EMBEDDINGS OF LOCAL FIELDS IN SIMPLE ALGEBRAS AND SIMPLICIAL STRUCTURES

Daniel Skodlerack

Abstract: We give a geometric interpretation of Broussous–Grabitz embedding types. We fix a central division algebra D of finite index over a non-Archimedean local field F and a positive integer m. Further we fix a hereditary order \mathfrak{a} of $\mathrm{M}_m(D)$ and an unramified field extension E|F in $\mathrm{M}_m(D)$ which is embeddable in D and which normalizes \mathfrak{a} . Such a pair (E,\mathfrak{a}) is called an embedding. The embedding types classify the $\mathrm{GL}_m(D)$ -conjugation classes of these embeddings. Such a type is a class of matrices with non-negative integer entries. We give a formula which allows us to recover the embedding type of (E,\mathfrak{a}) from the simplicial type of the image of the barycenter of \mathfrak{a} under the canonical isomorphism, from the set of E^\times -fixed points of the reduced building of $\mathrm{GL}_m(D)$ to the reduced building of the centralizer of E^\times in $\mathrm{GL}_m(D)$. Conversely the formula allows to calculate the simplicial type up to cyclic permutation of the Coxeter diagram.

2010 Mathematics Subject Classification: 17C20, 20E42, 12J25.

Key words: Embeddings types, buildings, simple algebras, non-archimedean local fields.

1. Introduction

Field extensions in Azumaya algebras with respect to local representation theory have been studied in many situations. We want to mention works of Fröhlich [Frö87], Broussous and Grabitz [Gra99], [BG00] among others. More precisely we consider a skew field D of finite index d over a non-Archimedean local field F and pairs (E, \mathfrak{a}) consisting of a field extension E|F in $M_m(D)$ and a hereditary order \mathfrak{a} of $M_m(D)$ normalized by E^{\times} . Such a pair (E, \mathfrak{a}) is called an embedding. In the representation theory of $G := \mathrm{GL}_m(D)$ on complex vector spaces it has been important to understand when two such embeddings are conjugate to each other under G. Broussous and Grabitz attached in [BG00, 2.3.10, 2.3.1] to every embedding a cyclic permutation class of matrices with non-negative integer entries, which only depends on \mathfrak{a} and the maximal unramified field extension $E_D|F$ of E|F embeddable in D|F. We call the latter class embedding type of (E, \mathfrak{a}) . It is slightly different to the

"type of embedding" in their paper, where they restrict to matrices with d rows. This invariant allows to define certain equivalent embeddings, called pearl embeddings, which are suitable for calculations and which are conjugate to (E_D, \mathfrak{a}) . The latter is a generalization of a work [Frö87] of Fröhlich, where he considered the case of principal orders. Broussous and Grabitz proved:

Proposition 1.1 ([BG00, 3.2]). Two embeddings (E, \mathfrak{a}) and (E', \mathfrak{a}) are conjugate under $GL_m(D)$ if and only if the field extensions are isomorphic and the embeddings have the same embedding type, i.e. (E_D, \mathfrak{a}) and (E'_D, \mathfrak{a}) are conjugate under $GL_m(D)$.

This rigidity statement plays a role in the classification of supercuspidal representations of G, see for example [BSS12].

The main result of this paper is that the embedding type can be obtained geometrically. The strategy is the following. We denote by G_{E_D} the centralizer of E_D in G. Broussous and Lemaire introduced a canonical isomorphism between reduced Bruhat–Tits buildings

$$j_{E_D}: \mathfrak{B}_{\mathrm{red}}(G)^{E_D^{\times}} \to \mathfrak{B}_{\mathrm{red}}(G_{E_D})$$

which is affine, G_{E_D} -equivariant and which respects the Moy–Prasad filtrations [MP94]. Let (E, \mathfrak{a}) be an embedding. The barycenter $x_{\mathfrak{a}}$ of \mathfrak{a} in $\mathfrak{B}_{\mathrm{red}}(G)$ is fixed under the action of E_D^{\times} .

In this article we construct an easy combinatorial map ()^c of order two on the set of non-zero cyclic vectors with non-negative integer coefficients. A cyclic vector $\langle v \rangle$ is the set of vectors which are equal to v up to cyclic permutation of the coordinates. We prove:

Theorem 1.2 (see Theorem 6.4). Let M be an element of the embedding type of (E, \mathfrak{a}) , in particular M is a matrix with non-negative integer coefficients. Write M line-wise into a vector λ . Fix a labeling of $\mathfrak{B}_{\rm red}(G_{E_D})$ and let μ be the barycentric coordinates of $j_{E_D}(x_{\mathfrak{a}})$. Then $(\langle \operatorname{rank}(\mathfrak{a})[E_D:F]\mu \rangle)^c$ is equal to $\langle \lambda \rangle$.

Here rank(\mathfrak{a}) is the simplicial rank of \mathfrak{a} seen as a facet of $\mathfrak{B}_{\mathrm{red}}(G)$, see Definition 2.5. The advantage of this approach is the following. On can consider classes of embeddings as classes of certain points with rational coordinates in a chamber of $\mathfrak{B}_{\mathrm{red}}(G_{E_D})$. The class is given by the action of the group of rotations of the Coxeter diagram on $\mathfrak{B}_{\mathrm{red}}(G_{E_D})$. Let hbe a Hermitian form on D^m and U(h) its group of isometries. One can now study examples of embeddings which are invariant under the adjoint involution of h in studying certain points of $j_{E_D}(\mathfrak{B}(U(h)) \cap \mathfrak{B}_{\mathrm{red}}(G)^{E_D^{\times}})$ with rational coordinates. The article is structured as follows. We give general notation and we recall the model of the reduced Bruhat–Tits building of $\mathrm{GL}_m(D)$ in terms of lattice functions in §2 and introduce in §3 cyclic vectors and matrices. In §4 we recall definitions and statements of [**BG00**] on embedding types and pearl embeddings. In relevant cases we recall the description of the map j_E in §5. Finally, §6 explains the strategy to encode the embedding type from barycentric coordinates, followed by the proof of Theorem 6.4. The proof consists of three main ideas:

- 1. changing the skew field in Lemma 6.8,
- 2. a rank reduction for the considered facet \mathfrak{a} in Lemma 6.7, and
- 3. the proof for the case that \mathfrak{a} is a vertex.

