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COMPACTNESS OF HIGHER-ORDER SOBOLEV
EMBEDDINGS
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Abstract: We study higher-order compact Sobolev embeddings on a domain 2 C R™
endowed with a probability measure v and satisfying certain isoperimetric inequal-
ity. Given m € N, we present a condition on a pair of rearrangement-invariant
spaces X (€, v) and Y (£, ) which suffices to guarantee a compact embedding of the
Sobolev space V™ X (Q,v) into Y (€2, v). The condition is given in terms of compact-
ness of certain one-dimensional operator depending on the isoperimetric function
of (Q,v). We then apply this result to the characterization of higher-order compact
Sobolev embeddings on concrete measure spaces, including John domains, Maz’ya
classes of Euclidean domains and product probability spaces, whose standard exam-
ple is the Gauss space.

2010 Mathematics Subject Classification: 46E35, 46E30.

Key words: Compactness, Sobolev space, rearrangement-invariant space, isoperi-
metric function, almost-compact embedding, John domain, Maz’ya domain, product
probability space, integral operator.

1. Introduction

Embeddings of Sobolev spaces into other function spaces play a very
important role in modern functional analysis. Although Sobolev spaces
on the Euclidean space R™ and on bounded Euclidean domains having
a Lipschitz boundary are discussed most frequently, it turns out that
Sobolev spaces on various other domains, possibly endowed with more
general measures than just with the Lebesgue one, are of interest as well.
For instance, the class of John domains (see Section 3 for a definition),
which is strictly larger than the class of domains having a Lipschitz
boundary, appears in connection with the study of holomorphic dynam-
ical systems and quasiconformal mappings. It was shown that Sobolev
inequalities on John domains have the same form as in the standard
case of Lipschitz domains, see [4, 12, 15, 9]. Furthermore, among quite
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a wide class of Euclidean domains, John domains are exactly those for
which the Sobolev inequality holds in this form [7]. Another impor-
tant example is the Gauss space, that is, R™ endowed with the Gauss
measure 7, defined by
2
dyn(z) = (27‘1’)_%6% dx.

In contrast to the Euclidean setting, Sobolev inequalities on the Gauss
space are dimension-free, which yields the possibility to extend them
also to infinite dimensions. This is of use in the study of quantum fields,
since this study can often be reduced to Sobolev inequalities in infinitely
many variables.

One possible way how to prove Sobolev embeddings is to derive them
from isoperimetric inequalities for the underlying domains. This con-
nection between Sobolev embeddings and isoperimetric inequalities was
first found by Maz’ya in [18] and [19]. His discovery then led to an ex-
tensive research on this topic, which resulted in a number of important
contributions that are considered classical these days (see, e.g., those by
Moser [21], Talenti [25], Aubin [1], and Brézis and Lieb [6]), and which
has continued until now.

Let us note that, until a very recent time, almost all available re-
sults on the interplay between Sobolev embeddings and isoperimetric
inequalities involved only first-order embeddings. In our recent paper
with Andrea Cianchi and Lubos Pick [9] we have developed a method
based on deriving higher-order Sobolev embeddings via subsequent it-
eration of first-order ones, which enables us to derive also higher-order
Sobolev embeddings from isoperimetric inequalities. Furthermore, and
more significantly, for customary underlying domains (e.g., for John do-
mains and for the Gauss space, which we have already briefly mentioned)
the results obtained by this method are sharp in the context of the class
of rearrangement-invariant spaces.

In the present paper we show that not only continuous higher-order
Sobolev embeddings but also the compact ones, can be derived from
isoperimetric properties of the underlying domains, and that the results
obtained in this way are sharp in many customary situations.

Let us now describe the subject of the paper more precisely. We shall
study compact Sobolev embeddings on a domain €2 in R™ endowed with
a probability measure v which is absolutely continuous with respect to
the Lebesgue measure. We also require that the density of v fulfils some
technical assumptions, see Section 3 for more details. For any v-measur-
able set £ C ) we denote by P,(FE,(Q) its perimeter in  with respect
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to v (a precise definition can be found in Section 3 again). The isoperi-
metric properties of (Q,v) are described by the so-called isoperimetric
function of (2, v), denoted Ig . It is the largest function on [0, 1] with
values in [0, co] which is nondecreasing on [0, ], nonincreasing on [3, 1]
and for which the isoperimetric inequality

P,(E,Q) > Io,(v(E))

holds for every v-measurable E C Q).

The question of finding the exact form of Ig, is very difficult and
has been solved only in few special cases, such as the Euclidean ball [20]
and the Gauss space [5]. The asymptotic behaviour of I, at 0, in
which we are interested, can be however evaluated more easily, and is
therefore known for quite a wide class of domains, including Euclidean
John domains (see [12] combined with [20, Corollary 5.2.3, p. 297]) or
product probability spaces [2], which extend the Gauss space.

Given m € N and a rearrangement-invariant space X (Q,v), we will
consider the m-th order Sobolev space V™ X (Q,v) consisting of all m-
times weakly differentiable functions on §2 whose m-th order weak deriva-
tives belong to the space X (€2,v). A precise definition of the notion
rearrangement-invariant space can be found in Section 2, we just briefly
recall that a rearrangement-invariant space is, roughly speaking, a Ba-
nach space consisting of v-measurable functions on €2 in which the norm
of a function depends only on the measure of its level sets. A basic
example of rearrangement-invariant spaces are Lebesgue spaces; besides
them, the class of rearrangement-invariant spaces includes many further
families of function spaces, such as Orlicz spaces, Lorentz spaces, etc.

In [9] we have shown that a continuous embedding of the Sobolev
space V™X(Q,v) into a rearrangement-invariant space Y (€, v) is im-
plied by a certain one-dimensional inequality depending on the repre-
sentation norms || - || x(o,1) and || - [y (0,1) of X (2, v) and Y (Q, v), respec-
tively, on m and on the asymptotic behaviour of I, at 0, described in
terms of a nondecreasing function I giving a lower bound for the isoperi-
metric function at 0. We remark that this inequality can be understood
as boundedness of a certain integral operator from the representation
space X(0,1) into Y (0,1). The above mentioned operator will be de-
noted by Hj" in what follows and has the form

(L1) HPf(t)= (mil)! /t1 lfgz)” (/t ;(l:))ml ds, te(0,1),
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for any Lebesgue measurable function f on (0,1). Moreover, if the func-
tion I satisfies the additional assumption

(1.2) /OICZ’)%I&SS) se(0,1),

(here, and in what follows, the symbol & denotes the equivalence up to
multiplicative constants), then H}" can be replaced by a considerably
simpler operator, K}, defined at every Lebesgue measurable function f
on (0,1) by

1 Smfl
K7 f(t) = / ) gy s L€ (0.1)

We note that while Hj* is (possibly) a kernel operator, K7* is just a
weighted Hardy-type operator, which is far easier to work with. We also
recall that important customary examples are available for the cases
when (1.2) is valid as well as for the cases when (1.2) fails.

The main aim of the present paper is to prove that compactness of the
operator H" from X (0,1) into Y (0,1) implies the compact embedding
of VX (Q,v) into Y (Q,v) (Theorem 5.1). We will also show (Theo-
rem 5.3) that if (1.2) is fulfilled, then the same result holds with H}"
replaced by K7*. The proof of Theorem 5.1 strongly depends on the use
of almost-compact embeddings, called also absolutely continuous embed-
dings in some literature. They have been studied, e.g., in [11] and [24].
It is well known that such embeddings have a great significance for de-
riving compact Sobolev embeddings.

In many customary situations, the sufficient condition in terms of the
operator H}" turns out to be also necessary for compactness of the corre-
sponding Sobolev embedding. We demonstrate this fact on the cases of
Euclidean John domains, product probability spaces, and Maz’ya classes
of domains. The latter classes consist of those bounded Euclidean do-
mains whose isoperimetric function is bounded from below by a multiple
of some fixed power function. Unlike the case of John domains and prod-
uct probability spaces, in which the necessity holds for each individual
domain, for Maz’ya classes the sharpness is fulfilled in a wider sense:
there is one domain in each class for which the necessity holds.

The structure of the paper is as follows. In the next section we intro-
duce rearrangement-invariant spaces and their almost-compact embed-
dings. Section 3 contains a description of the measure spaces that will
come into play, of their isoperimetric properties and of Sobolev spaces
built upon rearrangement-invariant spaces over these measure spaces.
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We also recall those results of the paper [9] that are used in the proofs
of our theorems.

Section 4 contains one-dimensional results which play a key role in
the proofs of our main results, appearing in Section 5. We prove several
theorems concerning compactness of the operator H* which is defined
as in (1.1) but with I replaced by a more general function J (which,
in particular, is not a-priori assumed to be non-decreasing on (0,1]).
These results, thanks to the versatility of J, can be later used to handle
compactness of both operators H;" and K7*, and to provide thereby a
unique scheme appropriate for the proofs of both main Theorems 5.1
and 5.3.

An important result of Section 4 is Theorem 4.2, in which we charac-
terize compactness of H" from a rearrangement-invariant space X (0,1)
into another rearrangement-invariant space Y'(0, 1), denoted by

(1.3) H™: X(0,1) —»— Y(0,1),

by the fact that H') maps the unit ball of X (0, 1) into a set of functions
which is of uniformly absolutely continuous norm in Y(0,1). A charac-
terization of (1.3) given in terms of the operator associate to H* and
its uniform absolute continuity from the associate space to Y (0, 1), de-
noted by Y”(0, 1), into X'(0,1), is provided in Theorem 4.6. Each of the
above mentioned conditions can be reformulated as an almost-compact
embedding between certain rearrangement-invariant spaces. These two
characterizations of (1.3) are the key step in the proof of our main re-
sults.

We note that Theorems 4.2 and 4.6 which characterize compact-
ness of H7" from X (0, 1) into Y (0, 1) require certain restrictions on the
spaces involved, namely that Y (0,1) # L°(0,1) (Theorem 4.2) and
X(0,1) # L'(0,1) (Theorem 4.6). We also find, in Theorem 4.1, an
(almost) universal condition which characterizes (1.3). It has the form

(1.4) lim sup ||H}n(X(07a)f)||Y(0,1) =0.

a—=0+ 1 fllxc0,1)<1

There are still few special situations in which this new condition is not
equivalent to (1.3). However, as observed in the first part of Theorem 5.1,
this cannot happen in the most important case when J is nondecreasing
on (0, 1]. Furthermore, it turns out that in the cases when (1.3) and (1.4)
are not equivalent, condition (1.4) is even more suitable to character-
ize compact Sobolev embeddings (see Theorem 5.3 and Remarks 5.4,

part (i)).
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Section 5 contains the main results of the paper that have been already
described above.

In Section 6 we apply the results of Section 5 to the characteriza-
tion of compact Sobolev embeddings on John domains (Theorem 6.1),
on Maz’ya classes of domains (Theorem 6.2) and on product probabil-
ity spaces (Theorem 6.4). The final Section 7 then provides examples
of compact Sobolev embeddings for concrete pairs of rearrangement-
invariant spaces over the measure spaces discussed in Section 6.

2. Rearrangement-invariant spaces

In this section we recall some basic facts from the theory of rearrange-
ment-invariant spaces. Our standard general reference is [3].

Let (R, 1) be a nonatomic measure space satisfying p(R) = 1. In fact,
R will always be a domain in R” for some n € N. If the measure u is
omitted, we assume that it is the n-dimensional Lebesgue measure on R.
We denote by M(R, i) the collection of all p-measurable functions on R
having its values in [—oo, c0]. We also set M (R, p) = {f € M(R, ) :
f>0on R}.

Suppose that f € M(R, ). Then the distribution function py of the
function f is given by

pr(A) = p({z € R:[f(z)| > A}), A€0,00),
and the nonincreasing rearrangement f;; of f is defined by

Fo(t) = inf{r € [0,00) : pp(A) < £}, te (0,1).

Furthermore, we define f7*, the mazimal function of f};, by

t
f;*(t):%/of;(s)ds, te(0,1).

If two functions f,g € M(R, p) fulfil iy = py (or, equivalently, f; = g7),
we say that f and g are equimeasurable and write f ~, g.

The Hardy-Littlewood inequality [3, Chapter 2, Theorem 2.2] tells us
that

1
/ ol du < / £1(8)g5(5) ds
R 0

is satisfied for all f,g € M(R, p).

A functional || - ||x,1y: M(0,1) = [0,00] is called a rearrangement-
invariant norm if, for all functions u,v € M(0,1) and f,g € M, (0,1),
for all sequences (fz)7>, in M (0,1) and for all constants a > 0, the
following properties are satisfied:
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(P1) [[fllx0,1) =0« f=0ae., [af|xo01) = alfllxo1),
1f +9llx0,1) < I fllxc0,0) + l9llx©0,1);

(P2) f<gae = |fllxo1) < lgllx,);

(P3) fi T fae = |fillxo T I1flx001);

(P4) [[1lx(0,1) < o0;

(P5)

(

P5 fol f(z)dr < C| f]|x(0,1) for some constant C' >0 independent of f;
P6) u~wv = |ullx,) = lvllx©,)

Suppose that || - [ x(0,1) is a rearrangement-invariant norm. The col-
lection of all functions f € M(R, p) for which

”fHX(R,u) = ”f;HX(O,l) < o0

is then called the rearrangement-invariant space X (R, ). We recall that
the functional || - || x(g,,) defines a norm on X (R, i) and that X (R, p) is
a Banach space with respect to this norm. We say that the space X (0,1)
is the representation space of X (R, ).

We now summarize some basic properties of rearrangement-invariant
spaces. We first note that each function f € X (R, u) is finite y-a.e. on R.
Furthermore, the Fatou lemma [3, Chapter 1, Lemma 1.5(iii)] yields that
whenever (f;)72; is a sequence in X (R, p) converging to some function f
p-a.e. and fulfilling that liminfy o || fr| x(R,u) < 00, then f € X(R, u)
and

1Al x ey < T[] fi [ g0 -

Moreover, if (fx)52, is a sequence which converges to some function f in
the norm of the space X (R, u), then (f)32, converges to f in measure.
In particular, there is a subsequence of (fx)3>, which converges to f
p-a.e. on R.

Given a rearrangement-invariant norm || - || x(o,1), we shall consider
the functional || - || x/(0,1): M(0,1) — [0, 00] defined by

1
Iflxon =  sup / F@)g(x)dz, | € M(O,1).
[l9llx(0,1y<1J0

Then || - || x/(0,1) is also a rearrangement-invariant norm, called the as-
sociate norm of || - || x(0,1)- The corresponding rearrangement-invariant
space X'(R, u) is called the associate space of X (R, ut). It is not hard to
observe that

1
T E— / f(8)g7(s)ds, | € M(0,1),

ll9llx (0,1)<1
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If || - | x,1) and || - |ly(0,1) are rearrangement-invariant norms, then
the continuous embedding X (R,u) — Y(R,u) holds if and only if
X(R,p1) C Y(R,u), see [3, Chapter 1, Theorem 1.8]. We shall write
X(R,u) = Y(R,u) if the set of functions belonging to X (R, u) coin-
cides with the set of functions belonging to Y (R, ). In this case, the
norms || - || x(r,u) and || - |ly(r,u) are equivalent, in the sense that there
are positive constants C1, Cy such that

Cillflxrw < Iy < Coll flixmpw, e MR, p).
Furthermore, according to [3, Chapter 1, Proposition 2.10], the embed-
ding X (R, p) < Y (R, p) is fulfilled if and only if Y'(R, ) < X'(R, ).

Suppose that || - |[x(0,1) is a rearrangement-invariant norm. Then the
Jundamental function ¢x of || - || x(0,1) is defined by

ox(t) = lIx©nllxo1), te€(01]
Owing to [3, Corollary 5.3, Chapter 2], ¢ x is quasiconcave, in the sense
that ¢x is nondecreasing on (0, 1] and “’Xf(t) is nonincreasing on (0, 1].
We say that a function f € X(R,u) has an absolutely continuous
norm in X (R, u) if for every sequence (Ej)72, of u-measurable subsets
of R fulfilling xg, — 0 p-a.e. we have

khj& X Sl x (R = 0.
An easy observation yields that this can be equivalently reformulated by
. fullx o =0

The collection of all functions having an absolutely continuous norm
in X(R, p) is denoted by X, (R, u).

Further, we say that a subset S of X (R, ) is of uniformly absolutely
continuous norm in X (R, u) if for every sequence (Ej)72 , of u-measur-
able subsets of R fulfilling xg, — 0 p-a.e.,

I =0
Jim fctelgllekfllxw,u) ’
or, equivalently,
1. * = U.
Jm ;1611;\|X(0,a)fﬂ||X(0,1) 0

Suppose that || - |[x(,1) and || - |y (0,1) are rearrangement-invariant
norms. We say that X (R, u) is almost-compactly embedded into Y (R, u)

and write X (R, p) <> Y (R, p) if

lim  sup  xs. flly@w =0
k=001 £l x (r ) <1 '
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is satisfied for every sequence (Ej)32, of u-measurable subsets of R
fulfilling xg, — 0 p-a.e. Observe that X (R, ) < Y(R, p) holds if and
only if the unit ball of X (R, 1) is of uniformly absolutely continuous norm

in Y(R, ). We shall make use of two characterizations of X (R, i) &
Y (R, 1), namely,

lim  supsup xeflyirm =0
204 fllx (ryy S1 p(BE)<a

and
lim  sup |[x(0,0)f"lly(0,1) =0.
470+ 1 fllx 0, <1
Note that the relation X (R, 1) s Y (R, p) always implies X (R, 1) <
Y (R, ). Another necessary condition for X (R, u) < Y(R, p) is the
following:
lim 240 =
a=04 px(a)
[11, Section 3]. Furthermore, X (R, 1) <» Y (R, 1) is fulfilled if and only
if Y'(R,p) N X'(R, ), see [11, Section 4, Property 5].
Let us now give some examples of rearrangement-invariant norms. A

basic example are the Lebesgue norms || - ||1r0,1), P € [1, 00|, defined for
all f € M(0,1) by

)

1 l/p
x pdx ) < C)O7
o = 4 (o 17@dz) " p
eSS SUP,e(01) [/ ()], p=oc0.

