

I(s)
= 0,

where the equivalence holds up to multiplicative constants depending
on I, we obtain that (L∞)d1,I(0, 1) 6= L∞(0, 1). The first part of the
proof now implies that

(5.28) V m−1X(Ω, ν) ↪→↪→ (L∞)d1,I(Ω, ν).
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Let (uk)∞k=1 be a bounded sequence in V mX(Ω, ν). Then (uk)∞k=1

is bounded in L1(Ω, ν), so (
∫

Ω
uk dν)∞k=1 is a bounded sequence of real

numbers and we can find a subsequence (u0
k)∞k=1 of (uk)∞k=1 such that

the sequence (
∫

Ω
u0
k dν)∞k=1 is convergent.

For i = 1, 2, . . . , n, consider the sequence (Diu
0
k)∞k=1 consisting of

weak derivatives with respect to the i-th variable of elements of the se-
quence (u0

k)∞k=1. Owing to the boundedness of (uk)∞k=1 in V mX(Ω, ν),
all these sequences are bounded in V m−1X(Ω, ν). Now, the compact
embedding (5.28) yields that we can inductively find sequences (uik)∞k=1,

i = 1, 2, . . . , n, such that (uik)∞k=1 is a subsequence of (ui−1
k )∞k=1 ful-

filling that (Diu
i
k)∞k=1 is convergent in (L∞)d1,I(Ω, ν). Since a subse-

quence of a convergent sequence is still convergent, we have, in partic-
ular, that (Dju

n
k )∞k=1 is a Cauchy sequence in (L∞)d1,I(Ω, ν) for every

j ∈ {1, 2, . . . , n}.
Let ε > 0. By Theorem 3.2, the embedding V 1(L∞)d1,I(Ω, ν) ↪→

L∞(Ω, ν) is equivalent to a Poincaré inequality. Hence, there is a con-
stant D > 0 such that for every u ∈ V 1(L∞)d1,I(Ω, ν),∥∥∥∥u− ∫

Ω

u dν

∥∥∥∥
L∞(Ω,ν)

≤ D ‖|∇u|‖(L∞)d1,I(Ω,ν)

≤ D
n∑
j=1

‖Dju‖(L∞)d1,I(Ω,ν) .
(5.29)

Since (Dju
n
k )∞k=1 is a Cauchy sequence in (L∞)d1,I(Ω, ν) for every j ∈

{1, 2, . . . , n}, we can find k0 ∈ N such that ‖Dju
n
k −Dju

n
` ‖(L∞)d1,I(Ω,ν) <

ε/Dn whenever k, ` ≥ k0 and j ∈ {1, 2, . . . , n}. Thus, inequality (5.29)
applied to u = unk − un` implies that for every k, ` ≥ k0,∥∥∥∥unk−un` −∫

Ω

(unk−un` ) dν

∥∥∥∥
L∞(Ω,ν)

≤D
n∑
j=1

‖Dju
n
k−Dju

n
` ‖(L∞)d1,I(Ω,ν)<ε,

so, (unk −
∫

Ω
unk dν)∞k=1 is a Cauchy sequence in L∞(Ω, ν). Due to the

completeness of L∞(Ω, ν), (unk −
∫

Ω
unk dν)∞k=1 is convergent in L∞(Ω, ν).

Since the sequence (
∫

Ω
unk dν)∞k=1 consisting of constant functions is con-

vergent in L∞(Ω, ν) as well, (unk )∞k=1 is convergent in L∞(Ω, ν) and
V mX(Ω, ν) ↪→↪→ L∞(Ω, ν), as required.

Proof of Theorem 5.3: According to [9, Proposition 8.6], for every f ∈
M(0, 1) we have

‖Hm
I f‖Y (0,1) ≈ ‖Km

I f‖Y (0,1),
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up to multiplicative constants depending on m and I. Thus, given a ∈
(0, 1) and f ∈M(0, 1), we obtain

(5.30) ‖Hm
I (χ(0,a)f)‖Y (0,1) ≈ ‖Km

I (χ(0,a)f)‖Y (0,1),

up to multiplicative constants depending on m and I. This yields that
(5.12) is equivalent to (5.2). Theorem 5.1 now yields that (5.12) im-
plies (5.13).

Consider the function J defined by (5.8). We claim that, given t ∈
(0, 1),

(5.31) ess sups∈(0,t)

1

J(s)
= sup
s∈(0,t)

sm−1

(I(s))m
.

Indeed, we trivially have

ess sups∈(0,t)

1

J(s)
= ess sups∈(0,t)

sm−1

(I(s))m
≤ sup
s∈(0,t)

sm−1

(I(s))m
.

Conversely, because I is nondecreasing on (0, 1], for every s ∈ (0, t)

sm−1

(I(s))m
≤ sm−1

(limr→s− I(r))m
= lim
r→s−

rm−1

(I(r))m
≤ ess supr∈(0,t)

rm−1

(I(r))m
.

Passing to supremum over all s ∈ (0, t), we obtain

sup
s∈(0,t)

sm−1

(I(s))m
≤ ess supr∈(0,t)

rm−1

(I(r))m
,

which completes the proof of (5.31). Equality (5.31) then implies that

lim
t→0+

ess sups∈(0,t)

1

J(s)
= 0

holds if and only if

(5.32) lim
t→0+

tm−1

(I(t))m
= 0.

Suppose that (5.32) is not satisfied (i.e., part (a) is in progress). Since
Km
I = HJ , an application of Theorem 4.1 yields that (5.11) is equivalent

to (5.12). Furthermore, according to the first part of the proof, each
of (5.11) and (5.12) implies (5.13).

Next, assume that (5.32) is fulfilled (i.e., part (b) is in progress). By
another using of Theorem 4.1 and of the fact that Km

I = HJ , we get
that (5.12) holds with X(0, 1) = L1(0, 1) and Y (0, 1) = L∞(0, 1). Since,
in general, X(0, 1) ↪→ L1(0, 1) and L∞(0, 1) ↪→ Y (0, 1), condition (5.12)
is satisfied for all rearrangement-invariant norms ‖·‖X(0,1) and ‖·‖Y (0,1).
The first part of the proof thus yields that condition (5.13) is fulfilled
independently of the choice of ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) as well.
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6. Compactness of Sobolev embeddings on concrete
measure spaces

In this section we characterize compact Sobolev embeddings on Eu-
clidean John domains, on Maz’ya classes of Euclidean domains and,
finally, on product probability spaces, whose standard example is the
Gauss space. Recall that definitions and basic properties of the above
mentioned measure spaces can be found in Section 3.

We start with the case of Euclidean John domains in Rn, n ≥ 2. In
order to characterize m-th order compact Sobolev embeddings on these
domains (for some m ∈ N), we shall consider the operator Qmn defined
by

Qmn f(t) =

∫ 1

t

|f(s)|smn −1 ds, f ∈M(0, 1), t ∈ (0, 1).

Theorem 6.1. Let n ∈ N, n ≥ 2, let m ∈ N and let Ω be a John domain
in Rn. Suppose that ‖·‖X(0,1) and ‖·‖Y (0,1) are rearrangement-invariant
norms. If m ≤ n then the compact Sobolev embedding

(6.1) V mX(Ω) ↪→↪→ Y (Ω)

is equivalent to each of the following two conditions:

(i) Qmn : X(0, 1)→→ Y (0, 1);
(ii) lima→0+

sup‖f‖X(0,1)≤1 ‖Qmn (χ(0,a)f)‖Y (0,1) = 0.

In particular, if m = n then (6.1) is satisfied for all pairs of rear-
rangement-invariant norms ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) except of those

for which X(0, 1) = L1(0, 1) and Y (0, 1) = L∞(0, 1). Furthermore, if
m > n then (6.1) is fulfilled independently of the choice of ‖ · ‖X(0,1) and
‖ · ‖Y (0,1).

We note that the equivalence of (6.1) and (i) in Theorem 6.1 is al-
ready known in the special case when Ω is a domain having a Lipschitz
boundary and m < n, see [13].

Let us now focus on Maz’ya classes of domains in Rn, n ≥ 2. When
dealing with m-th order Sobolev embeddings on a domain from the
Maz’ya class Jα (for some m ∈ N and α ∈ [ 1

n′ , 1]), we shall use the
operator Tmα given by

Tmα f(t) =

∫ 1

t

|f(s)|s−1+m(1−α) ds, f ∈M(0, 1), t ∈ (0, 1),
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if α ∈ [ 1
n′ , 1), and by

Tm1 f(t) =
1

(m− 1)!

∫ 1

t

|f(s)|
(log s

t )
m−1

s
ds, f ∈M(0, 1), t ∈ (0, 1).

Theorem 6.2. Let n ∈ N, n ≥ 2, let m ∈ N and let α ∈ [ 1
n′ , 1]. Suppose

that ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) are rearrangement-invariant norms. If
m(1 − α) ≤ 1 (notice that this is true for every m ∈ N provided that
α = 1) then the fact that

(6.2) V mX(Ω) ↪→↪→ Y (Ω) holds for every Ω ∈ Jα

is equivalent to each of the following conditions:

(i) Tmα : X(0, 1)→→ Y (0, 1);
(ii) lima→0+

sup‖f‖X(0,1)≤1 ‖Tmα (χ(0,a)f)‖Y (0,1) = 0.

In particular, if m(1 − α) = 1 then (6.2) is satisfied for all pairs of
rearrangement-invariant norms ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) except of those

for which X(0, 1) = L1(0, 1) and Y (0, 1) = L∞(0, 1). Furthermore, if
m(1−α) > 1 then condition (6.2) is fulfilled independently of the choice
of ‖ · ‖X(0,1) and ‖ · ‖Y (0,1).

Remarks 6.3. (a) It will follow from the proof of Theorem 6.1 that its
statement is true for all domains Ω belonging to the Maz’ya class J 1

n′

(this class contains, in particular, all John domains).