I have very much to thank Professor Zink from Humboldt University Berlin for his helpful remarks, the revision of the work, and for giving me the interesting problem.

2. The reduced Bruhat-Tits building of $GL_m(D)$

Let (F, ν) be a non-Archimedean local field with normalized valuation ν , valuation ring o_F , valuation ideal \mathfrak{p}_F , a chosen uniformizer π_F , and residue field κ_F . We use similar notation for other skew fields with non-Archimedean valuation. We fix a skew field D of finite index d and central over F, together with a maximal unramified field extension L|F in D|F, and a uniformizer π_D which normalizes L such that the map

$$x \mapsto \sigma(x) := \pi_D x \pi_D^{-1}, \quad x \in D,$$

generates $\operatorname{Gal}(L|F)$. For a positive integer f|d we denote by L_f the subfield of degree f over F in L. Further, let V be a right D-vector space of finite dimension m and denote its ring of D-linear endomorphisms by A. Then V is in a natural way a left $A \otimes_F D^{op}$ -module. We write G for A^{\times} .

We recall the model of the reduced Bruhat–Tits building $\mathfrak{B}_{red}(G)$ in terms of lattice functions. For more details we recommend [**BL02**] and [**BT84**]. We adopt the following definitions from [**BL02**].

- **Definition 2.1.** 1. An m-dimensional free o_D -submodule of V is an o_D -lattice. We denote the set of all o_D -lattices by $\mathcal{L}(o_D, V)$. It is partially ordered by inclusion.
 - 2. A strictly decreasing map Λ from \mathbb{Z} to $\mathcal{L}(o_D, V)$ is called an o_D -lattice chain on V if there is an $r \in \mathbb{N}$ such that $\mathcal{L}_i \pi_D = \mathcal{L}_{i+r}$, $i \in \mathbb{Z}$. Two lattice chains \mathcal{L} and \mathcal{L}' are \mathbb{Z} -translations of each other if there is an integer m such that \mathcal{L}_{i+m} is equal to \mathcal{L}_i , for all integers i. A translation class is denoted by $[\mathcal{L}]$.

- 3. A decreasing map Λ from \mathbb{R} to $\mathcal{L}(o_D, V)$ is called an o_D -lattice function on V if it is
 - left continuous, i.e. $\Lambda(t) = \bigcap_{s < t} \Lambda(s)$, and
 - satisfies $\Lambda(t)\pi_D = \Lambda(t + \frac{1}{d}), t \in \mathbb{R}$.

The set of o_D -lattice functions is denoted by $\operatorname{Latt}^1_{o_D}(V)$. The map which sends Λ to $(\Lambda(t-s))_{t\in\mathbb{R}}$, which we denote by $\Lambda+s$, is called a translation by s. Two o_D -lattice functions are equivalent if they differ by a translation and the set of all classes of o_D -lattice functions is denoted by $\operatorname{Latt}_{o_D}(V)$. For $[\Lambda] \in \operatorname{Latt}_{o_D}(V)$, the square lattice function of Λ is defined to be the following o_F -lattice function in A:

$$t \mapsto \mathfrak{g}_{\Lambda}(t) := \{ a \in A \mid a(\Lambda(s)) \subseteq \Lambda(s+t) \text{ for all } s \in \mathbb{R} \}.$$

This attachment only depends on the translation class of Λ and is injective on $\operatorname{Latt}_{o_D}(V)$, i.e. two different translation classes have different square lattice functions, see [**BL02**]. We denote the set of square lattice functions of A by $\operatorname{Latt}_{o_F}^2(A)$.

4. The hereditary order \mathfrak{a}_{Λ} corresponding to Λ is the ring $\mathfrak{g}_{\Lambda}(0)$, which only depends on the translation class of Λ .

Theorem 2.2 ([BL02, I 2.4]). There is a unique G-equivariant, affine bijection from $\mathfrak{B}_{red}(G)$ to $Latt_{o_D}(V)$.

Remark 2.3. 1. The apartments of $\mathfrak{B}_{\mathrm{red}}(G)$ carry over to $\mathrm{Latt}_{o_D}(V)$; more precisely the set of apartments in $\mathrm{Latt}_{o_D}(V)$ is in one to one correspondence with the set of frames in V. A frame is a set of one dimensional D-sub-vector spaces of V whose direct sum is V. The apartment corresponding to a frame \mathcal{R} is the set $\mathrm{Latt}_{\mathcal{R}}(V)$ of $[\Lambda]$ such that Λ is split by \mathcal{R} , i.e.

$$\Lambda(t) = \bigoplus_{W \in \mathcal{R}} \Lambda(t) \cap W,$$

for all $t \in \mathbb{R}$.

2. The inherited simplicial structure on $\operatorname{Latt}_{o_D}(V)$ is given as follows: The facet containing $[\Lambda] \in \operatorname{Latt}_{o_D}(V)$ is

$$\{ [\Lambda'] \in \operatorname{Latt}_{o_D}(V) | \operatorname{im}(\Lambda) = \operatorname{im}(\Lambda') \}.$$

Theorem 2.4 ([Rei03, 39.14]). There are canonical bijections between the set of \mathbb{Z} -translation classes of o_D -lattice chains in V, the set of images of elements of $\operatorname{Latt}^1_{o_D}(V)$, and the set of hereditary orders in A:

$$[\mathcal{L}] \mapsto \operatorname{im}(\mathcal{L}) \ and \ \operatorname{im}(\Lambda) \mapsto \mathfrak{a}_{\Lambda}.$$

To be parallel to the notation in [**BL02**] we write \mathcal{I} for $\mathfrak{B}_{red}(G)$ and identify it with $Latt_{o_D}(V)$. Its simplicial structure is denoted by Ω . We also call Ω the Euclidean building of G, so in this article a Euclidean building is a simplicial complex and not its geometric realization.

The simplices are denoted by hereditary orders, i.e. the simplex of $x \in \mathcal{I}$ is denoted by \mathfrak{a}_x . The square lattice function attached to x is denoted by \mathfrak{g}_x .