The corresponding rearrangement-invariant spaces LP(R,u) are then
called the Lebesque spaces. Recall that for each rearrangement-invariant
space X (R, ) the embeddings

(2.1) L>¥(R,p) = X (R, p) = L'(R, )

hold. We denote by Cx the constant from the latter embedding, that
is, we have

(2.2) Iflleyrw < Oxllflix (s € X(R p),

and Cx is the least real number for which (2.2) is satisfied.
It is a well-known fact that a rearrangement-invariant space X (R, u)
is different from L*°(R, ) if and only if lim,_,o, ¢x(s) = 0. Further-

more, owing to [24, Theorems 5.2 and 5.3], L®(R, 1) < X(R,p) is

characterized by X (R, u) # L*(R, 11), and X (R, 1) <» L*(R, ;1) holds if
and only if X(R,u) # L'(R, 11).
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One can consider also more general functionals || - ||zr.a(o,1) and
| - [| Lp.a:(0,1) Which were studied, e.g., in [10] and [22]. They are given
for any f € M(0,1) by

% 1_1
1oy = |[£*()577

La(0,1)

2 «
(log )
s

and

Q=

)

Wi = |09

L4(0,1)
respectively. Here, we assume that p € [1,00], ¢ € [1,00], @ € R, and
use the convention that 1/00 = 0. Note that || - [[zr0,1) = || - lzrr(0,1)
and || - [[zrao,1) = || - [lzraoo,1) for every such p and ¢. However, it
turns out that under these assumptions on p, ¢, and «, || - ||zr.a(0,1) and
||| Lp.a:2 (0,1) do not have to be rearrangement-invariant norms. To ensure
that || - ||Lr.aie(0,1) is equivalent to a rearrangement-invariant norm, we

need to assume that one of the following conditions is satisfied:

(2.3) p=q=1 a>0;
(2.4) 1 <p < oo;

1
(2.5) p=o00, @q< o0, Oé+§<0;

In this case, ||-||1r.a(0,1) is called a Lorentz norm, || -|| Lp.ae (0,1 is called a
Lorentz—Zygmund norm and the corresponding rearrangement-invariant
spaces LP (R, 1) and L% (R, 11) are called Lorentz spaces and Lorentz—
Zygmund spaces, respectively.

Furthermore, if || - || Lp1.a1:01 0,1y and || - || p2.a2:02 (0,1) are equivalent to
rearrangement-invariant norms then

[P (R7 ,U) oy [[P2,92;%2 (R, M)

holds if and only if p; > p2, or p; = p2 and one of the following conditions
is satisfied:

p1 <00, q1<¢q2, Q12>aQz;

1 1
P1=00, ¢1<¢q2, a1+ — =202+ —;
(2.7) Qn 0@

1 1
G <q, a+—>ay+—.
q1 q2
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3. Sobolev spaces

Let n € N and let €2 be a domain in R" endowed with a measure v
satisfying v(2) = 1. We assume that v is absolutely continuous with
respect to the n-dimensional Lebesgue measure A, , and we denote by w
the density of v with respect to A, (that is, whenever E C ) is v-mea-
surable, we have v(E) = [,pw(x)dxz). The function w is supposed to
be Borel measurable and fulfilling that for a.e. x € € there is an open
ball B, centered in x such that B, C € and

essinfp, w > 0.

Notice that a subset of Q (or a function defined on ) is v-measurable if
and only if it is Lebesgue measurable. We shall write measurable instead
of Lebesgue measurable in what follows.

For every measurable F C Q we define its perimeter in (2, v) by

P(E,Q) = /Q e @),

where 0™ E stands for the essential boundary of E, in the sense of geo-
metric measure theory (see, e.g., [20]), and H"~! denotes the (n —1)-di-
mensional Hausdorff measure. The isoperimetric function I, : [0,1] —
[0, 0] is then defined by

I, (s) =inf {PV(E,Q) ECQ,s<v(E)< ;}

if s €[0,3], and by I, (s) = Ig,(1—s)if s € (3,1].

Definition 3.1. Let (£2,v) be as above, and let I: (0,1] — (0,00) be
a function. We say that (Q,v,1I) is a compatible triplet if the following
conditions are satisfied:

(C1) I is nondecreasing on (0, 1J;

(C2) I satisfies

I(t
(3.1) inf 1t > 05
te(0,1]

(C3) there exists ¢ € (0,2) such that
(3.2) I, (t) > cI(ct), te(0,1/2].
We note that if I fulfils (C1) and there is a constant D > 0 for which
Io,(t) > DI(t), te€(0,1/2],
then (C3) is fulfilled as well, since
I, (t) > DI(t) > min{D, 1}I(min{D,1}t), te (0,1/2],
owing to (C1).
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Let us now give a few examples of compatible triplets.

Suppose that n € N, n > 2. We recall that a bounded domain Q C
R™ is called a John domain if there exist a constant ¢ € (0,1) and a
point xg € 2 such that for every = € Q) there are [ > 0 and a rectifiable
curve w: [0,l] — Q, parametrized by arclength, such that @ (0) = =z,
w(l) = xg, and

dist(w(r),0Q) > cr, r€]0,1].

In what follows, we shall consider (with no loss of generality) only John
domains whose Lebesgue measure is equal to 1.
It is known that each John domain satisfies

Io(t) ~tw, telo,1/2),

where n' = ~=. Therefore, if we denote I(t) = tw, t € (0, 1], then

(2, An, I) is a compatible triplet.

Let a € [1,1]. We denote by J, the Maz’ya class of all bounded
Euclidean domains  C R™ with \,(2) = 1 fulfilling that there is a
positive constant C, possibly depending on 2, such that

In(s) > Cs*, se]0,1/2].

Set I, (t) = t*, t € (0,1]. Then (Q,\,,I,) is another example of a
compatible triplet.

As a final example we mention product probability spaces, namely, R™
with the product probability measure defined as follows.

Assume that ®: [0,00) — [0,00) is a strictly increasing convex func-
tion such that it is twice continuously differentiable on (0, 00), V@ is
concave on [0,00) and ®(0) = 0. Define the one-dimensional probability
measure iy = [op,1 BY

(3.3) dug (x) = cpe 212D dg;,

where the constant cg > 0 is chosen in such a way that pe(R) =1. We
also define the product measure pg , on R", n > 2, by

(3.4) fdn = fio X - X fig -
—_——
n-times
Then (R™, us,,) is a probability space for every n € N and we have

dpe n(z) = (C@)ne_(cb(lxl|)+‘i’(|x2‘)+"'+®(\xn|)) di.
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Define the function Fg: R — (0,1) by
Fg(t) 2/ coe 2" dr, 1t eR,
¢
the function Is: (0,1) — (0,00) by

Io(t) = coe ®1F 0D ¢ € (0,1),
and the function Lg: (0,1] — (0,00) by

2
(3.5) Lo(t) =t®’ (<I>1 (log t)) , te(0,1].
Then the isoperimetric function of (R”, us ) satisfies
(3.6) Ign g, (t) = Is(t) = Lo(t), te€(0,1/2],

see [2, Proposition 13 and Theorem 15]. Further, it was shown in [9, Lem-
ma 11.1(i)] that Lg is nondecreasing on (0, 1]. Therefore, (R", tio »n, Lo)
is a compatible triplet.
The main example of product probability measures we have just de-
fined is the n-dimensional Gauss measure
2
dryn(z) = (27‘1’)_%6# dx,

which can be obtained by setting
1
(t) = 5752, t €[0,00),
into (3.3) (if n=1) or (3.4) (if n > 1).
More generally, measures associated with

1
d(t) = Btﬂ, t €[0,00),
for some 8 € [1,2] are also examples of product probability measures.
They are called the Boltzmann measures. For each § € [1,2], such
n-dimensional measure is denoted by 7, 5. We of course have v, 2 = v.

We shall now define Sobolev spaces built upon rearrangement-invari-
ant spaces over (2,7). The measure space (€2, v) is required to satisfy
all the above mentioned properties and, moreover, the inequality

(3.7) In,(t) > Ct, tel0,1/2],

has to be fulfilled for some positive constant C' independent of ¢. Notice
that condition (3.7) is satisfied whenever there is a function I for which
(Q,v,1) is a compatible triplet.

Let m € N and let © be an m-times weakly differentiable function
on . Given k € {1,2,...,m}, we denote by V*u the vector of all k-th
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order weak derivatives of u. Moreover, we set Vou = u. Then the m-th
order Sobolev space built upon a rearrangement-invariant space X (€2, v)
is the set

VX (Q,v)={u: u is an m-times weakly differentiable function on §2
such that |V™ule X(Q,v)}.
According to [9, Corollary 4.3], the inclusions V™ X (Q,v) C LY(Q,v)

and V"X (Q,v) CVFLY(Q,v), k=1,2,...,m — 1, are satisfied. Hence,
the expression

=

m—

3-8 lul

VX (Q) = IV ulll L1 @) + V™ ulll x (0.0
k=0

defines a norm on V"X (Q,v).
In what follows we shall denote by

(3.9) VX (Q,v) = Y(Q,v)

the continuous embedding of the Sobolev space V™ X (Q,v) into a rear-
rangement-invariant space Y (€, v), and we shall write

VX (Qv) 5= Y(Q,v)
in order to denote that the embedding (3.9) is compact.

We now state a theorem and a proposition which were proved in [9]
and which will be used in what follows.

Theorem 3.2 ([9, Theorem 5.1]). Suppose that (2, v,I) is a compatible
triplet. Let m € N and let || - || x0,1) and || - ||y (0,1) be rearrangement-
invariant norms. If there exists a constant C; > 0 such that

1 s d m—1
(3.10) ‘ [ ([ ) ] <o
¢ ¢ Y (0,1)
for every nonnegative f € X(0,1), then
(3.11) VX (Q,v) = Y(Q,v)

and, equivalently, there is a constant Cy > 0 such that
(3.12) lully @) < CollIV™ull| x (0,0
for every ue V"X (Q,v) fulfilling [,VFudv=0 for k=0,1,...,m — 1.
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We finally mention that, given m € N and a rearrangement-invariant
norm || - |[xo,1), one can define the more customary Sobolev space
WmX(Q,v) by
WX (Q,v)={u: uis an m-times weakly differentiable function on Q

such that |VFu|€ X(Q,v) for k=0,1,...,m}.
The set W™ X(Q,v) equipped with the norm

llullwmx @) = Z 1V ul ]l x @,0)
k=0

is easily seen to be a normed linear space. We always have the continuous
embedding WX (Q,v) — V™X(Q,v). The reverse embedding is not
true in general, however, we have the following:

Proposition 3.3 ([9, Proposition 4.5]). Suppose that (2, v) is as in the

first paragraph of the present section and, moreover, that
1

/E 7d8 < 0
0 IQ,V(S)

Let m € N and let || - || x(0,1) be a rearrangement-invariant norm. Then
VX (Q,v) =WmX(Q,v),
up to equivalent norms.

In particular, if (Q,v,I) is a compatible triplet such that

/1d8<oo
o 1(s) ’

then V"X (Q,v) = WX (Q,v) for every m € N and for every rearrange-
ment-invariant norm || - |[x(o,1). Indeed, property (C3) of compatible
triplets yields that there is ¢ € (0,2) for which

/% ds <1/%ds_1/§ds<1/1ds<oo
o Iau(s) —cly I(es) )y I(s) = 2 Jy I(s) '
The result now follows from Proposition 3.3.

4. Compact operators

In this section we give several characterizations of compactness of cer-
tain one-dimensional operator on rearrangement-invariant spaces. These
characterizations play a central role in the proofs of our main results in
the following Section 5. Moreover, the results of this section will be
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used to characterize compactness of this operator on concrete classes of
rearrangement-invariant spaces (see Section 7).

Let J: (0,1] = (0,00) be a measurable function satisfying

(4.1) inf IO > 0.
tc(0,1] 1
We set
(4.2) Jo = inf J(t), a€(0,1),
tela,l]

and observe that for every a € (0,1),
Jo > Ca >0,

where C' = inf, ¢ 1) J(t)/t.
We shall consider the operator H; defined by

wy - [ J;Eg

and the operator R; defined by

ds, feM(0,1), te(0,1),

RJf(t)Zﬁ/o If(s)|ds, feM(,1), te(0,1).

Furthermore, given j € N, we define the operators H j] and Rg: by

(4.4) H,=HjoHjo---0oH; and R, =RyoRj0---0Rj.

j-times j-times

Then

P S LV S S
(4.5) HJf(t)—(j,l);/t J(s) (/t J(T)) o
fEM((),l)v t€(0’1)7

and

; 1 trort e YV
Rth:,/(/) F(s)|ds, feM(0,1), te(0,1),
see [9, Remarks 8.2]. For technical reasons, we also set H} = RY = Id.

We remark that the operators H § and Rf] are associate in the sense
that for every f € M4 (0,1) and g € M, (0,1) we have

(4.6) | roms as= [ am s
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We also observe that whenever j € N and f € M(0,1) then Hj]f is
nonincreasing on (0, 1). Finally, given a € (0, 1], the equality

H (X 0,0)) (1) = X(0,0)(t) G _1 il /ta J(ls) (/ts ﬁ%)jl ds

:X<o,a><t>;!(/taj§’;))j7 re(0,1)

which follows from the change of variables formula, will be of use.

(4.7)

Given two rearrangement-invariant norms || - || x 0,1y and || - |y (0,1), we
shall write

H: X(0,1) — Y(0,1)

in order to denote that the operator H§ is bounded from X (0,1) into
Y (0,1). Our goal is to find necessary and sufficient conditions for com-
pactness of HY from X (0,1) into Y'(0,1), denoted by

(4.8) H: X(0,1) —— Y(0,1).
The first result in this connection is the following:

Theorem 4.1. Let J: (0,1] — (0,00) be a measurable function satis-
fying (4.1) and let j € N. Suppose that || - || x(0,1) and || - |y (0,1) are
rearrangement-invariant norms. Consider the following two conditions:

(i) HY: X(0,1) »—Y(0,1);

(if) lima—o, supy gy, <1 5 (X0.0)f)lly 0,1 = 0-
If X(0,1)=L%Y0,1), Y(0,1)=L>(0,1), j=1, and

o 1
alir& €SS SUP¢ (0,q) 70 =0,

then (ii) is satisfied but (i) is not. In all other cases, (i) holds if and
only if (i) holds.

Theorem 4.1 provides a full characterization of compactness of the
operator H’. By modifications of condition (ii) of Theorem 4.1 we obtain
two more necessary and sufficient conditions for (4.8). Their equivalence
to (4.8) holds in a slightly less general setting, but the strength of these
characterizations rests on the possibility to reformulate them as almost-
compact embeddings between certain rearrangement-invariant spaces.
This connection between compactness of H’ and almost-compactness
of an embedding becomes a key tool for the proof of our main result,
Theorem 5.1.
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We shall now introduce a family of rearrangement-invariant spaces
whose almost-compact embeddings are suitable for characterization
of (4.8).

Let || - [[x(0,1) be a rearrangement-invariant norm. For every f €
M(0,1) we define the functional || - ||(X;3J)/(0,1) by

Il xr .0 = IRl x00.1)

o il (L 5ts) o

Then, according to [9, Proposition 8.3], || - ll(xr,)(0,1) is a rearrange-

- |
(j—1! X/01)

ment-invariant norm and its associate norm || - || XT,(0,1) fulfils
(4.10) HY: X(0,1) = X7 ,(0,1).

Moreover, X7 ;(0,1) is the optimal range for X (0, 1) with respect to the

operator H ‘]]', that is, X7 ;(0,1) is the smallest rearrangement-invariant
space for which (4.10) is satisfied.

The following theorem characterizes (4.8) by means of the space
X7 ;(0,1).

Theorem 4.2. Let J: (0,1] — (0,00) be a measurable function satis-

fying (4.1) and let j € N. Suppose that || - | x(0,1) and || - |ly(,1) are

rearrangement-invariant norms. If

(4.11) Y (0,1) # L*>(0,1) or /1dr—oo
. I I o J('I") - )

then the following conditions are equivalent:

(i) H’: X(0,1) =— Y (0,1); _

(i) lima—o, supygy ., <1 X0 HIflly0,1) = 0;
(iii) X7 ,(0,1) < Y(0,1).

Remarks 4.3. (a) Condition (ii) of Theorem 4.2 tells us that the set
(H)f - Ifllx©,1) < 1} is of uniformly absolutely continuous norm
in V(0,1).

(b) Suppose that Y (0,1) = L*°(0,1). Then we easily observe that
none of conditions (ii) and (iii) of Theorem 4.2 can be satisfied, no matter
what J, j, and || - ||x(,1) are. If, moreover, fol % = 00, it follows
from Theorem 4.2 that condition (i) is also never fulfilled (since it is
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equivalent to (ii) and (iii)). However, this is no longer true in the case
when fo 75 < 00, because

(4.12) HY: 1%°(0,1) —— L=(0,1)
holds for every j € N in this situation. Indeed, by (4.7) we have

lim HH a)f)H

a—=0+ ufnLoo(o H<1 L (0,1)

= lim || (0.0

a—04 L= (0,1)
e dr J
= lim — o) (t —
a—04 ]' X(O’ )( ) (Z J(T‘)) Loo(0,1)

a J
lim = / L R
a=0+ j! \Jo J(r)
Hence, due to Theorem 4.1, condition (4.12) is satisfied.