(b) Let m,n ∈ N, n ≥ 2, let α ∈ [ 1
n′ , 1] and let Ω be a domain

in Rn belonging to the Maz’ya class Jα. Suppose that ‖ · ‖X(0,1) and
‖·‖Y (0,1) are rearrangement-invariant norms. Consider the following two
assertions:

(i) V mX(Ω) ↪→↪→ Y (Ω);
(ii) V mX(Ω′) ↪→↪→ Y (Ω′) holds for each Ω′ ∈ Jα.

If α = 1
n′ then conditions (i) and (ii) are equivalent (this follows

from Theorem 6.1 combined with the part (a) of this remark). How-
ever, such an equivalence is no longer true when α > 1

n′ . This can be
easily observed since each Maz’ya class Jα contains, in particular, all
John domains. Compactness of Sobolev embeddings on John domains
is characterized by compactness of the operator Qmn , which does not
coincide with compactness of Tmα . On the other hand, given an arbi-
trary α ∈ ( 1

n′ , 1], there is one domain Ω ∈ Jα for which the equivalence
of (i) and (ii) holds for all rearrangement-invariant norms ‖ · ‖X(0,1) and
‖·‖Y (0,1) (an example of such a domain can be found in Proposition 6.6).
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(c) The operators Qmn and Tmα can be described via the operators “H”
and “K” defined in Sections 4 and 5, respectively, in the following way:

Qmn = Km

s
1
n′

= H
s1−

m
n

and

Tmα =

{
Km
sα = Hs1−m(1−α) , α ∈ [ 1

n′ , 1);

Hm
s , α = 1.

Hence, Theorems 4.2 and 4.6 applied to an appropriate operator “H”
provide further characterization of compactness of Qmn and Tmα .

We finally focus on product probability spaces (Rn, µΦ,n), where n ∈
N and the measure µΦ,n is defined by (3.3) if n = 1 and by (3.4)
if n > 1. Given m ∈ N, we characterize compact Sobolev embeddings
on (Rn, µΦ,n) in terms of compactness of the operator Hm

LΦ
, with LΦ as

in (3.5). The operator Hm
LΦ

therefore has the form

Hm
LΦ
f(t) =

1

(m− 1)!

∫ 1

t

|f(s)|
sΦ′

(
Φ−1

(
log 2

s

))(∫ s

t

dr

rΦ′
(
Φ−1

(
log 2

r

)))m−1

ds

=
1

(m− 1)!

∫ 1

t

|f(s)|
(
Φ−1

(
log 2

t

)
− Φ−1

(
log 2

s

))m−1

sΦ′
(
Φ−1

(
log 2

s

)) ds,

f ∈M(0, 1), t ∈ (0, 1).

We also prove that compactness of the operator Hm
LΦ

coincides with
compactness of the somewhat simpler operator PmΦ , defined by

PmΦ f(t) =

(
Φ−1(log 2

t )

log 2
t

)m ∫ 1

t

|f(s)|
s

(
log

s

t

)m−1

ds,

f ∈M(0, 1), t ∈ (0, 1).

We note that the operator PmΦ was introduced in [9] where it was shown
that boundedness of Hm

LΦ
is equivalent to boundedness of PmΦ .

Furthermore, we show that anologues of Theorems 4.1, 4.2, and 4.6
hold for the operator PmΦ , although it does not have the form Hj

J for
some j ∈ N and some function J . In order to do this, we define two
families of rearrangement-invariant norms, playing the role of optimal
range and optimal domain norms with respect to the operator PmΦ .

Let ‖ · ‖X(0,1) be a rearrangement-invariant norm. Given m ∈ N,
consider the rearrangement-invariant norm ‖ · ‖Xm(0,1) whose associate
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norm fulfils

‖f‖X′m(0,1) =

∥∥∥∥1

s

∫ s

0

(
log

s

t

)
f∗(t) dt

∥∥∥∥
X′(0,1)

for every f ∈M(0, 1). Then the functional ‖ · ‖Xrm,Φ(0,1), given for every

f ∈M(0, 1) by

‖f‖Xrm,Φ(0,1) =

∥∥∥∥∥
(

log 2
s

Φ−1(log 2
s )

)m
f∗(s)

∥∥∥∥∥
Xm(0,1)

,

is a rearrangement-invariant norm and we haveXr
m,Φ(0, 1)=Xr

m,LΦ
(0, 1),

up to equivalent norms, see [9, Theorem 7.3 and its proof].
Further, let ‖ · ‖Y (0,1) be a rearrangement-invariant norm fulfilling

(6.3)

∥∥∥∥(Φ−1

(
log

2

s

))m∥∥∥∥
Y (0,1)

<∞.

For every f ∈M(0, 1) define the functional ‖ · ‖Y dm,Φ(0,1) by

‖f‖Y dm,Φ(0,1) = sup
h∼f
‖PmΦ h‖Y (0,1) + ‖f‖L1(0,1)

= sup
0≤h∼f

∥∥∥∥∥
(

Φ−1(log 2
t )

log 2
t

)m ∫ 1

t

h(s)

s

(
log

s

t

)m−1

ds

∥∥∥∥∥
Y (0,1)

+ ‖f‖L1(0,1).

The fact that the functional ‖ · ‖Y dm,Φ(0,1) is actually a rearrangement-

invariant norm can be proved in the same way as it is done for the
functional ‖ · ‖Y dj,J (0,1) in the proof of Proposition 4.5.

Theorem 6.4. Let n,m ∈ N and let Φ be as in Section 3. Suppose that
‖ · ‖X(0,1) and ‖ · ‖Y (0,1) are rearrangement-invariant norms. Then the
following conditions are equivalent:

(i) V mX(Rn, µΦ,n) ↪→↪→ Y (Rn, µΦ,n);
(ii) Hm

LΦ
: X(0, 1)→→ Y (0, 1);

(iii) PmΦ : X(0, 1)→→ Y (0, 1);
(iv) lima→0+ sup‖f‖X(0,1)≤1 ‖PmΦ (χ(0,a)f)‖Y (0,1) = 0;

(v) lima→0+ sup‖f‖X(0,1)≤1 ‖χ(0,a)P
m
Φ f‖Y (0,1) = 0;

(vi) Xr
m,Φ(0, 1)

∗
↪→ Y (0, 1).

Furthermore, if X(0, 1) 6= L1(0, 1) and (6.3) is satisfied, then (i)–(vi)
are equivalent to each of the following conditions:
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(vii) lima→0+
sup‖f‖X(0,1)≤1 supλ1(E)≤a ‖PmΦ (χEf)‖Y (0,1) = 0;

(viii) X(0, 1)
∗
↪→ Y dm,Φ(0, 1).

Observe that Theorem 6.4 yields that, in contrast to the Euclidean
setting, compact Sobolev embeddings on (Rn, µΦ,n) do not depend on the
dimension n, in the sense that we have the equivalence of the following
two assertions.

(i) There exists n ∈ N for which V mX(Rn, µΦ,n) ↪→↪→ Y (Rn, µΦ,n) is
satisfied.

(ii) The compact embedding V mX(Rn, µΦ,n) ↪→↪→ Y (Rn, µΦ,n) is sat-
isfied for every n ∈ N.

Let us now prove the results we have stated. The proofs are based on
the results of the previous section, and on the following:

Proposition 6.5. Assume that (Ω, ν) is as in Section 3. Let m ∈ N and
let ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) be rearrangement-invariant norms satisfying

(6.4) V mX(Ω, ν) ↪→↪→ Y (Ω, ν).

Let α ∈ (0, 1]. Denote

Xα
+ = {f ∈ X(0, 1) ∩M+(0, 1) : f = 0 a.e. on (0, 1)\(0, α)}.

Suppose that L is an operator defined on Xα
+, with values in V mX(Ω, ν),

fulfilling that

(6.5) ‖Lf‖VmX(Ω,ν) ≤ C‖f‖X(0,1)

for some positive constant C and for all f ∈ Xα
+. Set Hf = (Lf)∗ν ,

f ∈ Xα
+. Assume that

(6.6) Hf(t) =

∫ 1

t

f(s)K(s, t) ds, f ∈ Xα
+, t ∈ (0, 1),

for some real valued function K satisfying that K(·, t) is nonnegative and
measurable on (t, 1) for every t ∈ (0, 1). Then

(6.7) lim
a→0+

sup
‖f‖X(0,1)≤1

‖H(χ(0,a)|f |)‖Y (0,1) = 0.

Proof: We first observe that whenever k is a positive integer satisfying
1/k ≤ α and f ∈ X(0, 1) ∩ M+(0, 1), then χ(0,1/k)f ∈ Xα

+ and the
functions L(χ(0,1/k)f) and H(χ(0,1/k)f) are thus well defined. Since
condition (6.4) implies V mX(Ω, ν) ↪→ Y (Ω, ν), for every k ∈ N satisfying
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1/k ≤ α we have

sup
‖f‖X(0,1)≤1

‖H(χ(0,1/k)|f |)‖Y (0,1)

= sup
‖f‖X(0,1)≤1

‖L(χ(0,1/k)|f |)‖Y (Ω,ν)

≤ sup
‖f‖X(0,1)≤1

C ′‖L(χ(0,1/k)|f |)‖VmX(Ω,ν)

≤ sup
‖f‖X(0,1)≤1

C ′C‖χ(0,1/k)|f |‖X(0,1) ≤ C ′C <∞,

where C is the constant from (6.5) and C ′ is the constant from the
embedding V mX(Ω, ν) ↪→ Y (Ω, ν). Consequently, for every k as above
we can find a function fk ∈M+(0, 1) such that ‖fk‖X(0,1) ≤ 1 and

(6.8) sup
‖f‖X(0,1)≤1

‖H(χ(0,1/k)|f |)‖Y (0,1) < ‖H(χ(0,1/k)fk)‖Y (0,1) +
1

k
.