For a frame \mathcal{R} , we denote the appartment of \mathcal{I} corresponding to \mathcal{R} by $\mathcal{I}_{\mathcal{R}}$ and its simplicial structure by $\Omega_{\mathcal{R}}$, more precisely we have

$$\Omega_{\mathcal{R}} = \{ \mathfrak{a} \in \Omega \mid \exists \ [\Lambda] \in \mathrm{Latt}_{\mathcal{R}}(V) : \mathfrak{a} = \mathfrak{a}_{\Lambda} \}.$$

We also call $\Omega_{\mathcal{R}}$ the apartment of Ω corresponding to \mathcal{R} , i.e. we have apartments for \mathcal{I} and for Ω .

Definition 2.5. Given two simplices \mathfrak{a} and \mathfrak{a}' , we write $\mathfrak{a} \leq \mathfrak{a}'$ if $\mathfrak{a} \supseteq \mathfrak{a}'$. A vertex of Ω is a simplex which is minimal with respect to \leq . Let \mathfrak{b} be a vertex of Ω and \mathfrak{a} a simplex. We call \mathfrak{b} a vertex of \mathfrak{a} if $\mathfrak{b} \leq \mathfrak{a}$. We define the simplicial rank of \mathfrak{a} as the number of vertices of \mathfrak{a} , and denote it by rank(\mathfrak{a}). A simplex of maximal rank is a chamber of Ω .

3. Cyclic vectors and matrices

The invariants which are considered in this article are vectors or matrices modulo cyclic permutation.

3.1. Vectors.

Definition 3.1. Let R be an arbitrary non-empty set, Vec(R) be the set of finite dimensional row-vectors with entries in R, i.e.

$$\operatorname{Vec}(R) := \bigcup_{i=1}^{\infty} R^{1 \times i}.$$

We call two elements w, w' of Vec(R) equivalent if they have the same dimension, say s, and if there is a k such that

$$w' = (w_k, \dots, w_s, w_1, \dots, w_{k-1}).$$

The equivalence class is denoted by $\langle w \rangle$ and it is a called a *cyclic vector*. We often skip the round brakets and write $\langle w_1, \ldots, w_k \rangle$. The set of equivalence classes of Vec(R) is denoted by CVec(R).

We now represent a cyclic vector with entries in \mathbb{N}_0 in a different way, to be able to attach a dual cyclic vector. There is a canonical map from

 $\text{CVec}(\mathbb{N}_0)$ to \mathbb{N}_0 which maps a cyclic vector to its sum of the coordinates, and we write $\text{CVec}(\mathbb{N}_0)_+$ for the preimage of \mathbb{N} . Consider the map

pairs:
$$CVec(\mathbb{N}_0)_+ \to CVec(\mathbb{N}^2)$$
,

defined via

$$pairs(\langle w \rangle) := \langle (w_{i_0}, i_1 - i_0), (w_{i_1}, i_2 - i_1), \dots, (w_{i_k}, i_0 + s - i_k) \rangle,$$

where $(w_{i_i})_{0 \le i \le k}$ is the subsequence of the non-zero coordinates.

Lemma 3.2. The map pairs is bijective.

Proof: By the definition of pairs we can rebuild $\langle w \rangle$ directly from pairs $\langle w \rangle$ and thus pairs is injective. The preimage of an element

$$\langle (a_0, b_0), (a_1, b_1), (a_2, b_2), \dots, (a_k, b_k) \rangle$$

of $\text{CVec}(\mathbb{N}^2)$ contains the cyclic class of the vector $w=(w_i)_{1\leq i\leq \sum_{l=0}^k b_l}$ defined via

$$w_i = \begin{cases} a_j, & \text{if } i = 1 + \sum_{l=0}^j b_l \\ 0, & \text{else} \end{cases}.$$

Thus pairs is surjective.

On $CVec(\mathbb{N}^2)$ there is a canonical bijection T which maps an element

$$\langle (a_0, b_0), (a_1, b_1), (a_2, b_2), \dots, (a_k, b_k) \rangle$$

to

$$\langle (b_0, a_1), (b_1, a_2), (b_2, a_3), \dots, (b_k, a_0) \rangle,$$

and it induces the bijection ()^c := pairs⁻¹ oT o pairs of $CVec(\mathbb{N}_0)_+$. We call $\langle w \rangle^c$ the dual of $\langle w \rangle$.

3.2. Matrices.

For $r, s, t \in \mathbb{N}$, $M_{r,s}(t)$ denotes the set of $r \times s$ -matrices with non-negative integer entries, such that

- in every column there is an entry greater than zero, and
- the sum of all entries is t.

For a matrix $M = (m_{i,j}) \in \mathcal{M}_{r,s}(t)$, we define the vector $\text{row}(M) \in \mathbb{N}_0^{1 \times rs}$ to be

$$(m_{1,1}, m_{1,2}, \ldots, m_{1,s}, m_{2,1}, \ldots, m_{2,s}, \ldots, m_{r,1}, \ldots, m_{r,s}).$$

Two matrices $M, N \in M_{r,s}(t)$ are said to be *equivalent* if row(M) and row(N) are. The equivalence class, denoted by $\langle M \rangle$, is called a *cyclic matrix*.

Example 3.3.

$$\begin{pmatrix} 2 & 0 \\ 1 & 3 \\ 0 & 1 \end{pmatrix} \backsim \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 3 & 0 \end{pmatrix}.$$

4. Embedding types

For a field extension E|F we denote by $E_D|F$ the maximal field extension in E|F, which is F-algebra isomorphic to a subfield of L. Its degree is the greatest common divisor of d and the inertia degree of E|F.

Definition 4.1. An *embedding* is a pair (E, \mathfrak{a}) satisfying

- 1. E is a field extension of F in A,
- 2. \mathfrak{a} is a hereditary order of A, normalized by E^{\times} .

Two embeddings (E, \mathfrak{a}) and (E', \mathfrak{a}') are said to be *equivalent* if there is an element $g \in G$, such that $gE_Dg^{-1} = E'_D$ and $g\mathfrak{a}g^{-1} = \mathfrak{a}'$.

Remark 4.2. In each equivalence class of embeddings there is a pair such that the field can be embedded in L.

Until the end of this section we fix a D-basis of V and identify A with $\mathcal{M}_m(D)$.