Remark 4.4. Suppose that J: (0,1] — (0,00) is a measurable function

fulfilling (4.1), j € N and || - [ x(0,1) is a rearrangement-invariant norm
such that

(4.13) H: X(0,1) — L(0,1).

Then

(4.14) H%: X(0,1) —— Y(0,1)

is fulfilled for all rearrangement-invariant spaces Y (0,1) # L°(0,1).
Indeed, since L*>°(0,1) is the smallest rearrangement-invariant space
over (0,1) and (4.13) is satisfied, L>°(0, 1) is the optimal range for X (0, 1)
with respect to the operator Hg, and therefore XJ’T’J(O7 1) = L*°(0,1).

The assumption Y (0,1) # L°(0,1) yields that L>°(0,1) <> Y(0,1).
Thus, according to Theorem 4.2, we obtain (4.14).

Furthermore, having only the information that (4.13) holds, we cannot
decide whether (4.14) is satisfied with Y (0,1) = L*°(0,1) or not. As an
example, consider the function J = 1 on (0, 1] and the rearrangement-in-
variant norm || - ||x,1) = || - [[£1(0,1)- In this case, condition (4.13) is
easily seen to be satisfied for every j € N. Due to Theorem 4.1, (4.14) is
fulfilled if and only if

(4.15) lim sup | H (X Hllz=1) =0-
a0+ ”f”Ll(o 1)<1
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For every a € (0,1) we have

. 1 a o
sup  [|H}(X©0,0)f)llL=01) =  sup ﬁ/ |f(s)|s" "t ds
Hf”Ll(oJ)Sl HfHLl(O,l)Sl (j - ) 0

1 i
= WHX(O@)(S)SJ 1||L°°(0,1)

1 _
= — J-1
G-

and hence (4.15) does not hold for j = 1, but it holds for j > 1.

We shall now define another family of rearrangement-invariant spaces

whose almost-compact embeddings will be used for characterization
of (4.8).
Let || - [[y(0,1) be a rearrangement-invariant norm fulfilling
< o0.

o1

For every f € M(0,1) define the functional [| - [[y-a (1) by
(0,

(4.16)

HfHY.dJ(O,l) = ‘}SLEI; ||H§h||Y(0,1) + HfHLl(o,l)
1
(4.17) = sup —
0<hes (= D!

[5a([ 5m) o
+ 11z 0,1)-

Then || - ||Yd](0 1) Is a rearrangement-invariant norm and the correspond-
500,

Y (0,1)

ing rearrangement-invariant space Yj"i‘](O, 1) is the optimal domain for

Y (0,1) with respect to the operator H7, in the sense of the following:

Proposition 4.5. Let J: (0,1] — (0,00) be a measurable function satis-
fying (4.1) and let j € N. Suppose that || - |y (0,1 is a rearrangement-in-
variant norm fulfilling (4.16). Then || - ||}/ja.l‘](071) is a rearrangement-in-
variant norm and '

(4.18) HY:Y5(0,1) = Y(0,1).

Moreover, Y]d ;(0,1) is the largest rearrangement-invariant space for
which (4.18) is satisfied.

Conversely, if |||y 0,1y is a rearrangement-invariant norm which does
not fulfil (4.16) then there is no rearrangement-invariant space Yj‘fJ(O, 1)
such that condition (4.18) is satisfied.

The last result of this section provides a necessary and sufficient con-
dition for compactness of the operator H’ given in terms of the optimal
domain space.
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Theorem 4.6. Let J: (0,1] — (0,00) be a measurable function satis-
fying (4.1) and let j € N. Suppose that || - || x(0,1) is a rearrangement-
invariant norm such that X (0,1) # L(0,1) and |- llv(0,1) is a rearrange-
ment-invariant norm fulfilling (4.16). Then the following conditions are
equivalent:

(i) H’: X(0,1) —=— Y (0,1);
(if) Tima o0, Sup| gy, <1 SUPA, () <a 1T (XES) v (0,1) = 05
(iii) X(0,1) < Y,(0,1).

Remarks 4.7. (a) Using the definition of the associate norm and (4.6)
we deduce that condition (ii) of Theorem 4.6 is equivalent to equality
lim sup sup ||XER§f||X'(0,1) =0,
0 N fllyr 0y S1 A (B)<a

which tells us that the set {Rﬂf NI fllyro,1) < 1} is of uniformly abso-
lutely continuous norm in X’(0, 1).

(b) It is not hard to verify that conditions (ii) and (iii) of Theorem 4.6
are never fulfilled with X (0,1) = L'(0,1). However, this is not the case
of condition (i) since we have already observed in Remark 4.4 that (i) is
satisfied with J = 1, X(0,1) = L'(0,1), and Y (0,1) = L>(0,1) when-
ever j > 1. Furthermore, in contrast to Theorem 4.2, which holds in
the exceptional case Y(0,1) = L*°(0,1) for quite a wide class of func-
tions J, there are only very few functions J for which Theorem 4.6 is
fulfilled with X (0,1) = L'(0,1). We shall now characterize all nonde-
creasing functions having this property (recall that the case when the
function J is nondecreasing is the most significant from the point of view
of applications to compact Sobolev embeddings).

Fix a nondecreasing function J fulfilling (4.1). Then Theorem 4.6
is not true for X(0,1) = L(0,1) if and only if there is j € N and a
rearrangement-invariant norm || - ||y (,1) such that

(4.19) H?: LY0,1) »— Y(0,1).

Notice that whenever a rearrangement-invariant norm || - [|y-(o,1) satis-
fies (4.19) then, in particular,

(4.20) HY: LY0,1) = Y (0,1),

and therefore (4.16) holds (consequently, || - [y (0,1 satisfies the assump-
tion of Theorem 4.6). Indeed, if (4.16) was not fulfilled then, due
to Proposition 4.5, there would be no rearrangement-invariant space
Yj‘fJ (0,1) such that (4.18) is fulfilled. This would contradict (4.20).
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Fix 7 € N. In order to decide whether there is a rearrangement-
invariant space Y (0,1) for which (4.19) holds, it is enough to study
whether

(4.21) H?: LY0,1) —— LY(0,1),
since L'(0,1) is the largest rearrangement-invariant space over (0,1).
Due to Theorem 4.1, condition (4.21) is equivalent to

li%l sup ||H§(X(O,a)f)‘|L1(0,1) =0,
a—=0+ Hf”Ll(o,l)Sl

which is characterized in the last section of the present paper (see The-
orem 7.1(b)) by
. t
A Ty =0
(no matter what j is). Combining this with (4.1) we deduce that the only
case when (4.21) is not fulfilled for some j € N (and hence Theorem 4.6 is
fulfilled with X (0,1) = L*(0, 1)) is the one when there is a set M C (0, 1)
such that 0 € M and
J(s)~s on M.

Remark 4.8. Suppose that J: (0,1] — (0,00) is a measurable function

satisfying (4.1) and j € N. If || - |ly(o,1) is a rearrangement-invariant
norm such that

(4.22) HY: LH0,1) — Y (0,1),

then

(4.23) H’: X(0,1) —— Y(0,1)

is fulfilled for all rearrangement-invariant spaces X (0,1) # L(0,1). To
verify this, we first recall that the rearrangement-invariant norm ||-[|y-(o,1)
satisfies (4.16) (a proof of this fact was given in Remarks 4.7(b)). Thus,
we can consider the rearrangement-invariant norm || - ||Y;%J(0,1) defined
by (4.17). Since L'(0,1) is the largest rearrangement-invariant space
over (0,1) and (4.22) is satisfied, L'(0,1) is the optimal domain for
Y (0, 1) with respect to the operator H (]]', and hence it follows from Propo-
sition 4.5 that Yj‘i](O7 1) = L'(0,1). The assumption X (0,1) # L(0,1)
yields that X (0,1) <» L*(0,1). Using the last two facts and Theorem 4.6,
we obtain (4.23).

Furthermore, having only the information that (4.22) holds, we cannot
decide whether (4.14) is satisfied with X(0,1) = L'(0,1) or not. An
example supporting this was already presented in Remark 4.4.
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Remark 4.9. The classical result due to Luxemburg and Zaanen [17]
relates compactness of a kernel integral operator to its absolute continu-
ity, and to absolute continuity of the associate operator. Let us describe
this result in some more detail, and then compare it to our Theorems 4.2
and 4.6.

Let X(0,1) and Y(0,1) be rearrangement-invariant spaces, let T' be
a kernel integral operator, and let 7" be the operator associate to T' (in
a similar sense in which our operator R?} is associate to Hg, see [17] for
a precise definition). Assume that T'f € Y,(0,1) for every f € X(0,1),
and T"g € X/(0,1) for every g € Y'(0,1). In [17] it is proved (even in a
more general setting) that we have the equivalence of the following three
conditions:

(a) T: X(0,1) >— Y(0,1).

(b) The set {T'f : || fllx(0,1) < 1} is of uniformly absolutely continuous
norm in Y (0,1).

(c) Theset {T"g : ||lglly(0,1) < 1} is of uniformly absolutely continuous
norm in X’(0,1).

If weset T = H ?}, then its associate operator 1" is the operator R?,.
We have observed in Remarks 4.3 and 4.7 that in this case condition (b)
is exactly condition (ii) of Theorem 4.2 and condition (c) is identical to
condition (i) of Theorem 4.6. The main difference between our result
and the one proved in [17] is the following: when proving that (a) im-
plies (b) or (c), we do not need to assume that either the operator Hg,
or R{,, has its range in the set of functions of absolutely continuous
norm, since this fact already follows from (a) (under the indispensable
assumption that Y'(0,1) # L>(0,1) or X(0,1) # L*(0, 1), respectively).
It can be easily observed that such a claim fails when 7T is an arbitrary
kernel integral operator.

We shall now prove the results of this section. We start with the
following:

Lemma 4.10. Let J: (0,1] = (0,00) be a measurable function satisfy-

ing (4.1), let €N, and let a €0, j]. Suppose that ||-|| x(0,1) and |||y (0,1

are rearrangement-invariant norms. Consider the following conditions:
(i) H’: X(0,1) == Y(0,1);

(i) lima—o, SUP| £y o <1 1H7(X0,0)F) Iy (0,1) = 0

1 ar *
X(0.a) (t) (ft T)) Hy(o =0
Then (i) implies (ii). Furthermore, provided that (4.11) is satisfied,
(i1) implies (iii).

(iif) Tim, 0,
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Proof: Suppose that (i) holds. Then Hj] is bounded from X (0,1) into
Y (0,1), so, in particular, for every k € N
sup  [|H)(xa/mHllvon < sup [1H fllyon) < oo
£l x 0,1y <1 £l x 0,1y <1

Therefore, given k£ € N, we can find a nonnegative measurable function f,
on (0,1) such that || fx||x(0,1) <1 and

. ) 1

. sSup 7\X(0,1/k) Y (0,1) 7X(0,1/k)JE )Y (0,1) T 7

(4.24) [P=57¢ NI < |HH3( f)ll +o
[1£llx 0,1y <1

Since the sequence (x(0,1/k)fk)ie; is bounded in X(0,1), the assump-
tion (i) yields that there is a subsequence (fx,)?2; of (fx)52; such that
(H% (X (0,1 k) fre)) 21 converges to some function f in the norm of the

space Y (0,1). Moreover, the subsequence can be found in such
oo

a way that (Hi(X(O,l/kg)fkg))gzl converges to f a.e. on (0,1). But
HY(X(0,1/k0) k) =0 0n (1/kg, 1), which implies that H? (X (0,1 /k,)fk,) — 0
pointwise. Thus, f = 0 a.e. on (0,1). This yields

Jim 1H5 (x0,1/80) fre) Iy 0,1) = 0.
Now, the inequality (4.24) gives

lim  sup | H(x0.1/k0)f)llv(0.1) = 0.
£—o0 £l x 0,1y <1 17k o

Since the function

ar  sup  ||H(x,0 )y
1 fllxc0,1)<1

is nondecreasing on (0, 1), we obtain (ii), as required.
Now, suppose that (ii) holds and (4.11) is satisfied. If fol JLE:) < o0,
then necessarily Y'(0,1) # L*°(0, 1), so

Logr \* Ldr \*
t - < — li =0.
X(0.0)( >( /t J(,,)) 9 1)_< /0 J(T)> A {xow v

Conversely, assume that fol %
b € (0,a) such that

max (1,/@1 JCZ")) </taJCE:), t € (0,b).

Then, in particular,

lim
a—04

= oo. Given a € (0,1), there is

Lodr
1< —, te(0,b),
AT
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and therefore also

Thus,

Passing to limit when a tends to 0, we obtain (iii), as required.

Proof of Theorem 4.2: (i) =

implies

([ ﬁ)) Le )

. Loar \*
lim sup (| (0, (t) 70
d—04 t Y(O,l)
L ar J
< lim sup (X (o0,d) (t) (/ J(T))
d—04 t Y(O,l)
. Lodr
= limsup || x(0,a)( 70
d=0+ Y (0,1)
< limsup 2’ ||x X(0,)(t < )
d—04 Y (0,1)
; @ dr\’
<2 oo ([ 555)
¢ Y (0,1)
=32 [H (o), (v (47)
197 1
=2 ||1||X(01) H Oali
|| HX(O 1) Y (0,1)
<3271l x0.1) HH X(o, a)f)H ~
Hf”x(o <1 Y(0,1)

lim  sup [ H(x0.0)0)ly0.1) = 0.
=041 £l x 0,1y <1

397

O

(ii) According to Lemma 4.10, condition (i)
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Fix b € (0,1). For every ¢ € (0,1), we have

‘ 1 S S dr it
H5(xw1)f)(t) = (j_ll)!~/rnax(b7t) |§E5;| (/ J(r)) s

1 dr /
S )| ds
T =D ( . J(r) ) |/ (s)]
(4.25)
1 odr
<
= G-, (/t 7 > ||f||L1(o,1)
Cx dr
< .
< () o
Hence,
limsup su ona) ‘]fH
a—04 Hf“x(o <1 Y (0,1)
<limsup sup HXOaH (XObf)H
a—04 HfHX(o <1 (0.) (0.6) Y (0,1)
+limsup  sup HX(O a) (X(b Uf)”
a—04 ||f|\x(o n<l Y (0,1)
< | #3 Ccon )|
”f“x(o n<1 Y (0,1)
—|—hmsup07 Y (t) (/1 dr >j1
a0y (=D . ¢ J(r) Y (0,1)
= HH X(0, b)f)H ;
HfHX(o <1 Y (0,1)

thanks to Lemma 4.10. Passing to limit when b tends to 0, we get

i [xowmi],
aﬁo+|\f\|x(o1)<1 X a) ! 01)

as required.

(ii) = (i) The proof is completely analogous to that of [23, Theo-
rem 3.1, implication (ii) = (i)], even with simplifications following from
the fact that we consider rearrangement-invariant spaces over a finite
interval.
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(ii) < (iii) Using the definition of the associate norm and the equal-
ity (4.6), we get

lim sup 1X(0,a).f ||(X;:J)/(o,1)

204 fllyr 0,1y <1
—dim s R (o)
a—=0+ ”fHY'(o 1)<1 ! ( ‘1) X/(O,l)
= Jm o sup / 19() [ R (X(0.0).f*)(5) ds
=0+ £y 7o, 1)<1H9||X(0 <1
1 .
= 111(1)1 sup sup / X(0,a)(8)f*(s)H’ g(s) ds
a—0+ llgllx 0,1y <1 [ fllyr0,1)<1 70

= lim sup /f Jg)*(s)ds

=0+ gl x 0,1y <1 ||f\|w<o H<t

= lim sup ||X(O,a)H§g||Y(O,1)-
=04 gl x 0,1y <1

Note that the second last equality holds because x(o,q)H f}g is nonincreas-
ing on (0, 1) for every a € (0,1) and g € X(0,1). Thus, we have proved
that (i) holds if and only if ¥7(0,1) < (X1 ,)'(0,1). Since the latter
condition is equivalent to (iii), the proof is complete. O

Proof of Theorem 4.1: According to Lemma 4.10, (i) implies (ii) (with
no restriction on || - || x(0,1), | - lly(0,1), /, and j).

Suppose that condition (4.11) is satisfied. Then the implication (ii)

() follows from the proof of Theorem 4.2. So, assume that Y (0,1) =

)

fl Jd(:n) < oo and (ii) holds. We observe that to prove (i),

it is enough to show that for every a € (0,1), the operator Hia: f=
Hﬂ(x(%l)f) is compact from X (0, 1) into L>°(0,1). Indeed, thanks to (ii)
we have

lim sup ||H§f - H?] fllze0,1)
a0+ | £l x (0,1) <1 “

= li%l Sup ||H§(X(O,a)f)”LOC(O,1) =0,
a0+ 11l x 0,1y <1

so H f, will be a norm limit of compact operators, and thus itself a com-
pact operator.
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Fix a € (0,1). For every f € X(0,1) we can consider the func-
tion H7 , f to be defined by (4.5) (with f replaced by x(a,1)f) on the en-

tire [0,1]. Then H f}a f is continuous on [0, 1], and it follows from (4.25)

(with b = a) and from the fact that fl "fr) < oo that the image by HJa

of the unit ball of X(0,1) is bounded in C([0,1]) with the standard

c 1ogr )T
supremum norm by ﬁ ( 0 70

Now, assume that 7 > 1. Let 0 < ¢; < t5 < 1. Then, using the result
of the previous paragraph with j replaced by j — 1, we get

‘H]af (t1) — Hﬂaf(b)‘

”f”X(O n<i
to H]71

o / 7 (X f)(s)

ds
1fllxc0,1)<1Jty J(S)

j— 1 ) bz dS
ol [
Hf”x(o 1H<1 (@) L>(0,1) J¢, J(S)

=0 —C;ﬂJa </01 ﬁi))j_ / féi)

The last expression goes to 0 when t; — t; tends to 0 thanks to the
absolute continuity of the Lebesgue integral. This proves that the image
by H ia of the unit ball of X (0, 1) is equicontinuous.