Since the sequence (χ(0,1/k)fk)∞k=d1/αe is bounded in X(0, 1), it follows

that (L(χ(0,1/k)fk))∞k=d1/αe must be bounded in V mX(Ω, ν) due to (6.5).

Thanks to (6.4), there is a subsequence (fk`)
∞
`=1 of (fk)∞k=d1/αe such that

(L(χ(0,1/k`)fk`))
∞
`=1 converges to some function g in the norm of the

space Y (Ω, ν). Then, in particular, L(χ(0,1/k`)fk`)→ g in measure.
Observe that for every ` ∈ N, we have H(χ(0,1/k`)fk`)(t) = 0 when t ∈

(1/k`, 1), thanks to (6.6). Since (L(χ(0,1/k`)fk`))
∗
ν = H(χ(0,1/k`)fk`), the

distribution function of L(χ(0,1/k`)fk`) with respect to ν coincides with
that of H(χ(0,1/k`)fk`) with respect to the one-dimensional Lebesgue
measure λ1. In particular,

lim
`→∞

ν
({
x ∈ Ω :

∣∣L(χ(0,1/k`)fk`)(x)
∣∣ > 0

})
= lim
`→∞

λ1

({
s ∈ (0, 1) : H(χ(0,1/k`)fk`)(s) > 0

})
≤ lim
`→∞

1

k`
= 0.

(6.9)

Thus, L(χ(0,1/k`)fk`) → 0 in measure. This implies that g = 0 ν-a.e.
on Ω. So,

lim
`→∞

‖H(χ(0,1/k`)fk`)‖Y (0,1) = lim
`→∞

‖L(χ(0,1/k`)fk`)‖Y (Ω,ν) = 0.

Inequality (6.8) now yields

lim
`→∞

sup
‖f‖X(0,1)≤1

‖H(χ(0,1/k`)|f |)‖Y (0,1) = 0.

Using that the function

a 7→ sup
‖f‖X(0,1)≤1

‖H(χ(0,a)|f |)‖Y (0,1)

is nondecreasing on (0, α], we obtain (6.7).
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Proof of Theorem 6.1: Consider the function I(t) = t
1
n′ , t ∈ (0, 1]. It

was observed in Section 3 that (Ω, λn, I) is a compatible triplet. Fur-

thermore, the function I satisfies (5.9). We have that limt→0+

tm−1

(I(t))m =

limt→0+ t
m
n −1 = 0 holds if and only if m > n. In such a case, the proof

follows directly from Theorem 5.3.
Suppose that m ≤ n. Since Qmn = Km

I , Theorem 5.3 gives the equiva-
lence of (i) and (ii) and also shows that each of the conditions (i) and (ii)
implies (6.1). Hence, it only remains to prove that (6.1) implies (ii).

Assume that m = n and X(0, 1) 6= L1(0, 1). Then there is nothing
to prove, since condition (ii) (or, equivalently, (i)) always holds. Indeed,
we have

(6.10) Qmm : L1(0, 1)→ L∞(0, 1)

and L∞(0, 1) ↪→ Y (0, 1). Therefore, Qmm : L1(0, 1) → Y (0, 1). The con-
clusion now follows from Remark 4.8 and from the fact that Qmm = H1.

Suppose that (6.1) is satisfied and m < n, or m = n and X(0, 1) =
L1(0, 1). Let BR be an open ball of radius R > 0 such that BR ⊆ Ω.
Without loss of generality we may assume that BR is centered at 0 and
that κnR

n ≤ 1, where κn denotes the Lebesgue measure of the unit

ball in Rn. Let f be a function belonging to the set XκnR
n

+ defined in
Proposition 6.5. Then we set

Lf(x)=

{∫ κnRn
κn|x|n

∫ κnRn
r1

· · ·
∫ κnRn
rm−1

f(rm)r
−m+m

n
m drm . . . dr1, x ∈ BR;

0, x ∈ Ω/BR.

It is not hard to observe that Lf is an m-times weakly differentiable
function on Ω. By subsequent applications of the Fubini theorem, we
obtain

Lf(x) =

{
1

(m−1)!

∫ κnRn
κn|x|n f(s)s−m+m

n (s− κn|x|n)m−1 ds, x ∈ BR;

0, x ∈ Ω/BR.

Denote Hf = (Lf)∗λn . Then

Hf(t) = χ(0,κnRn)(t)
1

(m− 1)!

∫ κnR
n

t

f(s)s−m+m
n (s− t)m−1 ds

=
1

(m− 1)!

∫ 1

t

f(s)s−m+m
n (s− t)m−1 ds, t ∈ (0, 1).

(6.11)
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One can show similarly as in [14, proof of Theorem A] that

m∑
i=1

∥∥|∇iLf |∥∥
X(Ω)

=

m∑
i=1

∥∥(|∇iLf |)∗λn
∥∥
X(0,1)

. ‖f‖X(0,1) +

m−1∑
i=1

∥∥∥∥ti−mn ∫ 1

t

f(s)s−i+
m
n −1 ds

∥∥∥∥
X(0,1)

.

If m < n then it follows from [14, proof of Theorem A] that for every
i ∈ {1, 2, . . . ,m− 1},∥∥∥∥ti−mn ∫ 1

t

f(s)s−i+
m
n −1 ds

∥∥∥∥
X(0,1)

. ‖f‖X(0,1).

In the remaining case when m = n and X(0, 1) = L1(0, 1) we obtain by
the Fubini theorem that∥∥∥∥ti−1

∫ 1

t

f(s)s−i ds

∥∥∥∥
X(0,1)

≈
∥∥∥∥ti−1

∫ 1

t

f(s)s−i ds

∥∥∥∥
L1(0,1)

=

∫ 1

0

f(s)s−i
∫ s

0

ti−1 dt ds

=
1

i
‖f‖L1(0,1) ≈ ‖f‖X(0,1),

i ∈ {1, 2, . . . ,m− 1}. Hence, in all cases we have

m∑
i=1

∥∥|∇iLf |∥∥
X(Ω)

. ‖f‖X(0,1).

Furthermore, by (6.11),

‖Lf‖L1(Ω) = ‖Hf‖L1(0,1) ≤
1

(m− 1)!

∥∥∥∥∫ 1

t

f(s)s
m
n −1 ds

∥∥∥∥
L1(0,1)

=
1

(m− 1)!

∫ 1

0

f(s)s
m
n ds

≤ 1

(m− 1)!
‖f‖L1(0,1) ≤

CX
(m− 1)!

‖f‖X(0,1).

Altogether, we obtain

‖Lf‖VmX(Ω) ≤ ‖Lf‖L1(Ω) + max(CX , 1)

m∑
i=1

‖|∇iLf |‖X(Ω) . ‖f‖X(0,1),



Compactness of Higher-Order Sobolev Embeddings 425

up to multiplicative constants independent of f ∈ XκnR
n

+ . The opera-
tor L therefore satisfies (6.5). Proposition 6.5 now gives that

(6.12) lim
a→0+

sup
‖f‖X(0,1)≤1

‖H(χ(0,a)|f |)‖Y (0,1) = 0.

Since the constant function 1 fulfils (5.9), the equivalence (5.30) implies
that for all a ∈ (0, κnR

n) and for all f ∈ X(0, 1),

‖H(χ(0,a)(s)|f(s)|)‖Y (0,1) = ‖Hm
1 (χ(0,a)(s)f(s)s−m+m

n )‖Y (0,1)

≈ ‖Km
1 (χ(0,a)(s)f(s)s−m+m

n )‖Y (0,1)

= ‖Qmn (χ(0,a)(s)f(s))‖Y (0,1),

(6.13)

up to multiplicative constants depending on m. The assertion (ii) follows
by combined using of (6.12) and (6.13).

Finally, in order to obtain a characterization of (6.1) in the case when
m = n, it suffices to describe when (i) holds with m = n. We have
already shown that if X(0, 1) 6= L1(0, 1) then (i) is satisfied. Further-
more, it follows from (6.10), from the embedding X(0, 1) ↪→ L1(0, 1),
from Qmm = H1 and from Remark 4.4 that if Y (0, 1) 6= L∞(0, 1) then
(i) is fulfilled as well. On the other hand, (i) is not fulfilled with
X(0, 1) = L1(0, 1) and Y (0, 1) = L∞(0, 1), see Remark 4.4 again.

The following proposition, which easily follows from [20, Section 5.3.3],
provides examples of Euclidean domains belonging to the class Jα.

Proposition 6.6. Let n ∈ N, n ≥ 2, and let α ∈ [ 1
n′ , 1]. Set Lα = 1

1−α
if α ∈ [ 1

n′ , 1), and L1 =∞. Define the function ηα : (0, Lα)→ (0,∞) by

ηα(r) =

κ
− 1
n−1

n−1 (1− (1− α)r)
α

(1−α)(n−1) , α ∈ [ 1
n′ , 1),

κ
− 1
n−1

n−1 e−
r

n−1 , α = 1,

where κn−1 denotes the Lebesgue measure of the unit ball in Rn−1. Let
Ωα be the domain in Rn given by

Ωα = {(x′, xn) ∈ Rn : x′ ∈ Rn−1, xn ∈ (0, Lα), |x′| < ηα(xn)}.
Then λn(Ωα) = 1 and IΩα(s) ≈ sα, s ∈ [0, 1

2 ].