Definition 4.3. Let f|d and $r \leq m$. A matrix with f rows and r columns is called an *embedding datum* if it belongs to $M_{f,r}(m)$. Given an embedding datum $\lambda = (\lambda_{i,j})_{1 \leq i \leq f, 1 \leq j \leq r}$, we define the pearl embedding as follows. The *pearl embedding* of λ (with respect to the fixed D-basis of V) is the embedding $(E_{\lambda}, \mathfrak{a}_{\lambda})$, which satisfies the following conditions:

1. E_{λ} is the image of the monomorphism

$$x \in L_f \mapsto \operatorname{diag}(D_1(x), D_2(x), \dots, D_r(x)) \in \mathcal{M}_m(D),$$

where

$$D_j(x) = \operatorname{diag}(\sigma^0(x)\mathbb{1}_{\lambda_{1,j}}, \sigma^1(x)\mathbb{1}_{\lambda_{2,j}}, \dots, \sigma^{f-1}(x)\mathbb{1}_{\lambda_{f,j}})$$

and $\mathbb{1}_k$ is the identity matrix with k rows, in particular $E_{\lambda}|F$ is unramified of degree f.

2. \mathfrak{a} is a hereditary order in standard form according to the partition $m = n_1 + \cdots + n_r$ where $n_j := \sum_{i=1}^f \lambda_{i,j}$, i.e. \mathfrak{a} is the set of block matrices such that the (i,j)-th block has size $n_i \times n_j$ and has all its entries in o_D if $i \geq j$ and in \mathfrak{p}_D if i < j, respectively.

Theorem 4.4 ([**BG00**, 2.3.3 and 2.3.10]). 1. Two pearl embeddings are equivalent if and only if the embedding data are equivalent.

2. In every class of embeddings there is a pearl embedding.

Definition 4.5. Let (E, \mathfrak{a}) be an embedding. It is equivalent to a pearl embedding $(E_{\lambda}, \mathfrak{a}_{\lambda})$, by the above theorem. The cyclic matrix $\langle \lambda \rangle$ is called the *embedding type* of (E, \mathfrak{a}) . This definition does not depend on the choice of the basis by the Skolem–Noether Theorem. If (E, \mathfrak{a}) has embedding type $\langle \lambda \rangle$ with $\lambda \in M_{f,r}(m)$, then $r = \operatorname{rank}(\mathfrak{a})$ and $f = [E_D : F]$.

5. The map j_E

Notation 5.1. For this section let E|F be a field extension in A and we set A_E to be the centralizer of E in A, i.e.

$$A_E := Z_A(E) := \{ a \in A \mid ab = ba \, \forall \, b \in E \}.$$

We denote the Euclidean building of A_E^{\times} by Ω_E and its geometric realization by \mathcal{I}_E .

The next results are taken from [BL02].

Theorem 5.2 ([BL02, Theorem II 1.1.]). There exists a unique map

$$j_E \colon \mathcal{I}^{E^{\times}} \to \mathcal{I}_E,$$

such that for any $x \in \mathcal{I}^{E^{\times}}$ and $t \in \mathbb{R}$, we have $\mathfrak{g}_{j_E(x)}(t) = A_E \cap \mathfrak{g}_x(e(E|F)t)$. The map j_E satisfies the following properties:

- 1. it is bijective,
- 2. it is A_E^{\times} -equivariant, and
- 3. it is affine.

Moreover its inverse j_E^{-1} is the only map $\mathcal{I}_E \to \mathcal{I}$ such that 2 and 3 hold.

We briefly give Broussous and Lemaire's description of j_E in terms of lattice functions but only in the case where E|F is isomorphic to a sub-extension $L_f|F$ of L|F. Then $E\otimes_F L\cong \bigoplus_{k=0}^{f-1} L$ coming from the decomposition $1=\sum_{k=0}^{f-1} 1_k$ labeled such that the $\operatorname{Gal}(L|F)$ -action to the second factor gives $\sigma(1_k)=1_{k-1}$ for $k\geq 1$ and $\sigma(1_0)=1_{f-1}$. Applying it on the $E\otimes_F L$ -module V, we get $V=\bigoplus_k V_k$, where $V_k:=1_k V$.

Remark 5.3. In this situation, $A_E \cong \operatorname{End}_{\mathbb{Z}_D(L_f)}(V_0) \cong \operatorname{M}_m(\mathbb{Z}_D(L_f))$.

Theorem 5.4 ([**BL02**, II 3.1.]). In terms of lattice functions, j_E satisfies $j_E^{-1}([\Theta]) = [\Lambda]$, with

$$\Lambda(s) := \bigoplus_{k=0}^{f-1} \Theta\left(s - \frac{k}{d}\right) \pi_D^k, \quad s \in \mathbb{R},$$

where Θ is an $o_{\mathbf{Z}_D(L_f)}$ -lattice function on V_0 .

6. Embedding types through barycentric coordinates

In this section we keep the notation of Section 5. We need a notion of orientation on Ω_{E_D} to order the barycentric coordinates of a point in \mathcal{I}_{E_D} .

Definition 6.1. Let e and e' be vertices of Ω joined by an edge, and let \mathcal{L} and \mathcal{L}' lattice chains corresponding to e and e', respectively. The edge between e and e' is oriented towards e', if there are lattices $\Gamma \in \operatorname{im}(\mathcal{L})$ and $\Gamma' \in \operatorname{im}(\mathcal{L}')$, such that $\Gamma \supseteq \Gamma'$ with the quotient having κ_D -dimension 1, i.e. κ_F -dimension d. We write $e \to e'$. If x is a point in \mathcal{I} then there is a chamber $C \in \Omega$ such that x lies in the closure of |C|, i.e. in

$$\bigcup_{S \le C} |S|.$$

The vertices of C can be given as

$$e_1 \to e_2 \to \cdots \to e_m \to e_1$$
.

If (μ_i) are the barycentric coordinates of x with respect to (e_i) , i.e.

$$x = \sum_{i} \mu_i e_i,$$

then the class $\langle \mu \rangle$ is called the *cyclic (simplicial) type* of x in Ω .

Remark 6.2. 1. In general, not every edge has an orientation.

2. Definition 6.1 applies for \mathcal{I}_{E_D} as well. The skew field is then $\mathcal{I}_D(L_{[E_D:F]})$ instead of D and one has to substitute d by $\frac{d}{[E_D:F]}$. The above chosen orientation is just the choice of one of the directions of rotation of the Coxeter diagram of Ω .