Let j =1 and X(0,1) # L'(0,1). Then we deduce that

sup | H3,J(t)~H3 . f(t)| = sup /t2>WWdS

Iflxon<t £l x0 <1/t J(s)

<1 /2|f<s>|ds

Ja 1fllxc0,1)<1 It

1
< T 5P sup  |Ixefllio.1)s
al|lfllxc,1)<TA(E)<t2—t1

which goes to 0 when t3 —¢; tends to 0 thanks to the almost-compact em-
bedding X (0,1) & L'(0,1). This proves the equicontinuity in this case.
Arzela—Ascoli theorem now yields that H ‘J]"a maps the unit ball of X (0,1)
into a relatively compact set in C(]0,1]). Since the space C([0,1]) is
continuously embedded into L>°(0,1), the operator H ia is compact
from X (0,1) into L>°(0, 1), as required.
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Finally, suppose that X (0,1)=L(0,1), Y(0,1)=L>(0,1), and j=1.
We have
lim  sup ) ||HJ(X(0,a)f)HY(o,1)

a0+ ) fll x(0,1) <

~ lim sup [[Hi(xow) Nl L~

204 £l 1 0.1y <1

lim sup /a £(s)] ds
0

a=04 ) oy <tJo J(8)

(4.26) -

1
= 1' -
Jm .0

L=(0,1)

. 1
= allf{)l_*_ €8s Supte(o)a) m7

hence, condition (i) is satisfied if and only if lim,—0, esssup,¢ (g q) ﬁ =
0. Thus, the implication (ii) = (i) holds in the case that X(0,1) =
LY0,1), Y(0,1) = L>(0,1), j = 1, and lim,—s0, ess5uPse(0,a) 7757 # 0-
because the assumption (ii) is not fulfilled.

To complete the proof, we will show that if X (0,1)=L(0,1), Y(0,1)=
L>(0,1), and j = 1 then condition (i) is not satisfied. Indeed, since
1> 0o0n (0,1), there is € > 0 and a set M C (0,1) of measure 3 such
that + > on M. Let (2,)52, be a sequence of points in [0,1) fulfilling
M((zn, 1) N M) = 2%, n € N. Given n € N, set fr, = 2"X (4, 010 M-
Then

Il fnllx0,0) = fullzr0,1) = 2" A1 (2, Trga] N M)

=2"(M((xn, )N M) = M (21, 1) N M)) =

N

Therefore, the sequence (f,,)22; is bounded in X (0,1). Let m,n € N,

n=

m < n. Since both Hj;f,, and H;f, are continuous on (0,1), we have

I Hyfn — Hifmlly o) = 1Hrfn — Hifmllze0,1)
Z ‘Han(wn) - Hme(xn”

n [ xa(s) 3

=2 > —.

L5 a3

Consequently, there is no subsequence (fy, )52, of (fn)22, for which
(Hjfn,)22, is convergent in Y (0,1). Hence, H; is not compact from
X(0,1) into Y(0,1). The proof is complete. O

n



402 L. SLAVIKOVA

Proof of Proposition 4.5: Suppose that || - ||y (9,1 is a rearrangement-in-
variant norm fulfilling (4.16). We start by showing that || - [[ya (1) is
2,0,

a rearrangement-invariant norm. Properties (P5), (P6) as well as the
first two properties in (P1) trivially hold. Since the functional || -||£1(0,1)
satisfies the axioms of rearrangement-invariant norms, we only have to
verify that the functional || - || z(0,1) defined by

I fllz0,1) = }SLUI; ||H§h||Y(0,1), feM(0,1),

fulfils the triangle inequality and properties (P2)—(P4). However, (P2)
and (P3) can be proved exactly in the same way as it is done in [8,
proof of Lemma 4.2]. Furthermore, using the fact that each nonnega-
tive function equimeasurable to 1 is equal to 1 a.e., and applying the

E:-{U'E 35 ( ) b a 1’ e get
(/ )J
t J( )

which proves (P4). Thus, it only remains to verify the triangle inequality.
Suppose that u, v are nonnegative simple functions on (0, 1). We will
show that

4 1
(4.27)  |1llzo,1) = 1HFDlly0,1) = 7

< 00,
Y (0,1)

(4.28) v+ vlzo1) < llullzo,n) + 10z,

Assume that a nonnegative function h on (0, 1) satisfies h ~ u+wv. Then
it is not hard to observe that there exist nonnegative simple functions h,,
and h, on (0,1) such that h = hy, + hy, hy ~ u, and h, ~ v. Hence,

750y 0.1) < [Hhally 0,1y + [ HIRolly 0.1) < llullz0,1) + [0l z0,1)-

Passing to supremum over all i we get (4.28).

Let f,g € M1(0,1). Then there are two sequences of nonnegative
simple functions (u,)2; and (v,)>2; such that w, T f and v, 1 g.
Then also u, + v, T f +g. Thus, using the property (P3) for || - || z(0,1
(which has already been verified) and the inequality (4.28), we obtain

If +9llzo1) = nh_{go wn + vnllz(0,1) < nh_{go (HunHZ(O,l) + ||Un||Z(0,1))

= lim Hun||z(o,1)+nlggo vz, =fllz0,1) + l9ll (0,1

as required.
The assertion (4.18) follows from the definition of the space Yj‘fJ(O, 1).
Furthermore, let |- || x(o,1) be a rearrangement-invariant norm such that
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HJ] X(0,1) — Y(0,1). Then there is a constant C > 0 such that for
every f € X(0,1),

15 flly0.1) < Cllfllx0.0)-
Thus,

1fllye,0,1) = iug 15 flly o) + I1fllzr0,1) < (C+ Cx)llfllx0,1)-

Hence, we obtain X(0,1) < Yj‘fJ(O, 1), that is, Yj‘fJ(O, 1) is the largest
rearrangement-invariant space for which (4.18) is satisfied.

Finally, suppose that a rearrangement-invariant norm || - [y (1) does
not fulfil (4.16). By (4.7) applied with a =1,

([ 55)
¢ J(r)
so H}(l) ¢ Y(0,1). Since the constant function 1 belongs to each

rearrangement-invariant space over (0,1), there is no rearrangement-in-
variant space YJd ;(0,1) for which (4.18) is satisfied. O

. 1
15, (D ly 1) = il

= 007
Y (0,1)

Proof of Theorem 4.6: Due to Theorem 4.1, condition (i) is equivalent
to
(4.29) lim sup | H (x0.0)) Iy =0-

270 1 f 1l x 0,1y <1
Obviously, we have (ii) = (4.29). Conversely, suppose that (4.29) holds
and fix b € (0,1). Using the first part of (4.25) applied to xgf instead
of f, we get

limsup  sup sup H‘]](XEf)H

a=04 [|fllx0,1<1 M (E)<a Y (0.1)
<limsup sup sup HLJ}(X(O,b)XEf)H

a=04 |[fllx0,1)<1 M(E)<a Y(0.1)
+limsup  sup sup H?}(X(b,l)XEf) H

a=04 || fllx0,1) <1 A (E)<a Y(o,1)
< sup }Hﬂ(X(o,b)f)‘

£l x0,1y<1 Y(0,1)

1 L dr .

+ (/ ) limsup  sup sup |IxefllLio1)

=DM |\ J(r) yo1) 0 Ifllx@n <1 (B)<a
N Ty

£l x 0,1y <1 Y(0,1)
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because X (0,1) <» L'(0,1) (thanks to the assumption X (0, 1) L(0,1))

and
(37 o] )

Y (0,1) Y(0,1)
Loar It
+ X )(@) 0]
Y (0,1)
o1 " ( /1 dr )j
> 1 d X(O)l
Iy 7% ’ ¢ IO v o

1 i1
+ /—dr Ixan®],, . <o
1 J(r) X3 Y (0,1) ’

thanks to (4.16) and to the fact that 0 < fll % < 00. Passing to limit
2
when b tends to 0, we obtain (ii).
It remains to show that (ii) holds if and only if (iii) holds. Fix a €
(0,1). Then

sup sup |1HS (xef)lly 0.1
1fllxc0,1) <1 M (E)<a

< " sup ?ug) (hsupf IH% Ry (0,1) + ||XE‘f||L1(0,1)>
1A (E)< ~
(4'30) X(0,1)> 1 sa XE

< sup sup || H)(xef)llv 0,1
£l x 0,1 <1 A1 (E)<a

+  sup sup [|xefllL10,1)-
1fllxc0,1)<1 M (E)<a

Note that the second inequality is true thanks to the fact that whenever
a function f fulfils || || x(0,1) < 1, aset £ C (0, 1) satisfies A1 (F) < a and
h is a function equimeasurable to x g f, then h = x{n|>01h, h belongs to
the unit ball of X (0, 1) and A1 ({|h] > 0}) =M ({x&|f] > 0}) <\ (E) < a.

Assume that (ii) holds. Since X (0,1) # L'(0,1), we have X(0,1) &
L'(0,1), that is,

lirg sup sup |Ixefllzio,1) = 0.
A7 £l x 0,1 <L AL(E)<a
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Thus, according to the second inequality in (4.30), we obtain

lim  sup sup  [[xefllye, 01
704 fllx 0,1y <1 A1 (E)<a >

= lim sup sup sup ||H§h||y(071) +lIxefllio | =0,
4201 flx 0,y ST A (B)<a \h~xp f
which yields (iii).
Conversely, assume that (iii) holds. Then the first inequality in (4.30)
yields (ii). The proof is complete. O

5. Main results

In the present section we state and prove the main results of this
paper. They concern derivation of m-th compact Sobolev embeddings
from compactness of the one-dimensional operator Hj" defined in the
previous section. Here, I stands for a function which is related to the
underlying measure space (£2,v) by the fact the (2, v, 1) is a compatible
triplet (recall that the notion of a compatible triplet was introduced in
Definition 3.1).

Theorem 5.1. Assume that (Q,v,I) is a compatible triplet. Let m € N
and let ||-||x0,1) and [|-||y(0,1) be rearrangement-invariant norms. Then

(5.1) H: X(0,1) = Y(0,1)
holds if and only if
(5:2) lim  sup  [[H"(X(0,0)/)lly0,1) =0

a—04 £l x 0,1y <1
holds. Moreover, each of the conditions (5.1) and (5.2) implies
(5.3) VX (Qv) 5= Y(Q,v).

Let us remark that further characterization of (5.1) and (5.2) can be
obtained by applying Theorems 4.2 and 4.6 with J = I and j = m.

Remark 5.2. Tt turns out that if we take the supremum in (5.2) over
the smaller set of all nonincreasing functions belonging to the unit ball
of X(0,1), we do not change the validity of (5.2). In other words, (5.2)
holds if and only if

(5.4) lim  sup  [|H/"(X(0,0) ")y (0,1) = 0.
041 £l x 0,1y <1
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This claim can be proved by methods of [9, Section 9]. Namely, we first
observe that, for every a € (0,1] and f € M(0,1),

X0 OFF T Ol 05, < | x0(0) 500 REF

t<s<a X7(0.1)
(5.5) < 2™ 1x(0,0) (t)R?Lf*(t)HXé(O,l)

< gmHt HX(O,a)(t)R}nf*(t)||X’(O,1) ’
where the functional || - || X/,(0,1) 1s defined by

1
Iflxo0n = sup / ()| f(s) ds, | € M(0,1).

gux(o,l)

Then it suffices to show that for every a € (0, 1],

(5.6)  sup  [H"(X©w lvon=sup  lIxe«lflx01
Ifllx0,1)<1 11y 0,1y<1

and

(5.7) sup  [[H"(X©0.0)f)lvon=sup  [Ix©0.aR7 [ llx;0.1)-
1 £llx0,1)<1 I £llyr0,1y<1

We note that the only nontrivial inequality in (5.5) is the second one,
which was proved in [9, Theorem 9.5] in the case when a = 1. Equali-
ties (5.6) and (5.7) were proved for a = 1 in [9, Corollary 9.8]. All the
proofs can be easily extended also to general a € (0,1].

Suppose that I: (0,1] — (0,00) is a nondecreasing function satisfy-
ing (3.1) and let m € N. Set

(5.8) J(t) = awr -, (0,1].

We observe that J is measurable on (0,1] and fulfils (4.1). We can
therefore consider operators Kj* and S7* defined by K7* = H; and
ST" = Ry, respectively. Then

1 smfl
K7 f(t) = / O oy s FEMOD, 1€ O.1)

and
m—1 t
S}”f(t):(;uw / F(s)ds, feM©,1), te(0,1).

Although it is of use to define the operators Kj* and S7* for all func-
tions I with the properties stated above (see, e.g., Theorem 7.1), these
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operators come into play especially in the case when I satisfies

(5.9) /Of(l:)%[(z) s € (0,1),

up to multiplicative constants possibly depending on I. In this situation,
conditions (5.1) and (5.2) can be equivalently reformulated using the
rather simple operator K}" instead of the kernel integral operator Hj".
The corresponding result is the following theorem. Its proof strongly
depends on a result proved in [9] which relates boundedness of H}" to
boundedness of K.

Theorem 5.3. Assume that (Q,v,I) is a compatible triplet and that
(5.9) is satisfied. Let m € N and let || - || x(0,1) and || - |ly(0,1) be rear-
rangement-invariant norms.

(a) Suppose that

m—1
(5.10) tl_i)r(r)i W #0
Then
(5.11) Ki": X(0,1) = Y(0,1)

holds if and only if

(5.12) lim  sup  [[K7"(X(0,0)f)lly(0,1) =0

G0 xSt
holds. Moreover, each of the conditions (5.11) and (5.12) implies
(5.13) VX (Qv) 5= Y(Q,v).

(b) Suppose that

tm—l

14 lim ———— =
(5-14) A Ty
Then (5.13) is satisfied for all pairs of rearrangement-invariant

norms | - || x(0,1) and || - |ly(0,1)-

Analogously to the general case, which we dealt with in Theorem 5.1,
one can obtain further characterization of (5.11) and (5.12) by applying
Theorems 4.2 and 4.6 with J as in (5.8) and j = 1. Notice that in this
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situation,

Lodr Lopm—1 r — dr
0 (1) ‘/o awy = (Qtt‘?ﬂ I<>> / 1(r)

1
~ < 00,

(infre((),l] I(:) ) " I(1)

thanks to (5.9) and (3.1). Therefore, (4.16) is satisfied for all rearrange-
ment-invariant norms || - ||y (o,1), since

H(/ Jﬁ))m’ <( ) ivion <

Remarks 5.4. (i) If I: (0,1] — (0,00) is a nondecreasing function satis-
fying (3.1) and m € N is such that (5.14) is fulfilled, then it will follow
from the proof of Theorem 5.3 that (5.12) is satisfied for all pairs of
rearrangement-invariant norms || - ||x,1) and || - |ly,1). However, The-
orem 4.1 applied with J as in (5.8) and j = 1 yields that (5.11) is not
satisfied if X(0,1) = L'(0,1) and Y (0,1) = L*(0,1). Therefore, in
contrast to the part (a), in the part (b) we do not have the equivalence
of (5.11) and (5.12). Moreover, compactness of the operator K}" seems
not to be appropriate to characterize compact Sobolev embeddings in
this case, and condition (5.12) turns out to be a suitable substitute
for (5.11).

Y (0,1)

(ii) Notice that to prove the equivalence of (5.11) and (5.12) in the
part (a), we do not need to assume that I satisfies (5.9).

(iii) The assumption (5.9) is also not necessary for the validity of
the part (b) of Theorem 5.3. Indeed, Theorem 7.1, which is stated and
proved in Section 7, yields that for any nondecreasing function I on (0, 1]
satisfying (3.1), condition (5.14) implies

lim sup | H7" (X (0,a)f)|| £ 0,1) = 0.
=04l 1191y <1

s
Then, according to Theorem 5.1, we get V™LY(Q,v) << L®(Q,v).
Thanks to embeddings X (Q,v) < L'(Q,v) and L>(Q,v) — Y (Q,v),
which hold for all rearrangement-invariant norms ||-|| x (0,1 and |||y (0,1),
we obtain (5.13).
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(iv) The assumption (5.9) is essential for the proof that (5.11)
(or (5.12)) implies (5.13) in the part (a). Suppose that I is the func-

tion defined by I(t) = ty/log2, t € (0,1]. Then it follows from the
observations made in Section 3 that (R™,~,,I) is a compatible triplet.
Furthermore, notice that I satisfies (5.10) for every m € N but does not
satisfy (5.9). Moreover, if m > 2 then

lim sup K7 (X (0,a). )l o0 (0,1)
=04 £l oo (9,1) <1 '

= lim sup /‘1 /(s >|, ds

a=04 | 1|l e .1y <1 Jo 5(log 2)
@ ds

= lim am = 0.
a=01 Jo s(log 2)%
Hence, (5.12) is satisfied with || - [[x@0,1) = || - v,y = Il - [z (0,1)-
However, (5.13) is not fulfilled with (©2,v) = (R™,~,) in this case, since
even the continuous embedding V™ L>*(R",v,,) < L*°(R",~,) does not
hold (see [9, Theorem 7.13]).

The remaining part of this section is devoted to proofs of Theorems 5.1
and 5.3. We start with an auxiliary result which shows that, in our
setting, the unit ball of each Sobolev space is compact in measure.

Lemma 5.5. Assume that (Q,v) is as in Section 3. Let m € N and
let || - ||x(0,1) be a rearrangement-invariant norm. Then every sequence
(ur)?2, bounded in VX (Q,v) contains a subsequence (ug,)j>, converg-
ing v-a.e. on Q. In particular, the subsequence (uy,)72, is convergent in
measure.