Proof of Theorem 6.2: Set Iα(t) = tα, t ∈ (0, 1]. As observed in Sec-
tion 3, (Ω, λn, Iα) is a compatible triplet for each domain Ω ∈ Jα. Sup-
pose that α ∈ [ 1

n′ , 1). Then (5.9) is fulfilled with I = Iα and we have
tm−1

(Iα(t))m = t−1+m(1−α) for t ∈ (0, 1]. Thus, limt→0+

tm−1

(Iα(t))m = 0 holds

if and only if m(1 − α) > 1. Provided that this condition is satisfied,
the proof is a direct consequence of Theorem 5.3. On the other hand, if
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m(1− α) ≤ 1 then Theorem 5.3 combined with the fact that Tmα = Km
Iα

yields that (i) is equivalent to (ii) and that each of the conditions (i)
and (ii) implies (6.2). Further, if α = 1 then the equivalence of (i)
and (ii) and the implication (i) (or (ii)) implies (6.2) follow from The-
orem 5.1 and from the fact that Tm1 = Hm

I1
. Thus, it suffices to prove

that, in all cases, (6.2) implies (ii).
Suppose that (6.2) is satisfied. Then, in particular, V mX(Ωα) ↪→↪→

Y (Ωα) holds for Ωα given by Proposition 6.6. Define the function Mα

for every t ∈ (0, Lα) (with Lα as in Proposition 6.6) by

Mα(t) =

{
(1− (1− α)t)

1
1−α , α ∈

[
1
n′ , 1

)
;

e−t, α = 1.

Then

(6.14) λn({(x′, xn) ∈ Ωα : xn > t}) = Mα(t), t ∈ (0, Lα),

see [9, proof of Theorem 6.4].
Let f be any function in X(0, 1)∩M+(0, 1) (or, what is the same, let

f be an arbitrary function belonging to the set X1
+ defined in Proposi-

tion 6.5). For x = (x1, . . . , xn) ∈ Ωα, we set

Lf(x) =

∫ 1

Mα(xn)

1

rα1

∫ 1

r1

1

rα2
· · ·
∫ 1

rm−1

f(rm)

rαm
drm drm−1 . . . dr1

=
1

(m− 1)!

∫ 1

Mα(xn)

f(r)

rα

(∫ r

Mα(xn)

ds

sα

)m−1

dr.

Then Lf is an m-times weakly differentiable function on Ωα and, owing
to (6.14), we have

(Lf)∗λn(t) =
1

(m− 1)!

∫ 1

t

f(r)

rα

(∫ r

t

ds

sα

)m−1

dr = Hm
Iαf(t), t ∈ (0, 1).

Furthermore, it follows from [9, proof of Theorem 6.4] that L satis-
fies (6.5). Hence, Proposition 6.5 implies that

(6.15) lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
Iα(χ(0,a)f)‖Y (0,1) = 0.

If α = 1 then (6.15) is exactly condition (ii) which we wanted to verify.
If α ∈ [ 1

n′ , 1) then the equivalence (5.30) (with I = Iα) yields that for
every f ∈ X(0, 1) and every a ∈ (0, 1) we have

(6.16) ‖Hm
Iα(χ(0,a)f)‖Y (0,1)≈‖Km

Iα(χ(0,a)f)‖Y (0,1)=‖Tmα (χ(0,a)f)‖Y (0,1),
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up to multiplicative constants depending on m and α. Condition (ii)
now follows by combined using of (6.15) and (6.16).

In particular, we have proved that if m(1 − α) = 1, then (6.2) is
satisfied if and only if Tmα = H1 : X(0, 1)→→ Y (0, 1). It follows from the
proof of Theorem 6.1 that this happens if and only if X(0, 1) 6= L1(0, 1)
or Y (0, 1) 6= L∞(0, 1).

Proof of Theorem 6.4: We have observed in Section 3 that (Rn, µΦ,n, LΦ)
is a compatible triplet. Theorem 5.1 therefore yields that (ii) implies (i).

Conversely, suppose that (i) is fulfilled. Let f be an arbitrary function

belonging to the set X
1/2
+ defined in Proposition 6.5. For every x =

(x1, . . . , xn) ∈ Rn we set

Lf(x) =

∫ 1

FΦ(x1)

1

IΦ(r1)

∫ 1

r1

1

IΦ(r2)
· · ·
∫ 1

rm−1

f(rm)

IΦ(rm)
drm drm−1 . . . dr1

=
1

(m− 1)!

∫ 1

FΦ(x1)

f(r)

IΦ(r)

(∫ r

FΦ(x1)

ds

IΦ(s)

)m−1

dr.

Then Lf is an m-times weakly differentiable function on Rn. Denote
Hf = (Lf)∗µΦ,n

. Then, thanks to the equality

µΦ,n({(x1, x2, . . . , xn) ∈ Rn : x1 > t}) = FΦ(t), t ∈ R,
we have

Hf(t) =
1

(m− 1)!

∫ 1

t

f(r)

IΦ(r)

(∫ r

t

ds

IΦ(s)

)m−1

dr, t ∈ (0, 1).

It follows from [9, proof of Theorem 7.1] that L satisfies (6.5). Thus,
Proposition 6.5 implies that

(6.17) lim
a→0+

sup
‖f‖X(0,1)≤1

‖H(χ(0,a)|f |)‖Y (0,1) = 0.

Since IΦ(s) ≈ LΦ(s), s ∈ (0, 1
2 ], we deduce that Hf ≈ Hm

LΦ
f for all

f ∈ X
1/2
+ , up to multiplicative constants independent of f . Hence,

condition (6.17) is equivalent to

(6.18) lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
LΦ

(χ(0,a)f)‖Y (0,1) = 0,

which is equivalent to (ii) according to Theorem 5.1. We have thus
proved the equivalence of (i) and (ii).

Due to Remark 5.2, (ii) is equivalent to

(6.19) lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
LΦ

(χ(0,a)f
∗)‖Y (0,1) = 0.
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Further, according to [9, Proposition 11.2],

Hm
LΦ
g ≈ PmΦ g

is fulfilled for all nonnegative nonincreasing functions g, up to multi-
plicative constants depending on m. Therefore, (6.19) holds if and only
if

(6.20) lim
a→0+

sup
‖f‖X(0,1)≤1

‖PmΦ (χ(0,a)f
∗)‖Y (0,1) = 0.

Since for every g ∈M(0, 1),

(6.21) PmΦ g ≤ 2m(m− 1)!Hm
LΦ
g,

see [9, Proposition 11.2], we have that for every a ∈ (0, 1),

sup
‖f‖X(0,1)≤1

‖PmΦ (χ(0,a)f
∗)‖Y(0,1)≤ sup

‖f‖X(0,1)≤1

‖PmΦ (χ(0,a)f)‖Y (0,1)

≤2m(m−1)! sup
‖f‖X(0,1)≤1

‖Hm
LΦ

(χ(0,a)f)‖Y(0,1).

Using this chain of inequalities and the equivalence of (6.18) and (6.20),
we obtain that (iv) is equivalent to (6.18), and therefore also to (ii).

Owing to Theorem 4.2 and to the fact that
∫ 1

0
dr

LΦ(r) = ∞, (ii) is

equivalent to

(6.22) lim
a→0+

sup
‖f‖X(0,1)≤1

‖χ(0,a)H
m
LΦ
f‖Y (0,1) = 0.

By (6.21), condition (6.22) implies (v). Trivially, (v) implies (iv), and,
thanks to the result of the previous paragraph, (iv) implies (ii). Conse-
quently, (v) is equivalent to (ii).

Condition (vi) is equivalent to (ii) owing to Theorem 4.2 and to the
fact that Xr

m,Φ(0, 1) = Xr
m,LΦ

(0, 1).

The implication (iii) ⇒ (iv) can be proved in the same way as the
implication (i) ⇒ (ii) in Lemma 4.10. We have already proved that (iv)
implies (v). Let us now show that (v) implies (iii).

Since there is no nontrivial function having an absolutely continuous
norm in L∞(0, 1), condition (v) yields that Y (0, 1) 6= L∞(0, 1). We claim
that, for every a ∈ (0, 1), the operator χ(a,1)P

m
Φ is compact from X(0, 1)

to Y (0, 1). To prove it, we first observe that

χ(a,1)P
m
Φ f(t) = χ(a,1)(t)

(
Φ−1

(
log 2

t

)
log 2

t

)m
Hm
s f(t), t ∈ (0, 1).

A proof analogous to a part of [23, proof of Theorem 3.1] yields that

χ(a,1)H
m
s : X(0, 1)→→ Y (0, 1).
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Since the function t 7→
(

Φ−1(log 2
t )

log 2
t

)m
is bounded on (a, 1), the opera-

tor χ(a,1)P
m
Φ is compact from X(0, 1) to Y (0, 1) as well. Consequently,

PmΦ is compact from X(0, 1) into Y (0, 1) as a norm limit of compact
operators. Altogether, (iii) is equivalent to (v).

Finally, assume that X(0, 1) 6= L1(0, 1) and condition (6.3) is satisfied.
According to Theorem 4.6, (ii) is equivalent to

(6.23) lim
a→0+

sup
‖f‖X(0,1)≤1

sup
λ1(E)≤a

‖Hm
LΦ

(χEf)‖Y (0,1) = 0.

Using (6.21) we deduce that (6.23) implies (vii). Trivially, (vii) im-
plies (iv). Since we have already shown that (iv) is equivalent to (ii), we
arrive at the equivalence of (vii) and (ii).

We now claim that the space Y dm,Φ(0, 1) is the largest rearrange-

ment-invariant space from which the operator PmΦ is bounded into Y (0, 1).
This fact can be proved in the same way as it is done in the proof
of Proposition 4.5 for the rearrangement-invariant space Y dj,J(0, 1) and

the operator Hj
J . Since boundedness of PmΦ coincides with bounded-

ness of Hm
LΦ

(see [9, Proposition 11.3]), we obtain that Y dm,Φ(0, 1) is

the optimal domain for Y (0, 1) with respect to the operator Hm
LΦ

, and

therefore, by Proposition 4.5, Y dm,Φ(0, 1) = Y dm,LΦ
(0, 1). Consequently,

Theorem 4.6 yields that (viii) is equivalent to (ii). The proof is com-
plete.