Proposition 6.3. The notion of cyclic type does not depend on the choice of the chamber C and the starting vertex e_1 .

Proof: Let x be a point of \mathcal{I} contained in |C| and |C'| for two chambers C and C'. Let $e_1 \to e_2 \to \cdots \to e_m \to e_1$ and $e'_1 \to e'_2 \to \cdots \to e'_m \to e'_1$ be the vertices of C and C', respectively. It is clear that the cyclic type does not depend on the choice of the starting vertex e_1 , and we can

thus assume without loss of generality that $e_1 = e'_1$. Let (μ_i) be the barycentric coordinates of x w.r.t. (e_i) . We have to show that they are also the barycentric coordinates w.r.t. (e'_i) .

Let (μ'_i) be the barycentric coordinates of x w.r.t. (e'_i) . By $e_1 = e'_1$, we have $\mu_1 = \mu'_1$. Without loss of generality let μ_1 be non-zero. If $\mu_1 = 1$, then the other coordinates are zero and we are done. In case of $\mu_1 < 1$ let i_2 and i'_2 be the first indexes greater than 1, such that μ_{i_2} and $\mu'_{i'_2}$ are non-zero, respectively. Without loss of generality assume $i'_2 \leq i_2$. Let j be the index such that e_j is equal to $e'_{i'_2}$. Then μ_j is equal to $\mu'_{i'_2}$ and $j \geq i_2$ by the definition of i_2 . Thus we have to prove that the inequalities

$$i_2' \le i_2 \le j$$

are equalities. Let \mathcal{L} and \mathcal{L}' be lattice chains of e_1 and e_j , respectively, and choose $L \in \operatorname{im}(\mathcal{L})$ and $L' \in \operatorname{im}(\mathcal{L}')$ such that $L \supset L' \supset L\pi_D$. Then the κ_D -dimension of L/L' is equal to j-1 and i'_2-1 . Thus j is equal to i'_2 . The result follows by induction.

We denote by $x_{\mathfrak{a}}$ the barycenter of \mathfrak{a} in \mathcal{I} .

Theorem 6.4. Let (E, \mathfrak{a}) be an embedding of A with embedding type $\langle \lambda \rangle$ and suppose \mathfrak{a} has rank r. If $\langle \mu \rangle$ is the cyclic type of $j_{E_D}(x_{\mathfrak{a}})$, then the following hold.

- 1. $[E_D:F]r\mu \in \mathbb{N}_0^m$, and
- 2. $\langle \operatorname{row}(\lambda) \rangle = \langle [E_D : F] r \mu \rangle^c$.

Remark 6.5. With Theorem 6.4 we can calculate the embedding type from the cyclic type. For example take r=2, f=6, m=7 and assume that $j_{E_D}(x_{\mathfrak{a}})$ is

$$\frac{3}{12}e_1 + \frac{2}{12}e_2 + \frac{1}{12}e_3 + \frac{0}{12}e_4 + \frac{0}{12}e_5 + \frac{4}{12}e_6 + \frac{2}{12}e_7,$$

and thus

$$\text{pairs}(\langle 12\mu \rangle) = \text{pairs}(\langle 3,2,1,0,0,4,2 \rangle) = \langle (3,1),(2,1),(1,3),(4,1),(2,1) \rangle.$$

From the dual

$$\langle 12\mu \rangle^c = \text{pairs}^{-1}(\langle (1,2), (1,1), (3,4), (1,2), (1,3) \rangle$$

= $\langle 1, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 0 \rangle$

applying Theorem 6.4 we can deduce the embedding type of (E, \mathfrak{a}) :

$$\begin{pmatrix} 1 & 0 \\ 1 & 3 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

For the proof we can restrict to the case where $E = E_D$ because (E, \mathfrak{a}) is equivalent to (E_D, \mathfrak{a}) and the statement of Theorem 6.4 just uses E_D instead of E. We put f := [E : F], i.e.

$$E \cong L_f \subseteq L$$

and

$$F \subseteq E \subseteq A_E \subseteq A$$
.

Firstly we need some lemmas. The action of G on square lattice functions by conjugation induces the following maps. For $g \in G$ we have:

- 1. $m_q: \Omega \to \Omega, \ \mathfrak{a} \mapsto g\mathfrak{a}g^{-1},$
- 2. $|m_g|: \mathcal{I} \to \mathcal{I}$, where $|m_g|(x)$ is defined to be the element z of \mathcal{I} , such that the square lattice function satisfies

$$\mathfrak{g}_z(t) = g\mathfrak{g}_x(t)g^{-1}, \quad t \in \mathbb{R},$$

and

3. $c_q: \mathcal{I}_E \to \mathcal{I}_{qEq^{-1}}$ defined via

$$\mathfrak{g}_{c_q(y)}(t) = g\mathfrak{g}_y(t)g^{-1}, \quad t \in \mathbb{R},$$

i.e. in terms of square lattice functions c_g is a map from $\operatorname{Latt}^2_{o_E}(A_E)$ to $\operatorname{Latt}^2_{o_{gEg^{-1}}}(gA_Eg^{-1})$.

We say that a map between partially oriented graphs preserves orientations if an oriented edge is mapped to an oriented edge such that the direction is preserved.

Lemma 6.6. The maps $|m_g|$ and c_g are affine bijections which induce orientation preserving isomorphisms on the simplicial structures of the Euclidean buildings. In particular, m_g preserves the embedding type, c_g the cyclic type, and the following diagram commutes:

Proof: The lemma follows directly from the definitions of the maps involved. \Box

The following lemma gives a geometric interpretation of the map

$$\{\text{cyclic matrices}\} \to \{\text{cyclic matrices with only one column}\}$$
$$\langle \lambda \rangle \mapsto \langle \text{row}(\lambda)^T \rangle.$$

Lemma 6.7 (Rank reduction lemma). Assume there is a field extension K|F of degree s in E|F, where $2 \le s \le m$. Suppose $\mathfrak a$ is a vertex in $\Omega^{E^{\times}}$ such that $\mathfrak a \cap Z_A(K)$ is a facet of rank s in $\Omega_K^{E^{\times}}$ and assume $(E,\mathfrak a)$ has embedding type $\langle \lambda \rangle$ and $(E,\mathfrak a \cap Z_K(A))$ has embedding type $\langle \lambda' \rangle$. Then we get

$$row(\lambda) \sim row(\lambda')$$
, i.e. $\lambda \sim row(\lambda')^T$.