Proof: For a.e. x €  we can find an open ball B, centered in x such
that B, C Q and essinfp, w > 0. Denote by NN the set of points in {2
for which such a ball does not exist. Then v(N) = 0 and we have
Q\N C U,eq\n Be- Due to the separability of €\ N, there is a
sequence (r;)32; of points in Q\ N such that @\ N C (JjZ, B,;. Since
the sequence (uy)p2, is bounded in V™X(Q,v), it is also bounded in
VILY(Q,v). Hence, for every j € N and k € N we have

lurllvizr @) Z/ (lur(2)] + |Vug(2)]) w(z) dz

)

> (essinmej w) / (luk| + |Vug|) dz

g

= (eSSinfBJj w) ||Uk||V1L1(Bz],)-
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Therefore, (uj)$, is bounded in V!L*(B,,). Denote u) = uy, k € N.

j .
By induction, for every j € N we will construct a subsequence (u3,)72; of

the sequence (ui_l)zozl converging a.e. on B, . Suppose that, for some

j € N, we have already found the sequence (uj ")32,. Since (u] '),
is bounded in V! L*(B,,) and the compact embedding V!L'(B,,) <~
L'(B,,) holds, we can find a subsequence (uj,)72, of (ul M52, converg-
ing in L'(B,,). Passing, if necessary, to another subsequence, (u},)p2,
can be found in such a way that it converges a.e. on B,,. Now, the
diagonal sequence (uf)2, converges a.e. (or, what is the same, v-a.e.)
on U;’il B,, = Q\ N. Since v(N) = 0, (u});2, converges v-a.e. on ,
as required. Furthermore, it is a well known fact that each sequence
converging v-a.e. is convergent in measure. O

We also need the following

Lemma 5.6. Let I: (0,1] — (0,00) be a nondecreasing function satis-
fying (3.1) and

1
ds
5.15 /—<oo.
(5.15) o 165
Then

1 px
1fllczoys ,0,1) z/0 fl(is))

up to multiplicative constants depending on I.

ds, fe€M(0,1),

Proof: We first observe that condition (4.16) is fulfilled with j = 1,

J=1I,and |- [ly(,1) = || - lz>(0,1)- Indeed, we have
Lodr Lodr
‘/t 1(r) LOC(O,l):/O m<00,
thanks to (5.15). The rearrangement-invariant norm || - ||(Loo)i[(0,1) is

therefore well defined.
Let f € M(0,1). We have

/:?Egds

1
h(s)
= su ds + .

OSth/o I(s) 1220

+ 11 fllz10,1)

[ Fllzosye 0,1y = sup
1,1
' L*(0,1)

0<h~f
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Since f* is a nonnegative function equimeasurable to f,

LI L h(s)
/0 Ts) &S Oizgf/o T & £l 0,1)-

Conversely, using the Hardy—Littlewood inequality and the monotonicity
of I we obtain

" h(s) L F(s) b
sup /0 mds‘*‘”f”Ll(og)S/o T(s) d8+/() f(s)ds

0<h~f

f*(s)
T(s) ds.

1

<a+10) |

0
The proof is complete. O

Proof of Theorem 5.1: Since I is nondecreasing on (0, 1], we have

B 0.1
€SS SUP;¢ (0,q) 0 = lim 0’ a € (0,1).

Thus,
(5.16) li L*1' L;éO

' a5, PP Ty T A0 Ty T
Theorem 4.1 now gives that (5.1) holds if and only if (5.2) holds.

Suppose that (5.1) (or, equivalently, (5.2)) is satisfied. Moreover,

assume that
1
ds
Y (0,1 L*>(0,1 —_— =
0.1 #1=0or [ 1

Then, due to Theorem 4.2, we have X7, ;(0,1) < Y (0,1), or, what is
the same, X, (Q,v) & Y(Q,v).

Assume that (ur)72, is a sequence bounded in V™X(Q,v). Due to
Lemma 5.5, we can find its subsequence (uy, )72, which converges to some
function u v-a.e. on 2. Since H": X(0,1) — X7 ;(0,1), Theorem 3.2
implies that V™" X(Q,v) — X7, ;(€,v). Hence, (ug,)72; is bounded in
X, 1(Q,v). By the Fatou lemma,

||UHX;H(I(Q,V) S hZIE)(l)I‘}f HukéHX:ﬁYI(Q,V) < OO?

sou € X}, (Q,v) and (ug, —u)g2, is therefore bounded in X7, (2, v)
as well. We have X[ ;(Q,v) N Y (9Q,v), so, according to [24, Theo-
rem 3.1], (ug, —u) = 0 in Y(Q,v), ie., ux, = w in Y(Q,v). Thus,
VX (Q,v) 5= Y(Q,v).
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Conversely, assume that Y (0,1) = L*°(0,1) and fol 1/I(s)ds < oo
(recall that the assumption (5.1) is still in progress). We start with
the case when m = 1. The proof of Lemma 5.6 then yields that con-
dition (4.16) is fulfilled with J = I and j = 1. Furthermore, since the
operator H; is not compact from L(0,1) into L>(0,1) (see the last part
of the proof of Theorem 4.1), we have X(0,1) # L*(0,1). Thus, due to
Theorem 4.6,

(5.17) X(0,1) < (L=){ 1(0,1).

Furthermore, Proposition 4.5 combined with Theorem 3.2 yield that
(5.18) VL™ [(Q,v) = L®(Q,v).

Since fol 1/I(s)ds < oo, we obtain by applying Proposition 3.3 that
(5.19) VIL™){ [(Q,v)=WL>®){ ;(Q,v) and V' X(Q,v)=W'X(Q,v),

up to equivalent norms.
Let (ug)$2; be a bounded sequence in V! X (€2, ). Then it is bounded
also in WX (Q,v). Without loss of generality we may assume that

(5.20) ||Uk||W1X(Q7y) <1, keN.

Due to Lemma 5.5, there is a subsequence (vg)52 ; of the sequence (ug)52 4
which converges in measure to some function v. Our aim is to show
that (vg)72, is a Cauchy sequence in L*°(£),v). Then, thanks to the
completeness of L™ (Q, v), (vg)72, will converge to v in the norm of the
space L>°(Q,v). This will prove that V1 X (Q,v) is compactly embedded
into L (Q, v).
Fix € > 0 and observe that for all £, € N we have

(5.21) |vg — ve| = min{|vg — ve|,/2} + max{|vy — ve| — £/2,0}.
Since vy, v; and the constant function e /2 are weakly differentiable on (2,
|vg — ve| — €/2 is weakly differentiable on 2 as well and
V(|Uk — ’Ugl — 5/2) = V|Uk — Ug|

= sgn(vr — vr)V(vg — vy) =sgn(vg — ve) (Vg — Vug)
a.e. on . Furthermore, max{|vy — v¢| — €/2,0} is weakly differentiable
on 2 and

V max{|vy — ve| —€/2,0}

_Jsen(vr —vg)(Vop — Vo) ace.on {x € Q: o, —vg| > €/2},
o a.e.on {x € Q: |Jup — vy <e/2},
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ie.,

(522) Vmax{|vk7w|75/2, 0} = X{|Uk—ve|>6/2} sgn(kaw)(VkaVw)
a.e. on 2. Thus,

(5.23) ‘V max{|vk — ’U(‘ — 8/2, 0}| = X{‘vk,w|>5/2}|vvk — V’Ud

a.e. on () (and therefore also v-a.e. on €, since v is absolutely continuous
with respect to the n-dimensional Lebesgue measure).
We have

(5.24)
vk — vell Lo () < [ minf[vr — vel,€/2} | Lo (0,0)

+ || max{|vx — ve| —€/2,0}||po(0,y (by (5.21))

< /2 + Ol max{|vg —ve[ —€/2, 0} [[wr ()¢ ()
(by (5.18) and (5.19))

= €/2+ CliXqpoi—ve>e/23 VR = Vel ll poe)ye )

+ CliXqion—vel>e/23 [k —vel =€/2) | Loya (@) (by (5.23))
< /24 Clixqion—ve>e/23 VOrlll=ye 0,0)

+ Clixgjoe—vel>e/21 I Voelll o )s  o0)

+ ClIXgioe—vel>e/21 0kl (2o)e  (0,0) F CllX(oe—ve>er230ill(Lo)s (@0)
= €/2 4 Cll(X{vr—ve>e/23 I VORD D (£)g  0,1)

+ Cl (X —vel>e/2l Vel pye 0,1)

+ Cl (X o —vel>e /23005l (£o)e  (0,1)

+ ClOX o —vel>e /23000 [y 0,1)

<e/2+4C  sup X0, ({ok—vel>e/20) [ (zeya 0,0)  (Py (5.20)),
1fllxc0,1)<1 '

where C' > 0 is the constant from the embedding Wl(LDO)‘f’I(Q, V) <
L>(Q,v).
Thanks to (5.17), there is § > 0 such that
€

5.25 sup X(0,6 f* v < £
( ) Hf”X(o,l)SlH (O ) H(L )1,1(071) 8C
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Since (vg)52, converges in measure to v, we can find kg € N such that
for every k > kg

v({z € Q:|ug(z) —v(z)| > e/4}) < d/2.
We observe that for all k, £ > kg,
{z € Q:|vp(x) —ve(z)| > €/2}
ClreQ:|u(x) —v(x)| >e/dtU{x € Q: |ve(z) —v(x)| > e/4}.
Therefore,
(5.26) v({ze: |vp(x)—ve(x)|>e/2}) <v({x € : |vg(z)—v(z)| >e/4})
+r({xeQ: ju(z)—v(z)| >e/4}) <.
Consequently, by (5.24) and (5.25),

vk = vell Lo (@) <€/2+4C  sup X086 l(z=)a ,0,1) <&
11l x0,1)<1 '
Hence, (vx)52, is a Cauchy sequence in L>°(, v), as required.
Finally, assume that m > 1. According to Lemma 5.6, for every
g € M(0,1) we have
1 x
[ gs) x
||g||(L°°)‘1iJ(O,1) N/o 1(s) ds = |Hrg ||L°°(0,1)7

up to multiplicative constants depending on I. Thus, whenever f €
M(0,1) and a € (0, 1), then

IH (X(0.0)F) |z 0.1) = IHI(H (X 0.0) ) |l 2= (0.1)
= | Hi(H]" " (X(0,0) /)l L= (0,1)
~ ||H}n71(X(o,a)f)||(Loo)§J(o,1)»

up to multiplicative constants depending on I. Assumption (5.2) is there-
fore equivalent to

(5.27) lim sup  H (0. )l ooy S
a—=04 [ fllx(0,1)<1 ) ( )1,1( )

Since "
. . ds
where the equivalence holds up to multiplicative constants depending

on I, we obtain that (L>){;(0,1) # L>°(0,1). The first part of the
proof now implies that

(5.28) VX (Q,v) < (L) (9, v).
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Let (ux)72, be a bounded sequence in V"X (Q,v). Then (ux)3,
is bounded in L'(2,v), so ([, urdv);; is a bounded sequence of real
numbers and we can find a subsequence (u9)?; of (ux)$2, such that
the sequence ([, uf) dv)32, is convergent.

For ¢+ = 1,2,...,n, consider the sequence (Diug)z‘;l consisting of
weak derivatives with respect to the i-th variable of elements of the se-
quence (u$)%2,. Owing to the boundedness of (ug)3, in V"X (Q,v),
all these sequences are bounded in V™~ 1X(Q,v). Now, the compact
embedding (5.28) yields that we can inductively find sequences (uf )2,
i = 1,2,...,n, such that (u})72, is a subsequence of (uz_l)g‘;l ful-
filling that (D;u})$e, is convergent in (LOO)ilJ(Q,l/). Since a subse-
quence of a convergent sequence is still convergent, we have, in partic-
ular, that (D;u}});2, is a Cauchy sequence in (LOO)‘liJ(Qm) for every
je{1,2,...,n}.

Let ¢ > 0. By Theorem 3.2, the embedding Vl(LOO)‘fJ(Q,V) —
L>°(Q,v) is equivalent to a Poincaré inequality. Hence, there is a con-
stant D > 0 such that for every u € V1(L>){ (Q,v),

u—/udu
Q

< D[IVulllpoeys )

(5.29) b

<D IDjull gyt ) -
j=1

Since (Djuj)p2, is a Cauchy sequence in (L*){ (Q,v) for every j €
{1,2,...,n}, we can find kg € N such that || D;ui — Djuy ||(<ya (0.) <
¢/Dn whenever k, ¢ > ko and j € {1,2,...,n}. Thus, inequalify (5.29)
applied to u = uj — uy implies that for every k, ¢ > ko,

<D 1D =Dyl eyt () <&
L=(Q,v) j=1 '

ufl—u /Q (ufl — ) dv

so, (uf — [qupdv)72, is a Cauchy sequence in L*°(£2,v). Due to the
completeness of L>(Q,v), (u}l — [, uf dv)?2, is convergent in L>(Q,v).
Since the sequence ( fQ up dv)g2, consisting of constant functions is con-
vergent in L>®(Q,v) as well, (u});2, is convergent in L*>°(Q,v) and
VT X(Q,v) =< L*(Q,v), as required. O

Proof of Theorem 5.3: According to [9, Proposition 8.6], for every f €
M(0,1) we have

127 flly 0.0 = IKT" flly0.)
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up to multiplicative constants depending on m and I. Thus, given a €
(0,1) and f € M(0,1), we obtain

(5.30) IH7" (X(0,0) ) Iy 0,1y = KT (X (0,0) )y 0,1)5
up to multiplicative constants depending on m and I. This yields that
(5.12) is equivalent to (5.2). Theorem 5.1 now yields that (5.12) im-
plies (5.13).

Consider the function J defined by (5.8). We claim that, given t €
(0,1),

1 Smfl
(5.31) ess sup, —— = sup —————.
€(0.5) J(s) s€(0,t) (I(s))™
Indeed, we trivially have
1 sm—l Sm—l

€ess sup, —— = esssup, Ty < osup —.
SO0 7 (s) SO (I(s)™ = o (I(s))

Conversely, because I is nondecreasing on (0, 1], for every s € (0, )

Smfl Smfl ,,,mfl ,,,mfl
< = lim ——— < esssup —_—
(I(s))m™ = (g I(r))™  r—=s- (I(r))™ — OO (I (r))m

Passing to supremum over all s € (0,¢), we obtain

Smfl ,rmfl

sup < esssup —_,
se(o,0) (L(s))™ OO (1(r))m

which completes the proof of (5.31). Equality (5.31) then implies that

. 1
t];l)%1+ €SS Supse(o,t) TS) =0

holds if and only if
tmfl

S T

Suppose that (5.32) is not satisfied (i.e., part (a) is in progress). Since
K7 = Hy, an application of Theorem 4.1 yields that (5.11) is equivalent
to (5.12). Furthermore, according to the first part of the proof, each
of (5.11) and (5.12) implies (5.13).

Next, assume that (5.32) is fulfilled (i.e., part (b) is in progress). By
another using of Theorem 4.1 and of the fact that K7* = H;, we get
that (5.12) holds with X (0,1) = L!(0,1) and Y(0,1) = L®(0, 1). Since,
in general, X(0,1) < L'(0,1) and L>(0,1) < Y (0, 1), condition (5.12)
is satisfied for all rearrangement-invariant norms |- || x,1) and || -[|y (0,1)-
The first part of the proof thus yields that condition (5.13) is fulfilled
independently of the choice of || - || x(0,1) and || - ||y(0,1) as well. O

(5.32)
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6. Compactness of Sobolev embeddings on concrete
measure spaces

In this section we characterize compact Sobolev embeddings on Eu-
clidean John domains, on Maz'ya classes of Euclidean domains and,
finally, on product probability spaces, whose standard example is the
Gauss space. Recall that definitions and basic properties of the above
mentioned measure spaces can be found in Section 3.

We start with the case of Euclidean John domains in R, n > 2. In
order to characterize m-th order compact Sobolev embeddings on these
domains (for some m € N), we shall consider the operator Q7" defined
by

m

s tds, feM(0,1), te(0,1).

= [ 1

Theorem 6.1. Letn € N, n > 2, let m € N and let Q be a John domain
in R™. Suppose that ||| x0,1) and || ||y (0,1) are rearrangement-invariant
norms. If m < n then the compact Sobolev embedding

(6.1) VX (Q) e Y(Q)

1s equivalent to each of the following two conditions:

(i) Q' X(0,1) »—Y(0,1);

(i) hma_)OJr SUD| I £l x 0,1 <1 HQZL(X(OJ)JC)”Y(OJ) =0.
In particular, if m = n then (6.1) is satisfied for all pairs of rear-
rangement-invariant norms | - || x,1) and || - ||y (0,1) ewcept of those
for which X(0,1) = L'(0,1) and Y (0,1) = L*(0,1). Furthermore, if
m > n then (6.1) is fulfilled independently of the choice of || || x(0,1) and
1 lly0,1)-

We note that the equivalence of (6.1) and (i) in Theorem 6.1 is al-
ready known in the special case when (2 is a domain having a Lipschitz
boundary and m < n, see [13].

Let us now focus on Maz’ya classes of domains in R™?, n > 2. When
dealing with m-th order Sobolev embeddings on a domain from the
Maz’ya class J, (for some m € N and a € [, 1]), we shall use the
operator T given by

1
T f(t) = / f(s)]s™H =) ds, fe M(0,1), te(0,1),
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if € [, 1), and by

—1
T A1) /\f LB g reMo. te (),

Theorem 6.2. Letn € N, n > 2, letm € N and let o € [%, 1]. Suppose
that || - | x0,) and || - |ly,) are rearrangement-invariant norms. If
m(l — o) < 1 (notice that this is true for every m € N provided that
a = 1) then the fact that

(6.2) VX (Q) =< Y (Q) holds for every Q € T,

18 equivalent to each of the following conditions:
(i) Tm: X(0,1) =— Y(0,1);
(if) lima—o, supygy <1 178" (X000 Iy (0,1) = 0-

In particular, if m(1 —«a) = 1 then (6.2) is satisfied for all pairs of
rearrangement-invariant norms | - || xo,1) and || - |y (0,1) except of those
for which X(0,1) = L'(0,1) and Y (0,1) = L*>(0,1). Furthermore, if
m(l —a) > 1 then condition (6.2) is fulfilled independently of the choice
of II- ||X(0,1) and | - HY(0,1)~

Remarks 6.3. (a) It will follow from the proof of Theorem 6.1 that its
statement is true for all domains () belonging to the Maz’ya class J

(this class contains, in particular, all John domains).