7. Examples

In the present section we characterize compact Sobolev embeddings
on domains from Maz’ya classes, and on product probability spaces, for
some of the customary rearrangement-invariant norms. The case of John
domains is not discussed explicitly, however, results for John domains
can be derived from corresponding results for Maz’ya classes of domains,
by applying the equivalence of the following two conditions:

(i) V mX(Ω) ↪→↪→ Y (Ω) holds for a given John domain Ω;
(ii) V mX(Ω) ↪→↪→ Y (Ω) holds for every Ω ∈ J 1

n′
.

We recall that this equivalence follows from Theorems 6.1 and 6.2.
In the first part of this section we shall study when the compact

Sobolev embedding

(7.1) V mX(Ω, ν) ↪→↪→ Y (Ω, ν)

holds, provided that (Ω, ν) is either a Euclidean domain belonging to
the Maz’ya class Jα for some α ∈ [ 1

n′ , 1], or a product probability space,
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and one of the rearrangement-invariant spaces X(Ω, ν) and Y (Ω, ν) is
equal to L1(Ω, ν) or L∞(Ω, ν) (the largest and the smallest rearrange-
ment-invariant space, respectively). To obtain a tool for dealing with
this problem, we characterize for a given nondecreasing function I the
validity of condition

(7.2) lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
I (χ(0,a)f)‖Y (0,1) = 0

in each of the four cases when one of the spaces X(0, 1) and Y (0, 1)
coincides with L1(0, 1) or L∞(0, 1). We start with the two “L1-cases”.
It turns out that in this situation the operator Hm

I can be replaced by the
simpler operator Km

I , without assuming any restrictons on I (compare
to Theorem 5.3).

Theorem 7.1. Let m ∈ N and let I : (0, 1]→ (0,∞) be a nondecreasing
function satisfying (3.1). Suppose that ‖ · ‖X(0,1) is a rearrangement-in-
variant norm and denote by ϕX the fundamental function of ‖ · ‖X(0,1).

(a) The following conditions are equivalent:
(i) lima→0+

sup‖f‖L1(0,1)≤1 ‖Hm
I (χ(0,a)f)‖X(0,1) = 0;

(ii) lima→0+
sup‖f‖L1(0,1)≤1 ‖Km

I (χ(0,a)f)‖X(0,1) = 0;

(iii) lima→0+

am−1ϕX(a)
(I(a))m = 0.

(b) The following conditions are equivalent:
(i) lima→0+

sup‖f‖X(0,1)≤1 ‖Hm
I (χ(0,a)f)‖L1(0,1) = 0;

(ii) lima→0+
sup‖f‖X(0,1)≤1 ‖Km

I (χ(0,a)f)‖L1(0,1) = 0.

If X(0, 1) 6= L1(0, 1) then both (i) and (ii) are satisfied. Furthermore, if
X(0, 1) = L1(0, 1) then (i) and (ii) hold if and only if

(7.3) lim
s→0+

s

I(s)
= 0.

The following theorem characterizes m-th order compact Sobolev em-
beddings on domains from the Maz’ya class Jα in the two “L1-cases”. It
can be obtained by combined using of Theorems 6.2 and 7.1 (with I(s) =
sα). Let us note that here, and also in all further results on Maz’ya
classes of domains later in this section, we assume that m(1−α)<1. This
can be done with no loss of generality, since the case when m(1−α) ≥ 1
was sufficiently described in Theorem 6.2.

Theorem 7.2. Let n ∈ N, n ≥ 2, let m ∈ N, and let α ∈ [ 1
n′ , 1] satisfy

m(1−α) < 1. Suppose that ‖·‖X(0,1) is a rearrangement-invariant norm
and denote by ϕX the fundamental function of ‖ · ‖X(0,1).
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(a) The condition

(7.4) V mL1(Ω) ↪→↪→ X(Ω)

is satisfied for every Ω ∈ Jα if and only if

(7.5) lim
s→0+

ϕX(s)

s1−m(1−α)
= 0.

This is never fulfilled for α = 1.
(b) Suppose that X(0, 1) 6= L1(0, 1). Then the condition

(7.6) V mX(Ω) ↪→↪→ L1(Ω)

is satisfied for every Ω ∈ Jα. Furthermore, if X(0, 1) = L1(0, 1)
then (7.6) is fulfilled for every Ω ∈ Jα if and only if α ∈ [ 1

n′ , 1).

An analogous result for product probability spaces is provided in the
next theorem.

Theorem 7.3. Let n,m ∈ N, and let Φ be as in Section 3. Suppose
that ‖ · ‖X(0,1) is a rearrangement-invariant norm and denote by ϕX the
fundamental function of ‖ · ‖X(0,1).

(a) The condition

(7.7) V mL1(Rn, µΦ,n) ↪→↪→ X(Rn, µΦ,n)

is satisfied if and only if

(7.8) lim
s→0+

ϕX(s)(Φ−1(log 2
s ))m

s(log 2
s )m

= 0.

(b) Suppose that X(0, 1) 6= L1(0, 1). Then the condition

(7.9) V mX(Rn, µΦ,n) ↪→↪→ L1(Rn, µΦ,n)

is satisfied. Furthermore, if X(0, 1) = L1(0, 1) then (7.9) is fulfilled
if and only if

(7.10) lim
s→∞

s

Φ(s)
= 0.

Note that Theorem 7.3 follows from Theorem 6.4, Theorem 4.1 (ap-
plied with J = LΦ and j = m), and Theorem 7.1 (applied with I = LΦ).
We also need to use the equivalence

Φ′(Φ−1(s)) ≈ s

Φ−1(s)
, s > 0,

which was proved in [9, Lemma 11.1(iii)], and the following chain:

(7.11) lim
s→0+

Φ−1(log 2
s )

log 2
s

= lim
s→0+

Φ−1(log 2
s )

Φ(Φ−1(log 2
s ))

= lim
s→∞

s

Φ(s)
.
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Remark 7.4. It follows from the convexity of Φ and from the fact that
Φ(0) = 0 that the function s 7→ s

Φ(s) is nonincreasing on (0,∞).

Hence, lims→∞
s

Φ(s) exists. In particular, if (7.10) is not fulfilled then

lims→∞
s

Φ(s) ∈ (0,∞). Combining this with the monotonicity of s
Φ(s) we

obtain that in this situation, Φ(s) ≈ s on (a,∞) for every a ∈ (0,∞),
up to multiplicative constants possibly depending on Φ and a.

Let us now focus on the two “L∞-cases”. Similarly as in the “L1-
cases”, we start with a one-dimensional result concerning the validity of
condition (7.2), now with X(0, 1) or Y (0, 1) equal to L∞(0, 1). In con-
trast to Theorem 7.1, in this situation we cannot equivalently replace the
operator Hm

I by Km
I (a counterexample follows from Remarks 5.4(iv)).

We will change the notation from I to J and from m to j, and we

will not assume any monotonicity of J . Then, by setting J(s) = I(s)m

sm−1 ,
s ∈ (0, 1], and j = 1, our result applies also to the characterization
of condition (7.2) with Hm

I replaced by Km
I (notice that if the func-

tion I satisfies (5.9) then condition (7.2) is not affected by replacing Hm
I

by Km
I ).

Theorem 7.5. Let j ∈ N and let J : (0, 1] → (0,∞) be a measurable
function satisfying (4.1). Suppose that ‖ · ‖X(0,1) is a rearrangement-in-
variant norm.

(a) If
∫ 1

0
dr
J(r) <∞ then the condition

(7.12) lim
a→0+

sup
‖f‖L∞(0,1)≤1

‖Hj
J(χ(0,a)f)‖X(0,1) = 0

is satisfied for all j ∈ N and for all rearrangement-invariant norms

‖ · ‖X(0,1). In the case that
∫ 1

0
dr
J(r) =∞, condition (7.12) holds if

and only if

(7.13) lim
a→0+

∥∥∥∥∥χ(0,a)(t)

(∫ 1

t

dr

J(r)

)j∥∥∥∥∥
X(0,1)

= 0.

(b) The condition

(7.14) lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hj
J(χ(0,a)f)‖L∞(0,1) = 0

holds if and only if

(7.15) lim
a→0+

∥∥∥∥∥χ(0,a)(t)

J(t)

(∫ t

0

dr

J(r)

)j−1
∥∥∥∥∥
X′(0,1)

= 0.

This is never fulfilled in the case that
∫ 1

0
dr
J(r) =∞.
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The previous theorem combined with Theorem 6.2 easily leads to the
following result on m-th order compact Sobolev embeddings on domains
from the Maz’ya class Jα in the “L∞-cases”. We note that Theorem 7.5
has to be applied with j = 1 and J(s) = s1−m(1−α), s ∈ (0, 1], if α ∈
[ 1
n′ , 1), and with j = m and J(s) = s, s ∈ (0, 1], if α = 1.

Theorem 7.6. Let n ∈ N, n ≥ 2, and let m ∈ N. Suppose that ‖·‖X(0,1)

is a rearrangement-invariant norm.

(a) Assume that α ∈ [ 1
n′ , 1) and that m(1−α) < 1. Then the condition

(7.16) V mL∞(Ω) ↪→↪→ X(Ω)

is fulfilled for every Ω ∈ Jα and for all rearrangement-invariant
norms ‖ · ‖X(0,1). Furthermore,

(7.17) V mX(Ω) ↪→↪→ L∞(Ω)

is satisfied for every Ω ∈ Jα if and only if

(7.18) lim
a→0+

‖χ(0,a)(s)s
m(1−α)−1‖X′(0,1) = 0.

(b) The condition (7.16) is satisfied for every Ω ∈ J1 if and only if

lim
a→0+

∥∥∥∥χ(0,a)(s)

(
log

2

s

)m∥∥∥∥
X(0,1)

= 0.