Proof: By Lemma 6.6 it is enough to show the result only for one embedding equivalent to (E, \mathfrak{a}) . For simplicity of exposition, we restrict ourselves to the case of s=2. The argument for s>2 is similar. We fix a D-basis of V. Then (E,\mathfrak{a}) is equivalent to the pearl embedding $(E_{\lambda}, \mathfrak{a}_{\lambda})$ of λ , and moreover \mathfrak{a}_{λ} is $M_m(o_D)$. Now we apply a permutation p on $(E_{\lambda}, \mathfrak{a}_{\lambda})$ such that the odd exponents of σ in $pE_{\lambda}p^{-1}$ are behind all even exponents, i.e. $pE_{\lambda}p^{-1}$ is the image of

$$x \in L_f \mapsto \operatorname{diag}(M_{n_1}(x), M_{n_2}(x)), \quad n_1 := \sum_{i \text{ odd}} \lambda_i, \quad n_2 := \sum_{i \text{ even}} \lambda_i$$
where $M_{n_1}(x) = \operatorname{diag}(\sigma^0(x) \mathbb{1}_{\lambda_1}, \sigma^2(x) \mathbb{1}_{\lambda_3}, \dots, \sigma^{f-2}(x) \mathbb{1}_{\lambda_{f-1}})$
and $M_{n_2}(x) = \operatorname{diag}(\sigma^1(x) \mathbb{1}_{\lambda_2}, \sigma^3(x) \mathbb{1}_{\lambda_4}, \dots, \sigma^{f-1}(x) \mathbb{1}_{\lambda_f}).$

We conjugate $p(E_{\lambda}, \mathfrak{a}_{\lambda})p^{-1}$ by the matrix $\operatorname{diag}(\mathbb{1}_{n_1}, \pi_D^{-1}\mathbb{1}_{n_2})$ to obtain an embedding (E', \mathfrak{a}') with the following properties. Let K'|F be the field extension of degree two in E'|F.

- K' is the image of the diagonal embedding of L_2 in $M_m(D)$ and its centralizer is $M_m(D_{K'})$, where $D_{K'} := Z_D(L_2)$. This follows because even powers of π_D commute with L_2 .
- The intersection of \mathfrak{a}' with $M_m(D_{K'})$ is a hereditary order in standard form with invariant $\langle n_1, n_2 \rangle$. The positivity of the integers n_i follows from the assumption that this intersection is a facet of rank 2.

Since $\pi_{D_{K'}} := \pi_D^2$ is a prime element of $D_{K'}$ which normalizes L and since the powers of σ occurring in the description of E' are even we can

read the embedding type of $(E', \mathfrak{a}' \cap M_m(D_{K'}))$ directly. It is the class of

$$\begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_4 \\ \vdots & \vdots \\ \lambda_{f-1} & \lambda_f \end{pmatrix}.$$

Thus the result follows.

The next lemma shows that changing the skew field does not change the embedding type.

Lemma 6.8 (Changing skew field lemma). Let D' be a skew field central and of finite index d over a non-Archimedean local field F'. Suppose further that L'|F' is a maximal unramified field extension in D'|F' normalized by a uniformizer $\pi_{D'}$ of D'. Let V' be an m-dimensional right D'-vector space. Denote the Euclidean building of $\mathrm{GL}_m(D')$ by Ω' and let Σ , Σ' be the apartments of Ω , Ω' corresponding to the standard bases (v_i) , (v_i') , respectively. Then Σ' is fixed by the image E' of the diagonal embedding of L_f in $\mathrm{M}_m(D')$. Assume further that E is the image of the diagonal embedding of L_f in $\mathrm{M}_m(D)$. Under these assumptions the map defined by

$$\left[t \mapsto \bigoplus_{i} v_{i} \mathfrak{p}_{D}^{[d(t+\alpha_{i})]+}\right] \mapsto \left[t \mapsto \bigoplus_{i} v'_{i} \mathfrak{p}_{D'}^{[d(t+\alpha_{i})]+}\right]$$

from $|\Sigma|$ to $|\Sigma'|$ is the geometric realization $|\phi|$ of an isomorphism ϕ of simplicial complexes which preserves orientations and embedding types. The latter means that if \mathfrak{a}' is the image of a hereditary order \mathfrak{a} under ϕ then the embedding types of (E,\mathfrak{a}) and (E',\mathfrak{a}') equal.

We want to remark that there is no condition about how F is related to F', so they could have different residue characteristics, but the map ϕ in the statement is of course only a map between apartments, and not between buildings.

Proof: We define ϕ to map the class of a lattice chain $\mathfrak L$ with

$$\mathfrak{L}_j = \bigoplus_i v_i \mathfrak{p}_D^{\nu_{i,j}}$$

to the class of \mathfrak{L}' with

$$\mathfrak{L}'_j = \bigoplus_i v'_i \mathfrak{p}_{D'}^{\nu_{i,j}}.$$

We only show that the embedding type is preserved. The other properties are verified easily. We take the two lattice chains \mathfrak{L} and \mathfrak{L}' with

corresponding hereditary orders \mathfrak{a} and \mathfrak{a}' . Applying from the left an appropriative permutation matrix P and an appropriative diagonal matrix T (resp. T'), whose non-zero entries are powers of the corresponding prime element, we obtain simultaneously lattice chains corresponding to hereditary orders \mathfrak{b} , \mathfrak{b}' in the same standard form. More precisely T' is obtained from T by substituting $\pi_{D'}$ for π_D . Thus, $(TPEP^{-1}T^{-1}, \mathfrak{b})$ and $(T'PE'P^{-1}T'^{-1}, \mathfrak{b}')$ have the same embedding type, and thus, by conjugating back, (E, \mathfrak{a}) and (E', \mathfrak{a}') have the same embedding type. \square

We now fix a D-basis v_1, \ldots, v_m of V and therefore a frame

$$\mathcal{R} := \{ v_i D \mid 1 \le i \le m \}$$

and $\Sigma = \Omega_{\mathcal{R}}$ the apartment of Ω corresponding to \mathcal{R} . The algebra A is identified with $M_m(D)$. By the affine bijection $|\Sigma| \cong \mathbb{R}^{m-1}$ which maps

[
$$\Lambda$$
] with $\Lambda(t) = \bigoplus_{i} \mathfrak{p}_{D}^{[(t+\alpha_{i})d]+}$ to $((\alpha_{1} - \alpha_{2})d, \dots, (\alpha_{m-1} - \alpha_{m})d),$

we can introduce affine coordinates on $|\Sigma|$. We denote the points of $|\Sigma|$ corresponding to the vectors $0, (f, 0, \dots, 0), (0, f, 0, \dots, 0), \dots, (0, \dots, 0, f)$ by Q_1, Q_2, \dots, Q_m .