(b) Let m,n € N, n > 2, let a € [;,1] and let  be a domain
in R™ belonging to the Maz’ya class J,. Suppose that || - |/ x(,1) and
|l-lly(0,1) are rearrangement-invariant norms. Consider the following two

assertions:

(i) V7 X(Q) == Y(Q);
(ii) VX (@) =< Y(Q) holds for each ' € 7,.

If @ = - then conditions (i) and (ii) are equivalent (this follows
from Theorem 6.1 combined with the part (a) of this remark). How-
ever, such an equivalence is no longer true when a > % This can be
easily observed since each Maz’ya class J, contains, in particular, all
John domains. Compactness of Sobolev embeddings on John domains
is characterized by compactness of the operator Q', which does not
coincide with compactness of T7'. On the other hand, given an arbi-
trary o € (%, 1], there is one domain Q € J, for which the equivalence
of (i) and (ii) holds for all rearrangement-invariant norms || - || x(o,1) and
[l (0,1) (an example of such a domain can be found in Proposition 6.6).
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(c) The operators Q7 and T can be described via the operators “H”
and “K” defined in Sections 4 and 5, respectively, in the following way:

Qi=K"™ =H 1=
7 S n
sn
and

" =

[e3

K& =Hg-mo-o, a€ [#, 1);
a7 a=1.

Hence, Theorems 4.2 and 4.6 applied to an appropriate operator “H”
provide further characterization of compactness of Q' and T7".

We finally focus on product probability spaces (R”, g ), where n €
N and the measure pg, is defined by (3.3) if n = 1 and by (3.4)
if n > 1. Given m € N, we characterize compact Sobolev embeddings
on (R™, g ) in terms of compactness of the operator Hj" , with Lg as
in (3.5). The operator H}" therefore has the form

m—1
N T S 0] @
Hiaf) == 1)!/t s (21 (log 2)) </t r@’ (2 (log i») v

I S P U TS L )
T L — e DEL

feM@,1), te(0,1).

We also prove that compactness of the operator HJ' coincides with
compactness of the somewhat simpler operator Pz, defined by

O (log 2)\™ 1 |f(s 5\™—
Ppf(t) = <lo(g02g t)) /t |fi ) <log Z> ' ds,
feM(,1), te(0,1).

We note that the operator PJ* was introduced in [9] where it was shown
that boundedness of H}" is equivalent to boundedness of Pg'.

Furthermore, we show that anologues of Theorems 4.1, 4.2, and 4.6
hold for the operator PJ', although it does not have the form H? for
some j € N and some function J. In order to do this, we define two
families of rearrangement-invariant norms, playing the role of optimal
range and optimal domain norms with respect to the operator Pg’.

Let || - [ x(0,1) be a rearrangement-invariant norm. Given m € N,
consider the rearrangement-invariant norm || - || x, (0,1) whose associate
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norm fulfils

1 /° S\ Lu
1£llx:,0,1) = Hs/o (log E) () dtH

for every f € M(0,1). Then the functional || - ||x- _(0,1), given for every

f e M(0,1) by
log% m .
|(<I>1<log§>> )

is a rearrangement-invariant norm and we have X7, 5(0,1)=X7 ; (0,1),
up to equivalent norms, see [9, Theorem 7.3 and its proof].
Further, let || - ||y (0,1) be a rearrangement-invariant norm fulfilling

w )

For every f € M(0,1) define the functional || - HY%,@(OJ) by

X7(0,1)

I1f11x

X0 (0,1) =

)

X, (0,1)

< 00.
Y (0,1)

||fHYd (0,1) = Sup 1Pg Py 0,0y + 1l 10,1
h~f

P (log §)\" / ") (10g 2)" " as
log% ¢ S t

= sup
0sh~f Y(0,1)
+ 1l 0,1)-

The fact that the functional || - ||y« (o) is actually a rearrangement-

invariant norm can be proved in the same way as it is done for the
functional || - [|y-a (o,1y in the proof of Proposition 4.5.
2500,

Theorem 6.4. Let n,m € N and let ® be as in Section 3. Suppose that
I [ xc0,1) and || - |ly(0,1) are rearrangement-invariant norms. Then the
following conditions are equivalent:

(1) VmX(Rn7 //L(I),n) —— Y(Rna M‘P,n);
i) H: : X(0,1) -=— Y(0,1);
) Pg': X(0,1) »— Y (0,1);
iv) Timg o0, supy gy <1 108" (X0.0) NIy 0.1) = 05
) limg—o, SUP|| £ x 0,1y <1 1X(0,a)Pa" fllv,1) = 0;
(vi) XI, 5(0,1) < Y (0,1).
Furthermore, if X(0,1) # L'(0,1) and (6.3) is satisfied, then (i)—(vi)
are equivalent to each of the following conditions:
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(vii) lima—o, SUP|| £| x 0.1y <1 SUPX, (E)<a 1Pg' (xef)lly©0.1) =0;
(viii) X(0,1) < Y2 4(0,1).

Observe that Theorem 6.4 yields that, in contrast to the Euclidean
setting, compact Sobolev embeddings on (R™, g ) do not depend on the
dimension n, in the sense that we have the equivalence of the following
two assertions.

(1) There exists n € N for which V"X (R", uo ) ——= Y (R", po ) is

satisfied.
(ii) The compact embedding V"X (R", pe ) —— Y(R", pa ) is sat-
isfied for every n € N.

Let us now prove the results we have stated. The proofs are based on

the results of the previous section, and on the following:

Proposition 6.5. Assume that (,v) is as in Section 3. Let m € N and
let ||| x(0,1) and || [y (0,1) be rearrangement-invariant norms satisfying

(6.4) VX (Qv) == Y(Qv).
Let o € (0,1]. Denote
X¢={feX(0,1)NnM4(0,1): f =0 a.e. on (0,1)\(0,)}.

Suppose that L is an operator defined on X, with values in V"X (Q,v),
fulfilling that

(6.5) ILflvmx @) < Cllfllxo

for some positive constant C' and for all f € X$. Set Hf = (Lf)},
fe X Assume that

(6.6) Hf(t):/t F)K(s.t)ds, feX2, te(0,1),

for some real valued function K satisfying that K(-,t) is nonnegative and
measurable on (t,1) for every t € (0,1). Then

(6.7) lim  sup |[H(x(0,0)fDlly©1) =0

=041 £ll x 0,1y €1

Proof: We first observe that whenever k is a positive integer satisfying
1/k < a and f € X(0,1) N M, (0,1), then x(o1/r)f € X§ and the
functions L(x(0,1/x)f) and H(x(0,1/k)f) are thus well defined. Since
condition (6.4) implies V"X (Q,v) < Y (Q,v), for every k € N satisfying
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1/k < a we have

sup ”H(X(O,l/k) \f|)||Y(o,1)
£l x 0,1y <1

= sup ||L<X(O,1/k)|f|)HY(Q,u)
£l x 0,1y <1

< sup CL(xa/mlfDllvex o)
1flIx0,1)<1
< sup  C'Clixoi/mlfllxo1) < C'C < oo,
£l x 0,1y <1
where C is the constant from (6.5) and C’ is the constant from the
embedding V™ X (Q,v) — Y(Q,v). Consequently, for every k as above
we can find a function f € M4 (0,1) such that || fx||x,1) < 1 and

68) s [HxoamlDlvon < 1Hxoynlvon + 1
£l x 0,1y <1
Since the sequence (X(O,l/k)fk)f:[l/a] is bounded in X(0, 1), it follows
that (L(x(0,1/k)/k)) 3% 1/a1 Must be bounded in V™ X (€2, v) due to (6.5).
Thanks to (6.4), there is a subsequence (fk, )72, of (fk);Z [y, such that
(L(X(0,1/k¢) fre )2, converges to some function g in the norm of the
space Y (€2,v). Then, in particular, L(x(0,1/k,)fr,) —+ ¢ in measure.
Observe that for every £ € N, we have H (x(0,1/k,)fr,)(t) = 0 when t €
(1/kg, 1), thanks to (6.6). Since (L(x(0,1/k,)fr.))5 = H(X(0,1/k:) [k, ), the
distribution function of L(X(0,1/k,)fx,) With respect to v coincides with
that of H(X(0,1/k.)fr,) With respect to the one-dimensional Lebesgue
measure A;. In particular,

lim v ({z € Q: |L(x(0,1/k0)fx.) ()| > 0})

(6.9) :EEI‘;’ M ({s€(0,1): H(x fr.)(s) > 0}) < lim 1 0
£—00 ! ’ ' (0.1/ke) Jke T l—oo Ky '

Thus, L(x(0,1/k,)fr,) — 0 in measure. This implies that g = 0 v-a.e.
on 2. So,

Jm 1 (o, fe)lly 0.0 = Jim IZOco.a /0 Fi)lly ) = 0-
Inequality (6.8) now yields
lim  sup  [[H(x(0,1/%0)|fDlly(0,1) = 0.

=9 £l x 0,1y <1

Using that the function

a sup ”H(X(O,a)'fDHY(O,l)
1fllx 0,1y <1

is nondecreasing on (0, a], we obtain (6.7). O



COMPACTNESS OF HIGHER-ORDER SOBOLEV EMBEDDINGS 423

Proof of Theorem 6.1: Consider the function I(t) = tv,t € (0,1]. It
was observed in Section 3 that (€2, A,,I) is a compatible triplet. Fur-

m—1

thermore, the function I satisfies (5.9). We have that lim; .o, (lt(T =

limy 0, t~1 = 0 holds if and only if m > n. In such a case, the proof
follows directly from Theorem 5.3.

Suppose that m < n. Since Q7' = K7, Theorem 5.3 gives the equiva-
lence of (i) and (ii) and also shows that each of the conditions (i) and (ii)
implies (6.1). Hence, it only remains to prove that (6.1) implies (ii).

Assume that m = n and X(0,1) # L*(0,1). Then there is nothing
to prove, since condition (ii) (or, equivalently, (i)) always holds. Indeed,
we have

(6.10) Qm: L*(0,1) — L>(0,1)

and L°°(0,1) <> Y (0,1). Therefore, Q™: L*(0,1) — Y (0,1). The con-
clusion now follows from Remark 4.8 and from the fact that Q) = H;.

Suppose that (6.1) is satisfied and m < n, or m = n and X(0,1) =
L'(0,1). Let Br be an open ball of radius R > 0 such that Bg C Q.
Without loss of generality we may assume that Bg is centered at 0 and
that k,R™ < 1, where kK, denotes the Lebesgue measure of the unit
ball in R™. Let f be a function belonging to the set X i"Rn defined in
Proposition 6.5. Then we set

R kBT R o m
[ f:l . f(rm)rmm+" dry, ...dri, x € Bp;

”@n‘xln Tm—1

Lf(x)=
( ) {0, X € Q/BR
It is not hard to observe that Lf is an m-times weakly differentiable
function on 2. By subsequent applications of the Fubini theorem, we
obtain

kn R™ 4 n\m—
L&) = {(ml) i F(8)s™m 5 (s = ko™t ds, @ € B
()’ S Q/BR

Denote Hf = (Lf)3 . Then

KknR™
HHO) = Xor ey | F0s 5=

(m—1

(6.11) : |
Zm/t f(s)s™m W (s — )™ ds, te€(0,1).



424 L. SLAVIKOVA

One can show similarly as in [14, proof of Theorem A] that

3119 Loy = 2NV LA, 0
i=1

i=1

1
ti_%/ f(s)s™i o 1ds
t

m—1
Sflxen + Y
i=1

X(0,1)

If m < n then it follows from [14, proof of Theorem A] that for every
ie{1,2,...,m— 1},

1
tw / f(s)s™ " "1ds
t

S llx0,1)-
X(0,1)

In the remaining case when m = n and X (0,1) = L*(0,1) we obtain by
the Fubini theorem that

1 1
ti_l/ f(s)s™ds ~ ti_l/ f(s)s™ds
t X(0,1) t L1(0,1)
:/ f(s)sﬂ/ t=ldtds
0 0
1
= ZHfHLl(O,l) ~ Hf||x(o,1),
i€ {l1,2,...,m— 1}. Hence, in all cases we have
Y IIVLAl 0 S I1flx0)-
i=1

Furthermore, by (6.11),

1
/ f(s)swtds
¢

1
1271 = IH 2o <]
“ ©.1) (m—1)! L1(0,1)

m

1 ! m
= e /0 f(s)sm ds

1 Cx
< me”Ll(OJ) < mﬂf\\x(o,n-

Altogether, we obtain

ILfllvmx (@) < ILFllLi ) + max(Cx, 1) Y IV LElx@) S 1 x 0.1,
=1
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up to multiplicative constants independent of f € X_’f_"Rn. The opera-
tor L therefore satisfies (6.5). Proposition 6.5 now gives that
(6.12) lim  sup [|H(x0.0)l/Dlly©1) =0

a—0+ £l x 0,1y <1

Since the constant function 1 fulfils (5.9), the equivalence (5.30) implies
that for all a € (0, k, R™) and for all f € X(0,1),

100 &Gl = IHE (o ()65 Hllv o
(6.13) ~ KT (x0,.0)(8)F(8)s™™F )l 0,1y
= Q% (X(0.0) () ($)ll¥(0,1)
up to multiplicative constants depending on m. The assertion (ii) follows
by combined using of (6.12) and (6.13).
Finally, in order to obtain a characterization of (6.1) in the case when
m = n, it suffices to describe when (i) holds with m = n. We have
already shown that if X (0,1) # L*(0,1) then (i) is satisfied. Further-
more, it follows from (6.10), from the embedding X (0,1) — L'(0,1),
from Q' = H; and from Remark 4.4 that if Y/(0,1) # L*°(0,1) then
(i) is fulfilled as well. On the other hand, (i) is not fulfilled with
X(0,1) = L'(0,1) and Y(0,1) = L®°(0, 1), see Remark 4.4 again. O

The following proposition, which easily follows from [20, Section 5.3.3],
provides examples of Euclidean domains belonging to the class J,.

Proposition 6.6. Letn € N, n > 2, and let o € [ a ﬁ

1.5
if a € [5,1), and Ly = co. Define the function 1, : ( 0, Ls ) ( ,00) b

n'?

1 [e3
Kp— 1 (1 - (1 - a)r) =)=, € [#7 1)7
77a(7“) - 1

K Tt e nT1, a=1,
where Kn,_1 denotes the Lebesque measure of the unit ball in R"~1. Let
Qq be the domain in R™ given by
Qo = {(@",25) €R" 12’ € R"L, @y € (0, La), [2'] < ma(n)}-
Then Ay (Qa) =1 and Io, (s) ~ s*, s € [0, 3].
Proof of Theorem 6.2: Set I,(t) = t*, t € (0,1]. As observed in Sec-

tion 3, (2, A\, I) is a compatible triplet for each domain € 7. Sup-
pose that o € [n,71). Then (5.9) is fulfilled with I = I, and we have
tm— 1 m—1

W =1t 1+m(1-a) for t € (O, 1] r]:‘huS7 hmt‘;o_‘_ W = 0 holds
if and only if m(1 —a) > 1. Provided that this condition is satisfied,
the proof is a direct consequence of Theorem 5.3. On the other hand, if
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m(1 —a) <1 then Theorem 5.3 combined with the fact that 7" = K"
yields that (i) is equivalent to (ii) and that each of the conditions (i)
and (ii) implies (6.2). Further, if @« = 1 then the equivalence of (i)
and (ii) and the implication (i) (or (ii)) implies (6.2) follow from The-
orem 5.1 and from the fact that 77" = H}". Thus, it suffices to prove
that, in all cases, (6.2) implies (ii).

Suppose that (6.2) is satisfied. Then, in particular, V"X (Q,) ——
Y (£2,) holds for Q, given by Proposition 6.6. Define the function M,
for every t € (0, Ly) (with L, as in Proposition 6.6) by

(e
Then
(6.14) )‘n({(x/>xn) €Ot xy >t}) = My(t), te(0,Ly),

see [9, proof of Theorem 6.4].

Let f be any function in X (0,1) N M (0,1) (or, what is the same, let
f be an arbitrary function belonging to the set X}r defined in Proposi-
tion 6.5). For x = (z1,...,2,) € 4, we set

1 1 1
Lf(z) = L A ICm) g ey dry
« (0% (6%
Ma(zy) 1 Jrp T2 Tm—1 m

m—1
1 /1 f(r) / ds J
= — — — T
(m =D Jata@n) ™ \IMa@n) 8

Then Lf is an m-times weakly differentiable function on €2, and, owing
to (6.14), we have

05,0 = g [ ([ ) = ms, e

Ta sa

Furthermore, it follows from [9, proof of Theorem 6.4] that L satis-
fies (6.5). Hence, Proposition 6.5 implies that

(6.15) lim  sup I1H T2 (X(0,0).F) Iy 0,1) = 0.
a—U+ £l x 0,1y <1

If @ =1 then (6.15) is exactly condition (ii) which we wanted to verify.
If o € [5,1) then the equivalence (5.30) (with I = I,,) yields that for
every f € X(0,1) and every a € (0,1) we have

(6.16) |H7" (x(0,0)) Iy 0,0~ K7 (X 0,0) )y 0,0)= 1 Ta" (X(0,0) ) Iy (0,1)5
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up to multiplicative constants depending on m and «. Condition (ii)
now follows by combined using of (6.15) and (6.16).