Furthermore, there is no rearrangement-invariant norm ‖ · ‖X(0,1)

and m ∈ N such that (7.17) is fulfilled for every Ω ∈ J1.

An analogous result for the product probability space (Rn, µΦ,n) can
be derived from Theorems 6.4 and 7.5 (with J = LΦ and j = m), by
making use of the equivalence∫ 1

s

dr

LΦ(r)
= Φ−1

(
log

2

s

)
− Φ−1

(
log 2

)
≈ Φ−1

(
log

2

s

)
, s ∈

(
0,

1

2

)
.

Theorem 7.7. Let n,m ∈ N, and let Φ be as in Section 3. Suppose that
‖ · ‖X(0,1) is a rearrangement-invariant norm.

(a) The condition

(7.19) V mL∞(Rn, µΦ,n) ↪→↪→ X(Rn, µΦ,n)

is satisfied if and only if

(7.20) lim
a→0+

∥∥∥∥χ(0,a)(s)

(
Φ−1

(
log

2

s

))m∥∥∥∥
X(0,1)

= 0.
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(b) The condition

(7.21) V mX(Rn, µΦ,n) ↪→↪→ L∞(Rn, µΦ,n)

is never fulfilled.

We shall now study the compact Sobolev embedding (7.1), provided
that (Ω, ν) is either a Euclidean Maz’ya domain, or a product probabil-
ity space, and both X(Ω, ν) and Y (Ω, ν) are Lebesgue spaces. We shall
consider also the more general situation when both X(Ω, ν) and Y (Ω, ν)
are Lorentz spaces (in the case when (Ω, ν) is the Maz’ya domain),
or Lorentz–Zygmund spaces (in the case when (Ω, ν) is the Boltzmann
space, a particular example of product probability spaces). We note that
Lorentz spaces in the former case and Lorentz–Zygmund spaces in the
latter case naturally arise as optimal targets of Lebesgue spaces in the
Sobolev embeddings on the corresponding domains, see [9, Theorems 6.9
and 7.12].

The result for Maz’ya classes of domains takes the following form.

Theorem 7.8. Let n ∈ N, n ≥ 2, let m ∈ N, and let α ∈ [ 1
n′ , 1] satisfy

m(1 − α) < 1. Suppose that p1, p2, q1, q2 ∈ [1,∞] are such that both
triplets (p, q, α) = (p1, q1, 0) and (p, q, α) = (p2, q2, 0) satisfy one of the
conditions (2.3)–(2.6). Then the following assertions are equivalent.

(i) The compact embedding

V mLp1,q1(Ω) ↪→↪→ Lp2,q2(Ω)

holds for every Ω ∈ Jα.
(ii) The compact embedding

V mLp1(Ω) ↪→↪→ Lp2(Ω)

holds for every Ω ∈ Jα.
(iii) One of the following conditions is satisfied:

α ∈ [1/n′, 1), p1 <
1

m(1− α)
, p2 <

p1

1−mp1(1− α)
;(7.22)

α ∈ [1/n′, 1), p1 =
1

m(1− α)
, p2 <∞;(7.23)

α ∈ [1/n′, 1), p1 >
1

m(1− α)
;(7.24)

α = 1, p1 > p2.(7.25)

We now focus on compact Sobolev embeddings in context of Lebesgue
spaces over product probability spaces. Interestingly, we can often speak
about optimal compact embeddings in this connection.
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Theorem 7.9. Let n,m ∈ N, let Φ be as in Section 3, and let p, q ∈
[1,∞].

(i) Suppose that lims→∞
s

Φ(s) = 0. Then

(7.26) V mLp(Rn, µΦ,n) ↪→↪→ Lq(Rn, µΦ,n)

holds if and only if q ≤ p and q <∞. In particular, if p <∞ then
Lp(Rn, µΦ,n) is the optimal (i.e., the smallest) Lebesgue space into
which V mLp(Rn, µΦ,n) is compactly embedded.

(ii) Suppose that lims→∞
s

Φ(s) ∈ (0,∞). Then (7.26) holds if and only

if q < p.

Notice that, according to Remark 7.4, parts (i) and (ii) of Theorem 7.9
indeed cover all cases of the function Φ.

The optimality in compact embeddings disappears when more general
rearrangement-invariant spaces are called into play. This easily follows
from the next result, in which we consider Lorentz–Zygmund spaces
over the particular family of product probability spaces consisting of all
Boltzmann spaces.

Theorem 7.10. Let n,m ∈ N and β ∈ [1, 2]. Furthermore, let p1, p2, q1,
q2 ∈ [1,∞], α1, α2 ∈ R be such that both triplets (p, q, α) = (p1, q1, α1)
and (p, q, α) = (p2, q2, α2) satisfy one of the conditions (2.3)–(2.6).

(i) Suppose that p1 <∞. Then

(7.27) V mLp1,q1;α1(Rn, γn,β) ↪→↪→ Lp2,q2;α2(Rn, γn,β)

holds if and only if p1 > p2, or p1 = p2 and one of the following
conditions is satisfied:

q1 ≤ q2, α1 +
m(β − 1)

β
> α2;

q2 < q1, α1 +
1

q1
+
m(β − 1)

β
> α2 +

1

q2
.

(ii) Suppose that p1 =∞. Then (7.27) holds if and only if p2 <∞, or

p2 =∞, α1 +
1

q1
− m

β
> α2 +

1

q2
.

We finish the paper by proving those results of this section which have
not been verified yet. We need the following auxiliary lemma.
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Lemma 7.11. Suppose that m ∈ N and I : (0, 1] → (0,∞) is a non-
decreasing function fulfilling (3.1). Then for every f ∈ M(0, 1) and
a ∈ (0, 1),

(7.28) sup
s∈(0,a)

RmI f
∗(s) ≈ sup

s∈(0,a)

SmI f
∗(s),

up to multiplicative constants depending on m.

Proof: If m = 1 then (7.28) trivially holds since R1
I = S1

I . Thus, in what
follows we may assume that m ≥ 2.

Fix a ∈ (0, 1). Given f ∈M(0, 1) and s ∈ (0, a), we have

RIf
∗(s) =

s

I(s)
f∗∗(s) ≤ (f∗∗(s))

m−1
m sup

t∈(0,a)

t

I(t)
(f∗∗(t))

1
m .

Therefore,

(7.29) RmI f
∗(s)=Rm−1

I (RIf
∗)(s)≤Rm−1

I (f∗∗)
m−1
m (s) sup

t∈(0,a)

t

I(t)
(f∗∗(t))

1
m.

Furthermore, let k ∈ {1, 2, . . . ,m− 1}. Then

RI(f
∗∗)

k
m (s) =

1

I(s)

∫ s

0

(∫ r
0
f∗(u) du

r

) k
m

dr

≤ 1

I(s)

(∫ s

0

f∗(u) du

) k
m
∫ s

0

r−
k
m dr

=
m

m− k
· s

1− k
m

I(s)

(∫ s

0

f∗(u) du

)k
m

=
m

m− k
· s

I(s)
(f∗∗(s))

k
m

≤ m

m− k
(f∗∗(s))

k−1
m sup

t∈(0,a)

t

I(t)
(f∗∗(t))

1
m .

Hence,

RkI (f∗∗)
k
m (s) = Rk−1

I (RI(f
∗∗)

k
m )(s)

≤ m

m− k
Rk−1
I (f∗∗)

k−1
m (s) sup

t∈(0,a)

t

I(t)
(f∗∗(t))

1
m .

(7.30)
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Using (7.29) and (7.30) subsequently for k = m − 1,m − 2, . . . , 1, we
obtain

RmI f
∗(s) ≤ Rm−1

I (f∗∗)
m−1
m (s) sup

t∈(0,a)

t

I(t)
(f∗∗(t))

1
m

≤ mRm−2
I (f∗∗)

m−2
m (s)

(
sup
t∈(0,a)

t

I(t)
(f∗∗(t))

1
m

)2

≤ · · · ≤ mm−2

(m− 2)!
RI(f

∗∗)
1
m (s)

(
sup
t∈(0,a)

t

I(t)
(f∗∗(t))

1
m

)m−1

≤ mm−1

(m− 1)!

(
sup
t∈(0,a)

t

I(t)
(f∗∗(t))

1
m

)m

=
mm−1

(m− 1)!
sup
t∈(0,a)

tm−1

(I(t))m

∫ t

0

f∗(r) dr

=
mm−1

(m− 1)!
sup
t∈(0,a)

SmI f
∗(s).

Passing to supremum over all s ∈ (0, a), we get

(7.31) sup
s∈(0,a)

RmI f
∗(s) ≤ mm−1

(m− 1)!
sup

s∈(0,a)

SmI f
∗(s).

Conversely, given s ∈ (0, 1), we have by the monotonicity of I

(m− 1)!RmI f
∗(s) =

1

I(s)

∫ s

0

(∫ s

t

dr

I(r)

)m−1

f∗(t) dt

≥ 1

I(s)

(∫ s

s
2

dr

I(r)

)m−1 ∫ s
2

0

f∗(t) dt

≥ 1

I(s)

(
s

2I(s)

)m−1
1

2

∫ s

0

f∗(t) dt

=
1

2m
· sm−1

(I(s))m

∫ s

0

f∗(t) dt =
1

2m
SmI f

∗(s).