Remark 6.9. The vertices of Σ are exactly the simplices corresponding to the points of

$$Q_1 + \sum_{i=2}^{m} \frac{1}{f} \mathbb{Z}(Q_i - Q_1).$$

Remark 6.10. For an element $g \in \bigcap_{i=1}^m (\operatorname{End}_D(v_iD))^{\times}$, i.e. a diagonal matrix, the map $|m_g|$ induces an affine bijection of $|\Sigma|$. If g is $\operatorname{diag}(1,\ldots,1,\pi_D^k,1,\ldots,1)$, with π_D^k in the i-th row, then $|m_g|$ is of the form

$$x \mapsto x + \frac{k}{f}(Q_{i+1} - Q_i),$$

where Q_{m+1} is understood to mean Q_1 . To prove this statement it is enough to prove it for elements x of $|\Sigma|$ corresponding to vertices and group elements g of the above simple form with k=1. The latter is an easy calculation using a lattice chain corresponding to x.

Example 6.11. Let us assume E is the image of the diagonal embedding of L_f in $\mathcal{M}_m(D)$, i.e.

$$E = \{ \operatorname{diag}(x, \dots, x) \mid x \in L_f \}.$$

Then A_E and j_E simplify, i.e.

1.
$$A_E \cong \operatorname{End}_{D_E}(W)$$
 with $D_E := \operatorname{Z}_D(L_f)$ and $W := \bigoplus_i v_i D_E$.

- 2. The geometric realization of Σ is a subset of $\mathcal{I}^{E^{\times}}$.
- 3. For $[\Lambda] \in \mathcal{I}$ we have

$$j_E([\Lambda]) = [\Lambda \cap W],$$

where $\Lambda \cap W$ denotes the lattice function

$$x \mapsto \Lambda(x) \cap W$$
.

4. The image of $j_E|_{|\Sigma|}$ is the geometric realization of the apartment Σ_E which belongs to the frame $\{v_iD_E \mid 1 \leq i \leq m\}$ and in affine coordinates the map has the form

$$x \in \mathbb{R}^{m-1} \mapsto \frac{1}{f}x \in \mathbb{R}^{m-1}.$$

- 5. The vertices of Σ_E are the points of $|\Sigma_E|$ with affine coordinate vectors in \mathbb{Z}^{m-1} . Specifically the points $P_i := j_E(Q_i)$ are vertices of a chamber of Σ_E .
- 6. The edge between P_i and P_{i+1} is oriented towards P_{i+1} .

Proof of Example 6.11: The statement 1 is trivial and 5 and 6 follow from 4.

For 2: We have $|\Sigma| \subseteq \mathcal{I}^{E^{\times}}$ because, for an o_D -lattice function Λ split by \mathcal{R} , the action of an element of E^{\times} on Λ is the multiplication of every lattice $\Lambda(t)$ by a fixed element $x \in D^{\times}$.

For 3 and 4: We use the decomposition

$$V = W \otimes_{D_E} D = W \oplus W \pi_D \oplus W \pi_D^2 \oplus \cdots \oplus W \pi_D^{f-1}.$$

The function $\mathcal{I}_E \to \mathcal{I}$ which maps $[\Gamma] \in \mathcal{I}_E$ to $[\Lambda] \in \mathcal{I}$ defined by

$$\Lambda(t) := \bigoplus_{i=0}^{f-1} \Gamma\left(t - \frac{i}{d}\right) \pi_D^i,$$

is affine and A_E^{\times} -equivariant. By Theorem 5.2 it has to be j_E^{-1} and thus $j_E([\Lambda])$ is equal to $[\Lambda \cap W]$. The appearance of j_E in terms of coordinates follows now from

$$\mathfrak{p}_D^{[t]+} \cap D_E = \mathfrak{p}_{D_E}^{\left[\frac{t}{f}\right]+},$$

for $t \in \mathbb{R}$.

Proof of Theorem 6.4: By Lemma 6.6 and Theorem 4.4 we can assume that we are in the situation of Example 6.11 above and that there is a diagonal matrix h consisting of powers of π_D with non-negative exponents less than f such that

$$(hEh^{-1}, h\mathfrak{a}h^{-1})$$

is the pearl embedding of λ . We consider two cases for the proof.

Case 1: a has rank 1, i.e.

$$h\mathfrak{a}h^{-1} = \mathcal{M}_m(o_D) = \mathfrak{a}_{Q_1},$$

and λ has only one column. We get $x_{\mathfrak{a}}$ from Q_1 by applying $m_{h^{-1}}$ which is a composition of maps m_g where g differs from the identity matrix by only one diagonal entry π_D^k . Now Remark 6.10 gives

$$x_{\mathfrak{a}} = Q_1 - \sum_{j=1}^{m} \frac{a_j}{f} (Q_{j+1} - Q_j),$$

where $a_j = k - 1$ if

$$\sum_{i=1}^{k-1} \lambda_i < j \le \sum_{i=1}^k \lambda_i.$$

Thus in barycentric coordinates $j_E(x_{\mathfrak{a}})$ has the form

$$\frac{f - a_m + a_1}{f} P_1 + \frac{a_2 - a_1}{f} P_2 + \dots + \frac{a_m - a_{m-1}}{f} P_m,$$

and therefore

$$\mu := \left(\frac{f - a_m + a_1}{f}, \frac{a_2 - a_1}{f}, \dots, \frac{a_m - a_{m-1}}{f}\right)$$

satisfies part 1 of the theorem. If $(\lambda_{i_l})_{1 \leq l \leq s}$ is the subsequence of non-zero entries we define the indices

$$j_l := \lambda_{i_1} + \lambda_{i_2} + \dots + \lambda_{i_{l-1}} + 1, \quad 2 \le l \le s,$$

and $j_1 := 1$. This are the indices where the μ_j are non-zero, more precisely from

$$j_l = \sum_{i=1}^{i_l - 1} \lambda_i + 1 \le \sum_{i=1}^{i_l} \lambda_i$$

we obtain for a_j the following values:

 $a_j = a_{j_l} = i_l - 1$, $j_l \le j < j_{l+1}$, and $a_j = a_{j_s} = i_s - 1$, $j_s \le j \le m$, and thus the subsequence of non-zero entries of $f\mu$ is

$$(f\mu_{j_1}) = (f - i_s + i_1, i_2 - i_1, i_3 - i_2, \dots, i_s - i_{s-1}).$$

Therefore pairs $(\langle f\mu\rangle)$ is equal to

$$\langle (f - i_s + i_1, \lambda_{i_1}), (i_2 - i_1, \lambda_{i_2}), (i_3 - i_2, \lambda_{i_3}), \dots, (i_s - i_{s-1}, \lambda_{i_s}) \rangle$$
 and this is precisely pairs($\langle \text{row}(\lambda) \rangle^c$).

Case 2: Assume the rank r of $\mathfrak a$ is not 1. Here we want to use rank reduction. We fix an unramified field extension L'|F of degree rd in an algebraic closure of F. Denote by D' a skew field which is a central

cyclic algebra over F with maximal field L' and an L'-normalizing prime element $\pi_{D'}$, i.e.

$$D' = \bigoplus_{i=0}^{dr-1} L' \pi_{D'}^i, \quad \pi_{D'} L' \pi_{D'}^{-1} = L', \quad \text{and} \quad \pi_{D'}^{dr} = \pi_F.$$

The images of L'_r , L'_{rf} under the diagonal embedding of L' in $\mathcal{M}_m(o_{D'})$ are denoted by F', E', respectively, and the apartment of the Euclidean building Ω' of $GL_m(D')$ corresponding to the standard basis is denoted by Σ' , i.e. we have a field tower

$$E' \supseteq F' \supseteq F$$
,

apartments $\Sigma'_{E'}$, $\Sigma'_{F'}$, Σ' of $\Omega'_{E'}$, $\Omega'_{F'}$, Ω' and reduced Bruhat–Tits buildings $\mathcal{I}'_{E'}$, $\mathcal{I}'_{F'}$, \mathcal{I}' , respectively. We then obtain a commutative diagram of bijections, where the lines are induced by isomorphisms of chamber complexes which preserve orientations,

$$\begin{split} |\Sigma| & \xrightarrow{|\phi_F|} |\Sigma'_{F'}| \\ \downarrow^{j_E} & \downarrow^{j_{E'}} \\ |\Sigma_E| & \xrightarrow{|\phi_E|} |\Sigma'_{E'}| \end{split}$$

The map $|\phi_F|$ is given by

$$\left[x \mapsto \bigoplus_{i=0}^{m-1} v_i \mathfrak{p}_D^{[d(x+\alpha_i)]+}\right] \mapsto \left[x \mapsto \bigoplus_{i=0}^{m-1} v_i' \mathfrak{p}_{\mathbf{Z}_{D'}(L_r')}^{[d(x+\alpha_i)]+}\right]$$

and $|\phi_E|$ analogously. Here (v_i') is the standard basis of D'^m . Because of Lemma 6.8, the map $|\phi_F|$ preserves the embedding type and thus we can finish the proof by applying Lemma 6.7 to

$$\Sigma' \to \Sigma'_{F'} \to \Sigma'_{E'}$$
.

More precisely, $\phi_F(\mathfrak{a})$ is a facet of rank r in $\Sigma'_{F'}$. Its barycenter has affine coordinates in $\frac{1}{r}\mathbb{Z}^{m-1}$ and therefore its preimage under $j_{F'}$ is a point y with integer affine coefficients, i.e. it corresponds to a vertex of Ω' . To emphasize the base field we write field extensions as the index of j. Because

$$j_{E'|F'}(x_{\phi_F(\mathfrak{a})})) = j_{E'|F'}(j_{F'|F}(y)) = j_{E'|F}(y),$$

the theorem follows now from the rank reduction lemma and Case 1. \Box

References

- [BG00] P. Broussous and M. Grabitz, Pure elements and intertwining classes of simple strata in local central simple algebras, Comm. Algebra 28(11) (2000), 5405–5442. DOI: 10.1080/00927870008827164.
- [BL02] P. BROUSSOUS AND B. LEMAIRE, Building of GL(m, D) and centralizers, Transform. Groups **7(1)** (2002), 15–50. DOI: 10.1007/s00031-002-0002-5.
- [BSS12] P. BROUSSOUS, V. SÉCHERRE, AND S. STEVENS, Smooth representations of $GL_m(D)$ V: Endo-classes, *Doc. Math.* **17** (2012), 23–77.
- [BT84] F. Bruhat and J. Tits, Schémas en groupes et immeubles des groupes classiques sur un corps local, *Bull. Soc. Math. France* **112(2)** (1984), 259–301.
- [Frö87] A. FRÖHLICH, Principal orders and embedding of local fields in algebras, Proc. London Math. Soc. (3) 54(2) (1987), 247–266.
 DOI: 10.1112/plms/s3-54.2.247.
- [Gra99] M. GRABITZ, Continuation of hereditary orders in local central simple algebras, *J. Number Theory* **77(1)** (1999), 1–26. DOI: 10.1006/jnth.1999.2374.
- [MP94] A. MOY AND G. PRASAD, Unrefined minimal K-types for p-adic groups, Invent. Math. 116(1-3) (1994), 393-408. DOI: 10.1007/BF01231566.
- [Rei03] I. Reiner, "Maximal orders", Corrected reprint of the 1975 original, With a foreword by M. J. Taylor, London Mathematical Society Monographs. New Series 28, The Clarendon Press, Oxford University Press, Oxford, 2003.

Mathematisches Institut Universität Münster Einsteinstraße 62 48149 Münster Deutschland

E-mail address: dskod_01@uni-muenster.de

Primera versió rebuda el 30 de juliol de 2013, darrera versió rebuda el 10 de març de 2014.