In particular, we have proved that if m(1 — «) = 1, then (6.2) is
satisfied if and only if 7" = H;: X(0,1) —»— Y(0,1). It follows from the
proof of Theorem 6.1 that this happens if and only if X(0,1) # L'(0,1)
or Y(0,1) # L*>=(0,1). O

Proof of Theorem 6.4: We have observed in Section 3 that (R™, g n, Ls)
is a compatible triplet. Theorem 5.1 therefore yields that (ii) implies (i).
Conversely, suppose that (i) is fulfilled. Let f be an arbitrary function

belonging to the set X}r/ ? defined in Proposition 6.5. For every z =
(x1,...,2,) € R™ we set

Y S Y L S S (G
Lf(a:)—/le) Ta ) /Tl Ta(ra) /TMI T () drom drm—1 . .. dry

s (e T
B (m —1)! /Fcp(rl) Io(r) </F<I>(rl) LI)(S)> .

Then Lf is an m-times weakly differentiable function on R™. Denote
Hf = (Lf)],. - Then, thanks to the equality

/Lq>,n({($1,$27...,l‘n) eR" iR >t}) :F<p(t), tER7
we have

1 Lfor) (/T ds )ml
Hf(t) = dr, te(0,1).

M=), e U 16 oy
It follows from [9, proof of Theorem 7.1] that L satisfies (6.5). Thus,
Proposition 6.5 implies that

(6.17) lim  sup  ||H(x0,a)lfDlly©,1) =0

20+ | £l x 0,1 <1

Since Io(s) =~ La(s), s € (0,3], we deduce that Hf ~ HY" f for all
f e XJlr/ 2, up to multiplicative constants independent of f. Hence,
condition (6.17) is equivalent to
(6.18) lim  sup  [|HE, (X(0.0)./)ly01) =0,
a—0+ £l x 0,1y <1

which is equivalent to (ii) according to Theorem 5.1. We have thus
proved the equivalence of (i) and (ii).

Due to Remark 5.2, (ii) is equivalent to

(6.19) lim sup  [|HI: (x0,0)f)Ily(0,1) = 0.
=041 £ll x 0,1y <1
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Further, according to [9, Proposition 11.2],

Hi, g9~ Pg'g
is fulfilled for all nonnegative nonincreasing functions g, up to multi-
plicative constants depending on m. Therefore, (6.19) holds if and only
if
(6.20) lim  sup 1P (x0,0)f )y (01) = 0.

a0+ [1flx0,1)<1

Since for every g € M(0,1),
(6.21) Pg'g <2™(m —1)!H]" g,
see [9, Proposition 11.2], we have that for every a € (0, 1),

sup Hpgl(X(O,a)f*)”Y(O,l)S sup ||Pg(X(0,a)f)||Y(0,1)
1 fllxc0,1) <1 £l x 0,1y <1

<2"(m—=1)! sup [IHF(X(0,0)/)lIv0,1)-
Ilfllx 0,1y <1
Using this chain of inequalities and the equivalence of (6.18) and (6.20),
we obtain that (iv) is equivalent to (6.18), and therefore also to (ii).

Owing to Theorem 4.2 and to the fact that fol %27_) = oo, (ii) is
equivalent to
(6.22) lim  sup [[x(0,0)HLy fllv0,1) =0

a—0+ £l x 0,1y <1
By (6.21), condition (6.22) implies (v). Trivially, (v) implies (iv), and,
thanks to the result of the previous paragraph, (iv) implies (ii). Conse-
quently, (v) is equivalent to (ii).

Condition (vi) is equivalent to (ii) owing to Theorem 4.2 and to the
fact that X}, (0,1) = X7, ;_(0,1).

The implication (iii) = (iv) can be proved in the same way as the
implication (i) = (ii) in Lemma 4.10. We have already proved that (iv)
implies (v). Let us now show that (v) implies (iii).

Since there is no nontrivial function having an absolutely continuous
norm in L°°(0, 1), condition (v) yields that Y (0,1) # L*°(0,1). We claim
that, for every a € (0, 1), the operator x(4,1)Pg' is compact from X (0, 1)
to Y'(0,1). To prove it, we first observe that

o~ (log %)

log% ) Hf(t), te(0,1).

X(a ) Pe" f(t) = X(a,1)(t) (

A proof analogous to a part of [23, proof of Theorem 3.1] yields that
X(aﬁl)H;n: )((07 1) —— Y(O, 1).
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> 1(log2)\ "
Since the function ¢ — % is bounded on (a, 1), the opera-

i @

1
g

o

tor X(q,1)Pg’ is compact from X(0,1) to Y'(0,1) as well. Consequently,
P3 is compact from X (0,1) into Y(0,1) as a norm limit of compact
operators. Altogether, (iii) is equivalent to (v).

Finally, assume that X (0,1) # L(0,1) and condition (6.3) is satisfied.
According to Theorem 4.6, (ii) is equivalent to
(6.23) lim  sup sup [[HT, (xef)lly©,1) =0.

@204l x 0,1y S1 AL (B)<a
Using (6.21) we deduce that (6.23) implies (vii). Trivially, (vii) im-
plies (iv). Since we have already shown that (iv) is equivalent to (ii), we
arrive at the equivalence of (vii) and (ii).

We now claim that the space Y,;{’@(o, 1) is the largest rearrange-
ment-invariant space from which the operator PJ" is bounded into Y'(0, 1).
This fact can be proved in the same way as it is done in the proof
of Proposition 4.5 for the rearrangement-invariant space de ;(0,1) and

the operator H§ Since boundedness of Pg* coincides with bounded-
ness of HJ" (see [9, Proposition 11.3]), we obtain that Y ;(0,1) is
the optimal domain for Y(0,1) with respect to the operator HJ" , and
therefore, by Proposition 4.5, Yy‘fL@(O, 1) = Y»%,L@ (0,1). Consequently,
Theorem 4.6 yields that (viii) is equivalent to (ii). The proof is com-
plete. O

7. Examples

In the present section we characterize compact Sobolev embeddings
on domains from Maz’ya classes, and on product probability spaces, for
some of the customary rearrangement-invariant norms. The case of John
domains is not discussed explicitly, however, results for John domains
can be derived from corresponding results for Maz’ya classes of domains,
by applying the equivalence of the following two conditions:

(i) V™X(Q) —— Y (Q) holds for a given John domain Q;
(i) V™X(Q) =< Y (Q) holds for every Q € J .

We recall that this equivalence follows from Theorems 6.1 and 6.2.
In the first part of this section we shall study when the compact
Sobolev embedding

(7.1) VX (Q,v) =>=Y(Q,v)

holds, provided that (€,v) is either a Euclidean domain belonging to
the Maz’ya class J, for some « € [%, 1], or a product probability space,
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and one of the rearrangement-invariant spaces X (€, v) and Y (Q,v) is
equal to L*(Q,v) or L>=(Q,v) (the largest and the smallest rearrange-
ment-invariant space, respectively). To obtain a tool for dealing with
this problem, we characterize for a given nondecreasing function I the
validity of condition

(7.2) lim — sup [[H"(x(0.0) /)y 0.1) =0

a0+ ) £l x (0,1 <1

in each of the four cases when one of the spaces X(0,1) and Y (0,1)
coincides with L1(0,1) or L>°(0,1). We start with the two “L'-cases”.
It turns out that in this situation the operator H}* can be replaced by the
simpler operator K7*, without assuming any restrictons on I (compare
to Theorem 5.3).

Theorem 7.1. Letm € N and let I: (0,1] — (0,00) be a nondecreasing
Junction satisfying (3.1). Suppose that || - || x(0,1) is a rearrangement-in-
variant norm and denote by @x the fundamental function of || - ||x(0,1)-

(a) The following conditions are equivalent:
(i) lima—o, supyzy, <t 127" (X©0,0).) [ x(0,1) = 0;

(CRPRS
(ii) lima—o, supygy , ., <1 1K (X(©0,0)/)llx(0,1) = 0;

D=
a7n—1 a
(iii) limg—o, W =0.
(b) The following conditions are equivalent:
(1) limao, supy gy <t 7 (0,00 /) 20,1y = 0;
(i) lma—o, supj ), o4 <1 KT (X(0,0).) L1 (0,1) = 0.

If X(0,1) # LY(0,1) then both (i) and (ii) are satisfied. Furthermore, if
X(0,1) = L'(0,1) then (i) and (ii) hold if and only if

. s
(7.3) 7y Y

The following theorem characterizes m-th order compact Sobolev em-
beddings on domains from the Maz’ya class J, in the two “L'-cases”. It
can be obtained by combined using of Theorems 6.2 and 7.1 (with I(s) =
s%). Let us note that here, and also in all further results on Maz’ya
classes of domains later in this section, we assume that m(1—a«) < 1. This
can be done with no loss of generality, since the case when m(1 —a) > 1
was sufficiently described in Theorem 6.2.
Theorem 7.2. Letn € N, n > 2, let m € N, and let o € [, 1] satisfy
m(1—a) < 1. Suppose that ||-||x(0,1) s a rearrangement-invariant norm
and denote by ¢x the fundamental function of || - || x0,1)-
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(a) The condition
(7.4) VLY Q) = X(Q)
is satisfied for every Q € T, if and only if

ex(s)
(75) Jm e O
This is never fulfilled for o = 1.
(b) Suppose that X (0,1) # L1(0,1). Then the condition
(7.6) VX (Q) = LYQ)
is satisfied for every Q € J,. Furthermore, if X(0,1) = Ll( 1)
then (7.6) is fulfilled for every Q € Jo if and only if o € [7,1).

An analogous result for product probability spaces is provided in the
next theorem.

Theorem 7.3. Let n,m € N, and let ® be as in Section 3. Suppose
that || - || x(0,1) is a rearrangement-invariant norm and denote by px the
fundamental function of || - || x0,1)-

(a) The condition
(7.7) VTLMRY, po ) = X(R™, pa.)
is satisfied if and only if

px(s)(@ ' (log 2))™

7.8 li =0.
( ) s—l>%l+ s(log %)m

(b) Suppose that X (0,1) # L1(0,1). Then the condition
(7.9) VX (R™, i n) < L' (R", piop,n)

is satisfied. Furthermore, if X (0,1) = L'(0,1) then (7.9) is fulfilled
if and only if

S
(7.10) élggo (s) =0.

Note that Theorem 7.3 follows from Theorem 6.4, Theorem 4.1 (ap-
plied with J = Lg and j = m), and Theorem 7.1 (applied with I = Lg).
We also need to use the equivalence

(@ (s)) ~ —— 0
@) ~ i 520
which was proved in [9, Lemma 11.1(iii)], and the following chain:
o~ (log 2 @ (log 2
(7.11) lim w T 5 B TR

s—04 log = 5—01 &(d~1(log %)) s—o0 D(s) ’
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Remark 7.4. Tt follows from the convexity of ® and from the fact that
®(0) = 0 that the function s — F(s 1 nonincreasing on (0, 00).
Hence, limg oo % exists. In particular, if (7.10) is not fulfilled then
lims_s oo ﬁ € (0,00). Combining this with the monotonicity of ﬁ we
obtain that in this situation, ®(s) &~ s on (a,00) for every a € (0,00),

up to multiplicative constants possibly depending on ® and a.

Let us now focus on the two “L>-cases”. Similarly as in the “L!-
cases”, we start with a one-dimensional result concerning the validity of
condition (7.2), now with X (0,1) or Y(0,1) equal to L*(0,1). In con-
trast to Theorem 7.1, in this situation we cannot equivalently replace the
operator H" by K" (a counterexample follows from Remarks 5.4(iv)).

We will change the notation from I to J and from m to j, and we
will not assume any monotonicity of J. Then, by setting J(s) = Ig(,f),ﬂl,
s € (0,1], and j = 1, our result applies also to the characterization
of condition (7.2) with H}* replaced by K7* (notice that if the func-
tion I satisfies (5.9) then condition (7.2) is not affected by replacing H}"
by K7*).

Theorem 7.5. Let j € N and let J: (0,1] — (0,00) be a measurable
function satisfying (4.1). Suppose that || - ||x(0,1) s a rearrangement-in-
variant norm.

(a) If fol J(Z“) < oo then the condition

(7.12) lim sup ||H§(X(o,a)f)||x(o,1) =0
=04 | £l oo 0,1y <1

is satisfied for all j € N and for all rearrangement-invariant norms
|- Ix(0,1)- In the case that fol % = 00, condition (7.12) holds if

and only if
1 J
dr
t R
won® ([ 575)
(b) The condition

(7.14) im  sup  |[H(x0,0 )| z=01) =0

20+ £l x (0,1 <1

holds if and only if

e (e

This is never fulfilled in the case that fol % = 0.

(7.13) lim

a—04

=0.
X(0,1)

(7.15) lim

a—04

=0.
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The previous theorem combined with Theorem 6.2 easily leads to the
following result on m-th order compact Sobolev embeddings on domains
from the Maz’ya class J, in the “L>°-cases”. We note that Theorem 7.5
has to be applied with j = 1 and J(s) = s'=™(1=%) s € (0,1], if a €
[L,1), and with j = m and J(s) = s, s € (0,1], if a = 1.

n’ o
Theorem 7.6. Letn € N, n > 2, and let m € N. Suppose that ||-|| x (0,1
1S a rearrangement-invariant norm.

(a) Assume that o € [2,1) and that m(1—«) < 1. Then the condition

(7.16) VL (Q) —— X(Q)
is fulfilled for every Q € J, and for all rearrangement-invariant
norms || - | x(0,1)- Furthermore,

(7.17) VX (Q) —— L>(Q)
is satisfied for every Q € T, if and only if

(7.18) . 1X(0.0) ()™ x(0,1) = 0.

(b) The condition (7.16) is satisfied for every Q € Jy if and only if

2 m
1ir(r)1 X(0,a)(8) <1og ) = 0.
a=0+ S X(0,1)
Furthermore, there is no rearrangement-invariant norm || - || xo,1)

and m € N such that (7.17) is fulfilled for every Q € Ji.

An analogous result for the product probability space (R", g ) can
be derived from Theorems 6.4 and 7.5 (with J = Lg and j = m), by
making use of the equivalence

1
dr 2 2 1
=d M {logZ ) —d (log2) =~ ®~ ! [log = — .
[ e (o) oo = (1) s (03)

Theorem 7.7. Let n,m € N, and let ® be as in Section 3. Suppose that
|- I x(0,1) 98 a rearrangement-invariant norm.

(a) The condition
(7.19) VPLOR", pon) o= X(R"™, pon)
1s satisfied if and only if

_ 2\\"
st (o ), -
§ X(0,1)

(7.20) lim

a—04
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(b) The condition
(7.21) VPXR", pon) —— LR, pon)
is never fulfilled.

We shall now study the compact Sobolev embedding (7.1), provided
that (2,v) is either a Euclidean Maz’ya domain, or a product probabil-
ity space, and both X(Q,v) and Y (Q,v) are Lebesgue spaces. We shall
consider also the more general situation when both X (£2,r) and Y (£, v)
are Lorentz spaces (in the case when (§,v) is the Maz’ya domain),
or Lorentz—Zygmund spaces (in the case when (2,v) is the Boltzmann
space, a particular example of product probability spaces). We note that
Lorentz spaces in the former case and Lorentz—Zygmund spaces in the
latter case naturally arise as optimal targets of Lebesgue spaces in the
Sobolev embeddings on the corresponding domains, see [9, Theorems 6.9
and 7.12].

The result for Maz’ya classes of domains takes the following form.

Theorem 7.8. Letn € N, n> 2, let m €N, and let o € [ﬁ, 1] satisfy

m(l — «) < 1. Suppose that p1,p2,q1,q2 € [1,00] are such that both

triplets (p,q, @) = (p1,q1,0) and (p,q, @) = (p2,q2,0) satisfy one of the
conditions (2.3)—(2.6). Then the following assertions are equivalent.

(i) The compact embedding
VL (Q) sy P2 (Q)
holds for every Q € J,.
(ii) The compact embedding
VM LPL(Q) = LP2(Q)
holds for every Q € J,.
(iii) One of the following conditions is satisfied:

1 D1

29 1/n/,1 — T—mpi(l—a)
(7 ) O[E[/n7 )7 p1<m(170[)’ p2<17’/n,pl(1*01)7
1
(723)  ac[Un\1), pi= s <00
1
24 1/n',1 ml—a)
(7.24) a€[l/n',1), p1>m(1—a)’
(7.25) a=1, p1 > P2

We now focus on compact Sobolev embeddings in context of Lebesgue
spaces over product probability spaces. Interestingly, we can often speak
about optimal compact embeddings in this connection.
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Theorem 7.9. Let n,m € N, let ® be as in Section 3, and let p,q €
[1, 00].

(i) Suppose that limg_, oo @fs) =0. Then

(7.26) VP LP(R”, pp.p) > LIR", pigp )

holds if and only if ¢ < p and q < co. In particular, if p < oo then
LP(R", pio ) is the optimal (i.e., the smallest) Lebesgue space into
which VL (R™, pe ) is compactly embedded.

(ii) Suppose that lims_, 3G € (0,00). Then (7.26) holds if and only
if g < p.

Notice that, according to Remark 7.4, parts (i) and (ii) of Theorem 7.9
indeed cover all cases of the function ®.

The optimality in compact embeddings disappears when more general
rearrangement-invariant spaces are called into play. This easily follows
from the next result, in which we consider Lorentz—Zygmund spaces
over the particular family of product probability spaces consisting of all
Boltzmann spaces.

Theorem 7.10. Let n,m € N and 8 € [1,2]. Furthermore, let p1,p2,q1,
g2 € [1,00], a1, a2 € R be such that both triplets (p,q,a) = (p1,q1, 1)
and (p, q, &) = (p2, g2, a2) satisfy one of the conditions (2.3)—(2.6).