This yields the inequality in the reverse direction to (7.31). The proof
is complete.
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Proof of Theorem 7.1: (a) Using the definition of the associate norm and
the equation (4.6) (the first time with j = m and J = I and the second
time with j = 1 and J as in (5.8)), similarly as in the proof of Theo-
rem 4.2, part (ii) ⇔ (iii), and applying Lemma 7.11, we obtain that for
every a ∈ (0, 1)

sup
‖g‖L1(0,1)≤1

‖Hm
I (χ(0,a)g)‖X(0,1) = sup

‖f‖X′(0,1)≤1

∥∥χ(0,a)R
m
I f
∗∥∥
L∞(0,1)

= sup
‖f‖X′(0,1)≤1

sup
s∈(0,a)

RmI f
∗(s)

≈ sup
‖f‖X′(0,1)≤1

sup
s∈(0,a)

SmI f
∗(s)

= sup
‖f‖X′(0,1)≤1

∥∥χ(0,a)S
m
I f
∗∥∥
L∞(0,1)

= sup
‖g‖L1(0,1)≤1

‖Km
I (χ(0,a)g)‖X(0,1),

(7.32)

up to multiplicative constants depending on m. Notice that we are also
using that for every a ∈ (0, 1) and every f ∈ X ′(0, 1), we have

(7.33) ess supt∈(0,a)R
m
I f
∗(t) = sup

t∈(0,a)

RmI f
∗(t)

and

(7.34) ess supt∈(0,a) S
m
I f
∗(t) = sup

t∈(0,a)

SmI f
∗(t).

The argument which justifies (7.33) and (7.34) is the same as the one
appearing in the proof of Theorem 5.3. Therefore, we have proved the
equivalence of (i) and (ii). Furthermore, we have

sup
‖f‖X′(0,1)≤1

sup
s∈(0,a)

SmI f
∗(s) = sup

s∈(0,a)

sup
‖f‖X′(0,1)≤1

sm−1

(I(s))m

∫ s

0

f∗(t) dt

= sup
s∈(0,a)

sm−1‖χ(0,s)‖X(0,1)

(I(s))m

= sup
s∈(0,a)

sm−1ϕX(s)

(I(s))m
.

(7.35)

By combined using of (7.32) and (7.35), we obtain that conditions (i)
and (ii) are equivalent to (iii).

(b) Suppose that X(0, 1) 6= L1(0, 1). Let J be a positive measurable
function on (0, 1] fulfilling (4.1) and let j ∈ N. We will show that the
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condition

(7.36) lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hj
J(χ(0,a)f)‖L1(0,1) = 0

is satisfied. Since both Hm
I and Km

I have the form Hj
J for a suitable

choice of j and J , we obtain that (i) and (ii) are satisfied as well (and,
in particular, that they are equivalent).

Let us now prove (7.36). We have

Hj
J : L1(0, 1)→ (L1)rj,J(0, 1) ↪→ L1(0, 1).

According to Remark 4.8, we obtain

Hj
J : X(0, 1)→→ L1(0, 1).

By Theorem 4.1, this implies (7.36).
Furthermore, letX(0, 1) = L1(0, 1). Using the part (a) withX(0, 1) =

L1(0, 1), we obtain that (i) and (ii) are equivalent and that they are
satisfied if and only if

lim
s→0+

sm−1ϕL1(s)

(I(s))m
= lim
s→0+

(
s

I(s)

)m
= 0.

This is equivalent to (7.3), as required.

Proof of Theorem 7.5: (a) Using the fact that each function f belonging
to the unit ball of L∞(0, 1) satisfies |f | ≤ 1 and applying the equal-
ity (4.7), we obtain

lim
a→0+

sup
‖f‖L∞(0,1)≤1

∥∥∥Hj
J(χ(0,a)f)

∥∥∥
X(0,1)

= lim
a→0+

∥∥∥Hj
J(χ(0,a))

∥∥∥
X(0,1)

=
1

j!
lim
a→0+

∥∥∥∥∥χ(0,a)(t)

(∫ a

t

dr

J(r)

)j∥∥∥∥∥
X(0,1)

.

Suppose that
∫ 1

0
dr
J(r) <∞. Then

lim
a→0+

∥∥∥∥∥χ(0,a)(t)

(∫ a

t

dr

J(r)

)j∥∥∥∥∥
X(0,1)

≤ lim
a→0+

(∫ a

0

dr

J(r)

)j
‖χ(0,a)‖X(0,1)

≤ ‖1‖X(0,1) lim
a→0+

(∫ a

0

dr

J(r)

)j
= 0,

thanks to the absolute continuity of the Lebesgue integral. Thus, condi-
tion (7.12) is satisfied for all rearrangement-invariant norms ‖ · ‖X(0,1).
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Assume that
∫ 1

0
dr
J(r) =∞. Obviously, condition (7.13) implies

(7.37) lim
a→0+

∥∥∥∥∥χ(0,a)(t)

(∫ a

t

dr

J(r)

)j∥∥∥∥∥
X(0,1)

= 0,

and therefore also (7.12). Conversely, if (7.12) is fulfilled then, owing to
Lemma 4.10, we have (7.13).

(b) We have

lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hj
J(χ(0,a)f)‖L∞(0,1)

= lim
a→0+

sup
‖f‖X(0,1)≤1

∫ a

0

|f(s)|
J(s)

(∫ s

0

dr

J(r)

)j−1

ds

= lim
a→0+

∥∥∥∥∥χ(0,a)(s)

J(s)

(∫ s

0

dr

J(r)

)j−1
∥∥∥∥∥
X′(0,1)

.

This yields the equivalence of (7.14) and (7.15). Further, condition (7.15)

is obviously never satisfied in the case that
∫ 1

0
dr
J(r) =∞.

In order to prove Theorems 7.8 and 7.10 we shall need the follow-
ing proposition which characterizes almost-compact embeddings between
Lorentz–Zygmund spaces. It can be derived as a particular case of [16]
where almost-compact embeddings between more general classical and
weak Lorentz spaces were studied. For the sake of completeness we also
give an alternative proof.

Proposition 7.12. Let p1, p2, q1, q2 ∈ [1,∞], α1, α2 ∈ R be such that
both triplets (p, q, α) = (p1, q1, α1) and (p, q, α) = (p2, q2, α2) satisfy one
of the conditions (2.3)–(2.6). Then

(7.38) Lp1,q1;α1(0, 1)
∗
↪→ Lp2,q2;α2(0, 1)

holds if and only if p1 > p2, or p1 = p2 and the following conditions are
satisfied:

if p1 = p2 <∞ and q1 ≤ q2 then α1 > α2;(7.39)

if p1 = p2 =∞ or q1 > q2 then α1 +
1

q1
> α2 +

1

q2
.(7.40)

In particular, if p1, p2, q1, q2 ∈ [1,∞] are such that both triplets (p, q, α) =
(p1, q1,0) and (p, q, α)=(p2, q2,0) satisfy one of the conditions (2.3)–(2.6)
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then

(7.41) Lp1,q1(0, 1)
∗
↪→ Lp2,q2(0, 1)

holds if and only if p1 > p2.

Proof: Suppose that either p1 > p2, or p1 = p2 and conditions (7.39)
and (7.40) are satisfied. Then we can find ε>0 such that ‖·‖Lp2,q2;α2+ε(0,1)

is equivalent to a rearrangement-invariant norm and, if p1 = p2, then one
of the conditions (2.7) is fulfilled with α2 + ε in place of α2. Therefore,
we have

Lp1,q1;α1(0, 1) ↪→ Lp2,q2;α2+ε(0, 1).

Consequently,

lim
a→0+

sup
‖f‖Lp1,q1;α1 (0,1)≤1

‖χ(0,a)f
∗‖Lp2,q2;α2 (0,1)

= lim
a→0+

sup
‖f‖Lp1,q1;α1 (0,1)≤1

∥∥∥∥∥χ(0,a)(s)f
∗(s)

(
log

2

s

)−ε
×s

1
p2
− 1
q2

(
log

2

s

)α2+ε
∥∥∥∥∥
Lq2 (0,1)

≤ lim
a→0+

∥∥∥∥∥χ(0,a)(s)

(
log

2

s

)−ε∥∥∥∥∥
L∞(0,1)

× sup
‖f‖Lp1,q1;α1 (0,1)≤1

∥∥∥∥∥f∗(s)s 1
p2
− 1
q2

(
log

2

s

)α2+ε
∥∥∥∥∥
Lq2 (0,1)

= sup
‖f‖Lp1,q1;α1 (0,1)≤1

‖f‖Lp2,q2;α2+ε(0,1) lim
a→0+

(
log

2

a

)−ε
= 0,

i.e., (7.38) is satisfied.
Conversely, suppose that (7.38) is in progress. Then, in particular,

Lp1,q1;α1(0, 1) ↪→ Lp2,q2;α2(0, 1),

so either p1 > p2, or p1 = p2 and one of the conditions in (2.7) is
satisfied. Assume that p1 = p2 and denote p = p1 = p2. There are three
cases in which both ‖ · ‖Lp,q1;α1 (0,1) and ‖ · ‖Lp,q2;α2 (0,1) are equivalent to
rearrangement-invariant norms, one of the conditions in (2.7) is fulfilled
but (7.39) or (7.40) not. The first one is

(7.42) p <∞, q1 ≤ q2, α1 = α2,
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the second one is

(7.43) p =∞, q1 ≤ q2, α1 +
1

q1
= α2 +

1

q2
< 0,

and the third one is

(7.44) p =∞, q1 = q2 =∞, α1 = α2 = 0.

Using [22, proof of Theorem 6.3] we get that in all cases, fundamental
functions of ‖ · ‖Lp,q1;α1 (0,1) and ‖ · ‖Lp,q2;α2 (0,1) are equivalent up to
multiplicative constants. Therefore, a necessary condition for (7.38) to
be true,

(7.45) lim
s→0+

ϕLp,q2;α2 (s)

ϕLp,q1;α1 (s)
= 0,

is not satisfied. Hence, whenever p1 = p2 and (7.38) is fulfilled then
both (7.39) and (7.40) hold.

Proof of Theorem 7.8: Let α ∈ [ 1
n′ , 1). According to Theorem 6.2,

(i) holds if and only if

(7.46) Tmα = Hs1−m(1−α) : Lp1,q1(0, 1)→→ Lp2,q2(0, 1).

First, suppose that Lp2,q2(0, 1)=L∞(0, 1). It follows from the last part
of the proof of Theorem 4.1 that (7.46) is not fulfilled with Lp1,q1(0, 1) =
L1(0, 1). Assume that Lp1,q1(0, 1) 6= L1(0, 1). Then, according to Theo-
rem 4.6, (7.46) is satisfied if and only if

(7.47) Lp1,q1(0, 1)
∗
↪→ (L∞)d1,s1−m(1−α)(0, 1).

Due to Lemma 5.6,

‖f‖(L∞)d
1,s1−m(1−α)

(0,1) ≈
∫ 1

0

f∗(s)sm(1−α)−1 ds = ‖f‖
L

1
m(1−α)

,1
(0,1)

,

up to multiplicative constants independent of f ∈M(0, 1). Hence,

(L∞)d1,s1−m(1−α)(0, 1) = L
1

m(1−α)
,1(0, 1).

Consequently, by Proposition 7.12, (7.46) holds with Lp2,q2(0, 1) =
L∞(0, 1) if and only if p1 > 1

m(1−α) . Observe that in this situation,

condition (7.46) is fulfilled for all pairs (p2, q2) satisfying the assump-
tions of Theorem 7.8, since we always have L∞(0, 1) ↪→ Lp2,q2(0, 1).

Thus, in what follows we may assume that Lp2,q2(0, 1) 6= L∞(0, 1)
and p1 ≤ 1

m(1−α) . Due to Theorem 4.2, (7.46) is satisfied if and only if

(7.48) (Lp1,q1)r1,s1−m(1−α)(0, 1)
∗
↪→ Lp2,q2(0, 1).
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It follows from [9, Theorem 6.9] that

(7.49) (Lp1,q1)r1,s1−m(1−α)(0, 1)

=


L

p1
1−mp1(1−α)

,q1(0, 1), if p1 <
1

m(1−α) ;

L∞,q1;−1(0, 1), if p1 = 1
m(1−α) and q1 > 1;

L∞(0, 1), if p1 = 1
m(1−α) and q1 = 1.

Thus, if p1<
1

m(1−α) then (7.48) is fulfilled if and only if p2 <
p1

1−mp1(1−α) ,

see Proposition 7.12. In the case when p1 = 1
m(1−α) , (7.48) is charac-

terized by p2 < ∞. Indeed, observe that there is no Lorentz space
Lp2,q2(0, 1) different from L∞(0, 1), having the first index equal to ∞
and satisfying one of the conditions (2.3)–(2.6) with p = p2, q = q2, and
α = 0 at the same time. On the other hand, if p1 = 1

m(1−α) and p2 <∞
then (7.48) is satisfied according to (7.49) and Proposition 7.12.

Let α = 1. According to Theorem 6.2, (i) holds if and only if

(7.50) Tm1 = Hm
s : Lp1,q1(0, 1)→→ Lp2,q2(0, 1).

First, suppose that Lp1,q1(0, 1) 6= L∞(0, 1). Then, due to Theorem 4.2
and [9, Theorem 6.11], (7.50) is satisfied if and only if

(Lp1,q1)rm,s(0, 1) = Lp1,q1(0, 1)
∗
↪→ Lp2,q2(0, 1),

which is equivalent to p2 < p1, see Proposition 7.12. Finally, (7.50) is
satisfied with Lp1,q1(0, 1) = L∞(0, 1) if and only if

(7.51) (L∞)rm,s(0, 1) = L∞,∞;−m(0, 1)
∗
↪→ Lp2,q2(0, 1).

As observed above, this cannot be fulfilled when p2 =∞. Furthermore,
owing to Proposition 7.12, (7.51) is satisfied if p2 <∞.

By applying the equivalence of (i) and (iii) to the particular case when
p1 = q1 and p2 = q2, we obtain that (ii) is equivalent to (iii) as well. The
proof is complete.
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Proof of Theorem 7.9: Suppose that lims→∞
s

Φ(s) = 0. By Theorem 6.4,

condition (7.26) is fulfilled if and only if

(7.52) (Lp)rm,Φ(0, 1)
∗
↪→ Lq(0, 1).

Let p ∈ [1,∞). Since, due to (7.11),

lim
s→0+

(
Φ−1(log 2

s )

log 2
s

)m
= 0,

we have, using also [9, Proposition 7.5],

lim
a→0+

sup
‖f‖(Lp)r

m,Φ
(0,1)≤1

∥∥χ(0,a)f
∗∥∥
Lp(0,1)

≈ lim
a→0+

sup∥∥∥∥( log 2
t

Φ−1(log 2
t

)

)m
f∗(t)

∥∥∥∥
Lp(0,1)

≤1

∥∥χ(0,a)f
∗∥∥
Lp(0,1)

≤ lim
a→0+

sup∥∥∥∥( log 2
t

Φ−1(log 2
t

)

)m
f∗(t)

∥∥∥∥
Lp(0,1)

≤1

∥∥∥∥∥
(

log 2
t

Φ−1(log 2
t )

)m
f∗(t)

∥∥∥∥∥
Lp(0,1)

× sup
t∈(0,a)

(
Φ−1(log 2

t )

log 2
t

)m

≤ lim
a→0+

sup
t∈(0,a)

(
Φ−1(log 2

t )

log 2
t

)m
= 0,

which yields that (Lp)rm,Φ(0, 1)
∗
↪→ Lp(0, 1).

Suppose that q ≤ p. Then Lp(0, 1) ↪→ Lq(0, 1), and therefore (7.52) is

satisfied. Conversely, assume that q > p. Since
√

Φ is concave on [0,∞)

and
√

Φ(0) = 0, we deduce that the function t 7→
√

Φ(t)

t is nonincreasing

on (0,∞). Using that Φ−1 is nondecreasing on (0,∞), we obtain that
the function

s 7→
√

Φ(Φ−1(s))

Φ−1(s)
=

√
s

Φ−1(s)
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is nonincreasing on (0,∞). Therefore,

lim
a→0+

ϕLq (a)

ϕ(Lp)rm,Φ
(a)
≈ lim
a→0+

a
1
q∥∥∥χ(0,a)(t)

(
log 2

t

Φ−1(log 2
t )

)m∥∥∥
Lp(0,1)

= lim
a→0+

a
1
q(∫ a

0

(
log 2

t

Φ−1(log 2
t )

)mp
dt
) 1
p

≥ lim
a→0+

a
1
q( √

log 2
a

Φ−1(log 2
a )

)m(∫ a
0

(√
log 2

t

)mp
dt

) 1
p

≈ lim
a→0+

a
1
q( √

log 2
a

Φ−1(log 2
a )

)m
a

1
p

(√
log 2

a

)m

=
lima→0+

a
1
q−

1
p

(√
log 2

a

)−m
lima→0+

( √
log 2

a

Φ−1(log 2
a )

)m =∞.

Hence, (7.52) is not fulfilled.
Suppose that p =∞ and q <∞. Then L∞(0, 1) ↪→ Lq(0, 1), and thus

also (L∞)rm,Φ(0, 1) ↪→ (Lq)rm,Φ(0, 1). It follows from the first part of the

proof that (Lq)rm,Φ(0, 1)
∗
↪→ Lq(0, 1). Hence, (7.52) is satisfied. Finally,

if q =∞ then it follows from Theorem 7.7(b) that (7.26) is not fulfilled.
Now, assume that lims→∞

s
Φ(s) ∈ (0,∞). Then,

lim
s→∞

Φ−1(s)

s
= lim
s→∞

Φ−1(s)

Φ(Φ−1(s))
= lim
s→∞

s

Φ(s)
∈ (0,∞).

Consequently, Φ−1(s) ≈ s, s ∈ (log 2,∞). Thus, if we set I(s) = s,
s ∈ (0, 1], then for every f ∈ M(0, 1) we have PmΦ f ≈ Hm

I f , up to
multiplicative constants independent of f ∈ M(0, 1). Combining this
with Theorem 6.4, we obtain that (7.26) holds if and only if

(7.53) lim
a→0+

sup
‖f‖Lp(0,1)≤1

‖Hm
I (χ(0,a)f)‖Lq(0,1) = 0.

By Theorems 6.2 and 7.8, both applied with α = 1, we deduce that (7.53)
is fulfilled if and only if q < p.
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Proof of Theorem 7.10: Theorem 6.4 applied with Φ(t)= 1
β t
β , t ∈ [0,∞),

yields that condition (7.27) is satisfied if and only if

(7.54) (Lp1,q1;α1)rm, 1
β s
β (0, 1)

∗
↪→ Lp2,q2;α2(0, 1).

Furthermore, it follows from [9, Theorem 7.12] that

(Lp1,q1;α1)rm, 1
β s
β (0, 1) =

{
Lp1,q1;α1+

m(β−1)
β (0, 1) if p1 <∞;

L∞,q1;α1−mβ (0, 1) if p1 =∞.

By applying Proposition 7.12 we get the result.

Acknowledgement

I would like to express my thanks to Luboš Pick for careful reading of
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darrera versió rebuda el 21 de juliol de 2014.

http://dx.doi.org/10.1512/iumj.1971.20.20101
http://dx.doi.org/10.1512/iumj.1971.20.20101
http://dx.doi.org/10.7153/mia-02-35
http://dx.doi.org/10.7153/mia-02-35
http://dx.doi.org/10.1002/mana.201100286
http://dx.doi.org/10.1007/BF02418013

	1. Introduction
	2. Rearrangement-invariant spaces
	3. Sobolev spaces
	4. Compact operators
	5. Main results
	6. Compactness of Sobolev embeddings on concrete measure spaces
	7. Examples
	Acknowledgement
	References