(i) Suppose that p; < oco. Then
(7.27) VI LPLAGO(RY sy o) ey [P0 (R 1y, )

holds if and only if p1 > p2, or p1 = p2 and one of the following
conditions is satisfied:

m(B—1
q1 < qo, CYl‘*‘(ﬂ)>042;
1 m(B—1) 1
@e<q, og+—+—7—>a+ —.
7 B )

(ii) Suppose that py = oco. Then (7.27) holds if and only if p2 < oo, or
1 m 1
p2=00, a1+ ———=>aQay+ —.
o B q2

We finish the paper by proving those results of this section which have
not been verified yet. We need the following auxiliary lemma.
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Lemma 7.11. Suppose that m € N and I: (0,1] — (0,00) is a non-
decreasing function fulfilling (3.1). Then for every f € M(0,1) and
€(0,1),

(7.28) sup R7'f*(s)~ sup ST'f*(s),
s€(0,a) s€(0,a)

up to multiplicative constants depending on m.

Proof: If m = 1 then (7.28) trivially holds since R} = S}. Thus, in what
follows we may assume that m > 2.
Fix a € (0,1). Given f € M(0,1) and s € (0,a), we have

-1 t 1

Rif*(s) = == F"*(s) < (F*(s)™ sup ——(f(£))7.

I(s) te(0,a) I(t)
Therefore,
(7.29) RY'f¥(s)=Ry " (Rrf*)(s) SRy~ (f*)5 (s) sup %(f**(t))%-
te(0,a)

Furthermore, let k € {1,2,...,m — 1}. Then

R0 =175 | (for e d“) ar
Il(/ f(u du) /Osr_idr

([ du>"b—mm_k el

([ ().

(F ()7 s

< sup
m—k te(0,a) I( )

Hence,

RE(f**)m (s) = RETH (R (f) ™) ()
(7.30)

k—1[ phosy E=L t *k o
< BT (S)t:gi)m(f ().
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Using (7.29) and (7.30) subsequently for £k = m — 1,m — 2,...,1, we
obtain

— sy =1 Kok L

Ry f7(s) < RPTH(F™) % (s) sup ——(f*(t))7

te0,a) (1)

te(0,a) I(t)

3=
N——
[ V)

<mRT2(F) 5 (s) ( sup L(f**(t))f

mm—l t " # m
= - (@%%(t)(f “) )

mm— 1
7( 1) tEOa) /f

mm—l
= ———— sup ST f*(s).
( 1) te(0,a) !
Passing to supremum over all s € (0,a), we get
m—1
(7.31) sup R7' f*(s) < ——— sup ST f*(s).
s€(0,a) (m - 1) s€(0,a)

Conversely, given s € (0, 1), we have by the monotonicity of T

m-vmrre =5 (] ;f))m £ (t) e
s m-l .
I(Z)(/ If;) /Of*(t)dt

“ o o || SO = Sy

This yields the inequality in the reverse direction to (7.31). The proof
is complete. O

Y

v
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Proof of Theorem 7.1: (a) Using the definition of the associate norm and
the equation (4.6) (the first time with j =m and J = I and the second
time with 5 = 1 and J as in (5.8)), similarly as in the proof of Theo-
rem 4.2, part (i) < (iii), and applying Lemma 7.11, we obtain that for
every a € (0,1)

sup [IH" (xo.9llxoy=_ sup xR~

HQHLI(O,l)Sl ILf x/(0,1)<1
= sup  sup RY'f*(s)
1 £l x7(0,1)<1 s€(0,a)

~ sup  sup S7'f*(s)
(7.32) £ x7 0.1y <1 5€(0,a)

- sup X ’ SMf* N
Hf\lxr(o,l)gH 0.0)°1 HL (0,1)

= sup K" (X009 x0.1)
HQHLI(O’l)Sl
up to multiplicative constants depending on m. Notice that we are also
using that for every a € (0,1) and every f € X'(0, 1), we have

(7.33) essSUPye (g,0) B[ (1) = sup Rp"f*(t)
te(0,a)

and

(7.34) eSS SUPye(o,q) ST (1) = sgup : ST ().
te(0,a

The argument which justifies (7.33) and (7.34) is the same as the one
appearing in the proof of Theorem 5.3. Therefore, we have proved the
equivalence of (i) and (ii). Furthermore, we have

s

m—1 s
sup sup S7'f*(s) = sup sup 7/ fr()de
11l x7c0,1)<1 s€(0,a) s€(0,a) Ifllx7¢0,1y<1 ()™ Jo

s Hlx (0,5 x 0,1
(7.35) = sup : .
s€(0,a) (I(S))m

Sm—l

= sup 7(’0)((8).
se0a)  (I(s))™
By combined using of (7.32) and (7.35), we obtain that conditions (i)
and (ii) are equivalent to (iii).

(b) Suppose that X (0,1) # L'(0,1). Let J be a positive measurable
function on (0,1] fulfilling (4.1) and let j € N. We will show that the
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condition

(7.36) lim  sup [ H’(X0.0)f) L2 0,1) = O

0+ | £l x (0,1 <1

is satisfied. Since both H}* and K7* have the form H§ for a suitable
choice of j and J, we obtain that (i) and (ii) are satisfied as well (and,
in particular, that they are equivalent).

Let us now prove (7.36). We have

HY: LY0,1) — (LY)7 5(0,1) < L*(0,1).
According to Remark 4.8, we obtain
HY: X(0,1) —— L*0,1).
By Theorem 4.1, this implies (7.36).
Furthermore, let X (0,1) = L*(0,1). Using the part (a) with X (0,1) =

L'(0,1), we obtain that (i) and (ii) are equivalent and that they are
satisfied if and only if

sm—l(le (S) s m
1. ——— 1' — = 0_
o0y (I(s)m so0y <I(s)>
This is equivalent to (7.3), as required. O

Proof of Theorem 7.5: (a) Using the fact that each function f belonging
to the unit ball of L*°(0,1) satisfies |f| < 1 and applying the equal-
ity (4.7), we obtain

lim sup HHLJ}(X(O,a)f)H

=04 | £l oo (0,1) <1 X(0,1)
; J
B ali%i H‘](X(O’“))HX(O,Q
@ dr\’
== lim ||x(@0.a (t)(/ )
oo |NOINS T ) o

lim
a—04

Suppose that ‘fo 77( ) < 00. Then
<— i ] || a ||}< 1
ahHOl+ 0 J( ) X(O7 ) (0» )

g\’
X(0.0)(t) . J(r)
“ g\’
< li am) =
< 1t x 0,1 a0, (/0 J(T)) )

thanks to the absolute continuity of the Lebesgue integral. Thus, condi-
tion (7.12) is satisfied for all rearrangement-invariant norms || - ||x(o,1)-
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Assume that [ -2 = oo, Obviously, condition (7.13) implies
0 J(r)
= O7

X (0,a)(t) (/ta JCE:))J X(0,1)

and therefore also (7.12). Conversely, if (7.12) is fulfilled then, owing to
Lemma 4.10, we have (7.13).

(b) We have

(7.37) lim

a—04

lim  sup  |[H(x0.0)F)l 2 (0.1)

a0+ £l x 0,1 <1

- “|£(s)] (/ dr >J"1
= lim sup / ds
=04 fl v <tJo  J(s) \Jo J(r)

el ()]

This yields the equivalence of (7.14) and (7.15). Further, condition (7.15)
is obviously never satisfied in the case that fol % = 00. O

lim
a~>0+

In order to prove Theorems 7.8 and 7.10 we shall need the follow-
ing proposition which characterizes almost-compact embeddings between
Lorentz—Zygmund spaces. It can be derived as a particular case of [16]
where almost-compact embeddings between more general classical and
weak Lorentz spaces were studied. For the sake of completeness we also
give an alternative proof.

Proposition 7.12. Let p1,p2,q1,q2 € [1,0], ai,as € R be such that

both triplets (p,q,a) = (p1,q1, 1) and (p,q, ) = (p2, g2, a2) satisfy one
of the conditions (2.3)-(2.6). Then

(7.38) LPoasen (), 1) < [P292502 (0, 1)

holds if and only if p1 > pa2, or p1 = p2 and the following conditions are
satisfied:

(7.39) if pr = p2 < 00 and q1 < g2 then ay > ao;
. 1 1
(7.40) if pr =p2 =00 or q1 > @2 thena1+q—>a2+q—.
1 2

In particular, if p1, p2, q1, g2 € [1,00] are such that both triplets (p, q, &) =
(p1,q1,0) and (p, q, @) = (p2, ¢2,0) satisfy one of the conditions (2.3)—(2.6)
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then

(7.41) LPo(0,1) <5 LP292(0,1)

holds if and only if p1 > pa.

Proof: Suppose that either p; > po, or p; = py and conditions (7.39)
and (7.40) are satisfied. Then we can find € >0 such that ||-|| Lr2.a2:02+<(0 1)
is equivalent to a rearrangement-invariant norm and, if p; = po, then one

of the conditions (2.7) is fulfilled with o + € in place of ap. Therefore,

we have
[P1q1501 (O, 1) oy LZ72,¢12;042+€(07 1).

Consequently,

lim sup 1X(0,a) f || Lp2a2i02 (0,1)
E7% | fllpprarion 0,1y <1

= lim sup
@04 )| £l Lp1avien 0,1) <1

X(0,a)(8)f"(5) <log i) b

1 1 2 az+e
X§p2 a2 <log )
]

L32(0,1)
2\ —¢

< lim 11X (0,0)(5) <log )

a—04 s

Le=(0,1)
11 2 azte
X sup [*(s)sP2 a2 (10g )
”fHL,Pl‘qlé(H(o,l)Sl S L (0.)
9\ ~¢

= sup ||f||Lp2,LI2;cx2+s(0,1) lim (log ) =0,

HfHLPth;al(o,l)gl a—04 a

i.e., (7.38) is satisfied.
Conversely, suppose that (7.38) is in progress. Then, in particular,

Lpr:qiian (07 1) oy [[P2,92;%2 (07 1)7

so either p; > pa, or p; = ps and one of the conditions in (2.7) is
satisfied. Assume that p; = po and denote p = p; = ps. There are three
cases in which both || - || zr.a1sa1(0,1) @nd || - || p.a2saz (0,1) are equivalent to
rearrangement-invariant norms, one of the conditions in (2.7) is fulfilled
but (7.39) or (7.40) not. The first one is

(742> p < o0, q1 S q2, Q] = Qa,
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the second one is
1 1
(7-43) p=00, q<q2, ar+—=ay+— <0,
q1 q2
and the third one is
(7.44) p=00, q1=¢@g2=00, a;=az=0.

Using [22, proof of Theorem 6.3] we get that in all cases, fundamental
functions of || - ||pr.aries(0,1) and || - || gr.aziez(0,1) are equivalent up to
multiplicative constants. Therefore, a necessary condition for (7.38) to
be true,

(7.45) i PLrezez(s) g

s—=04 Qrp.a1sen (S)
is not satisfied. Hence, whenever p; = ps and (7.38) is fulfilled then
both (7.39) and (7.40) hold. O
Proof of Theorem 7.8: Let a € [, 1). According to Theorem 6.2,
(i) holds if and only if
(7.46) T = Ha-ma-a: LP29(0,1) —— LP>2(0,1).

First, suppose that LP2:92(0,1)=L>(0,1). It follows from the last part
of the proof of Theorem 4.1 that (7.46) is not fulfilled with LP*9:(0,1) =
L'(0,1). Assume that LP191(0,1) # L'(0,1). Then, according to Theo-
rem 4.6, (7.46) is satisfied if and only if
(7.47) L7 (0,1) S (L) 1w (0,1).

Due to Lemma 5.6,

1
g, pon ™ [ @0 ds = 1)

up to multiplicative constants independent of f € M(0,1). Hence,

1
I m(I—a) ’1(071)7

(Loo)cli,slfm(lfa) (01 1) = Lﬁ’l(o, 1)

Consequently, by Proposition 7.12, (7.46) holds with LP2:%2(0,1) =
L>(0,1) if and only if p; > m Observe that in this situation,
condition (7.46) is fulfilled for all pairs (p2,qs) satisfying the assump-
tions of Theorem 7.8, since we always have L>°(0, 1) «— LP2:92(0, 1).
Thus, in what follows we may assume that LP2:%2(0,1) # L*(0,1)
and p; < ﬁ Due to Theorem 4.2, (7.46) is satisfied if and only if

(7.48) (LPY)] mmam (0,1) < LP22(0,1).
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It follows from [9, Theorem 6.9] that

(7.49)  (LPYM)] oomaa(0,1)

LTG0 (0,1), i py < s
— Looaq1§*1(071)’ ifp1 = m and q > 1;
(0, 1), if p1 = fpey and g1 = 1.

Thus, if p; < m(l ) then (7.48) is fulfilled if and only if py <

see Proposition 7.12. In the case when p; =

m, (7.48) is charac-
terized by ps < oco. Indeed, observe that there is no Lorentz space
LP2:92(0,1) different from L°°(0, 1), having the first index equal to oo
and satisfying one of the conditions (2.3)—(2.6) with p = pa, ¢ = ¢2, and
a = 0 at the same time. On the other hand, if p; = ey and py < 00
then (7.48) is satisfied according to (7.49) and Proposition 7.12.

Let @ = 1. According to Theorem 6.2, (i) holds if and only if

(7.50) Ty = H™: LPY9(0,1) —— LP292(0,1).

First, suppose that LP1:9(0,1) # L*°(0,1). Then, due to Theorem 4.2
and [9, Theorem 6.11], (7.50) is satisfied if and only if

(Lphth) (0 1) LP1d (0, 1) <i> P22 (07 1)7

which is equivalent to pa < p1, see Proposition 7.12. Finally, (7.50) is
satisfied with P11 (0,1) = L*°(0,1) if and only if

(7.51) (L), ((0,1) = Lo®2m(0, 1) & LP2:%2(0, 1).

As observed above, this cannot be fulfilled when ps = co. Furthermore,
owing to Proposition 7.12, (7.51) is satisfied if py < 0.

By applying the equivalence of (i) and (iii) to the particular case when
p1 = ¢1 and py = ¢a, we obtain that (ii) is equivalent to (iii) as well. The
proof is complete. O
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Proof of Theorem 7.9: Suppose that limg_, @ = 0. By Theorem 6.4,
condition (7.26) is fulfilled if and only if

(7.52) (LP)7, 5(0,1) <> L9(0, 1).

Let p € [1,00). Since, due to (7.11),

o 1(log 2)\"
Jim (<0g>> o,

s—=04 log %

we have, using also [9, Proposition 7.5],

lim sup X (0.0
, Lr(0,1
a—=0+ Ifllryr, 400 <1 o
~ lim sup HX(Oa)f*HLp(o 1)
a0kl e ™ o ’
(=tis) 1], 8

< lim sup

T~ a—04 log 2 m
ooz ) @
@~ 1(log %)

() o

P 1(log 2)\"
X sup ((Ogt)>

te(0,a) log %

<1

< Lr(0,1)
LP(0,1)

(b_l 1 2 m
< lim sup ((Oth)> =0,
a=04 te(0,a) log £

which yields that (LP)7, 4(0,1) <+ L?(0,1).
Suppose that ¢ < p. Then LP(0,1) < L%(0, 1), and therefore (7.52) is
satisfied. Conversely, assume that ¢ > p. Since v/® is concave on [0, 00)

and 1/®(0) = 0, we deduce that the function t — qt)(t) is nonincreasing

on (0,00). Using that ®~! is nondecreasing on (0,00), we obtain that
the function

S@1(3)) _ 3

T T () o 1(s)
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is nonincreasing on (0, c0). Therefore,

1

. QDLq(a) . aa
ah—}{)IJr YLy (a,) ~ allgi log% m
e <000 (75575) 00
1
q
= li%l a4 .
a—0+ a log% mp P
(5 (=) )
1
. a1
> h%l .
a—04 fiosZ \" [ ra 2\ P P
(tbl(logi)> (fO ( IOg ?) dt
1
~ lim n?

Hence, (7.52) is not fulfilled.
Suppose that p = co and ¢ < co. Then L*°(0,1) < L9(0,1), and thus
also (L*)7, $(0,1) = (L)}, (0,1). It follows from the first part of the

proof that (L9);, 5(0,1) <4 L9(0,1). Hence, (7.52) is satisfied. Finally,

if ¢ = oo then it follows from Theorem 7.7(b) that (7.26) is not fulfilled.
Now, assume that limg_, o ﬁ € (0,00). Then,

d1(s) d1(s) s

li = lim ————= = lim —— € (0 .

A = M) T ) <O

Consequently, ®~1(s) ~ s, s € (log2,00). Thus, if we set I(s) = s,
€ (0,1], then for every f € M(0,1) we have PZ'f ~ H*f, up to

multiplicative constants independent of f € M(0,1). Combining this

with Theorem 6.4, we obtain that (7.26) holds if and only if

(7.53) lim sup  ||H7"(x(0,a).f)llza(o,1) = 0.
a=04 1 fll e 0,1y <1

By Theorems 6.2 and 7.8, both applied with & = 1, we deduce that (7.53)
is fulfilled if and only if ¢ < p. O
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Proof of Theorem 7.10: Theorem 6.4 applied with ®(t)=4t%,t € [0, c0),
yields that condition (7.27) is satisfied if and only if

B

(7.54) (Lrmien)t o 5(0,1) Sy [P2azioz(() 1),

Furthermore, it follows from [9, Theorem 7.12] that

. m(B8-1)
LP17q1,a1+T(O’ 1) if p1 < o0;

L= (0, 1) if p; = oo.

(L) s (0,1) = {

By applying Proposition 7.12 we get the result. O
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