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EMBEDDINGS OF LOCAL FIELDS IN SIMPLE

ALGEBRAS AND SIMPLICIAL STRUCTURES

Daniel Skodlerack

Abstract: We give a geometric interpretation of Broussous–Grabitz embedding
types. We fix a central division algebra D of finite index over a non-Archimedean

local field F and a positive integer m. Further we fix a hereditary order a of Mm(D)

and an unramified field extension E|F in Mm(D) which is embeddable in D and
which normalizes a. Such a pair (E, a) is called an embedding. The embedding types

classify the GLm(D)-conjugation classes of these embeddings. Such a type is a class

of matrices with non-negative integer entries. We give a formula which allows us to
recover the embedding type of (E, a) from the simplicial type of the image of the

barycenter of a under the canonical isomorphism, from the set of E×-fixed points
of the reduced building of GLm(D) to the reduced building of the centralizer of E×

in GLm(D). Conversely the formula allows to calculate the simplicial type up to

cyclic permutation of the Coxeter diagram.
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1. Introduction

Field extensions in Azumaya algebras with respect to local represen-
tation theory have been studied in many situations. We want to men-
tion works of Fröhlich [Frö87], Broussous and Grabitz [Gra99], [BG00]
among others. More precisely we consider a skew field D of finite index d
over a non-Archimedean local field F and pairs (E, a) consisting of a field
extension E|F in Mm(D) and a hereditary order a of Mm(D) normal-
ized by E×. Such a pair (E, a) is called an embedding. In the repre-
sentation theory of G := GLm(D) on complex vector spaces it has been
important to understand when two such embeddings are conjugate to
each other under G. Broussous and Grabitz attached in [BG00, 2.3.10,
2.3.1] to every embedding a cyclic permutation class of matrices with
non-negative integer entries, which only depends on a and the maximal
unramified field extension ED|F of E|F embeddable in D|F . We call
the latter class embedding type of (E, a). It is slightly different to the
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“type of embedding” in their paper, where they restrict to matrices with
d rows. This invariant allows to define certain equivalent embeddings,
called pearl embeddings, which are suitable for calculations and which
are conjugate to (ED, a). The latter is a generalization of a work [Frö87]
of Fröhlich, where he considered the case of principal orders. Broussous
and Grabitz proved:

Proposition 1.1 ([BG00, 3.2]). Two embeddings (E, a) and (E′, a)
are conjugate under GLm(D) if and only if the field extensions are iso-
morphic and the embeddings have the same embedding type, i.e. (ED, a)
and (E′D, a) are conjugate under GLm(D).

This rigidity statement plays a role in the classification of supercusp-
idal representations of G, see for example [BSS12].

The main result of this paper is that the embedding type can be ob-
tained geometrically. The strategy is the following. We denote by GED

the centralizer of ED in G. Broussous and Lemaire introduced a canon-
ical isomorphism between reduced Bruhat–Tits buildings

jED
: Bred(G)E

×
D → Bred(GED

)

which is affine, GED
-equivariant and which respects the Moy–Prasad

filtrations [MP94]. Let (E, a) be an embedding. The barycenter xa of a
in Bred(G) is fixed under the action of E×D.

In this article we construct an easy combinatorial map ( )c of order
two on the set of non-zero cyclic vectors with non-negative integer coef-
ficients. A cyclic vector 〈v〉 is the set of vectors which are equal to v up
to cyclic permutation of the coordinates. We prove:

Theorem 1.2 (see Theorem 6.4). Let M be an element of the em-
bedding type of (E, a), in particular M is a matrix with non-negative
integer coefficients. Write M line-wise into a vector λ. Fix a labeling
of Bred(GED

) and let µ be the barycentric coordinates of jED
(xa). Then

(〈rank(a)[ED : F ]µ〉)c is equal to 〈λ〉.

Here rank(a) is the simplicial rank of a seen as a facet of Bred(G), see
Definition 2.5. The advantage of this approach is the following. On can
consider classes of embeddings as classes of certain points with rational
coordinates in a chamber of Bred(GED

). The class is given by the action
of the group of rotations of the Coxeter diagram on Bred(GED

). Let h
be a Hermitian form on Dm and U(h) its group of isometries. One can
now study examples of embeddings which are invariant under the adjoint

involution of h in studying certain points of jED
(B(U(h))∩Bred(G)E

×
D )

with rational coordinates.
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The article is structured as follows. We give general notation and we
recall the model of the reduced Bruhat–Tits building of GLm(D) in terms
of lattice functions in §2 and introduce in §3 cyclic vectors and matrices.
In §4 we recall definitions and statements of [BG00] on embedding types
and pearl embeddings. In relevant cases we recall the description of the
map jE in §5. Finally, §6 explains the strategy to encode the embedding
type from barycentric coordinates, followed by the proof of Theorem 6.4.
The proof consists of three main ideas:

1. changing the skew field in Lemma 6.8,
2. a rank reduction for the considered facet a in Lemma 6.7, and
3. the proof for the case that a is a vertex.

I have very much to thank Professor Zink from Humboldt University
Berlin for his helpful remarks, the revision of the work, and for giving
me the interesting problem.

2. The reduced Bruhat–Tits building of GLm(D)

Let (F, ν) be a non-Archimedean local field with normalized valua-
tion ν, valuation ring oF , valuation ideal pF , a chosen uniformizer πF ,
and residue field κF . We use similar notation for other skew fields with
non-Archimedean valuation. We fix a skew field D of finite index d and
central over F , together with a maximal unramified field extension L|F
in D|F , and a uniformizer πD which normalizes L such that the map

x 7→ σ(x) := πDxπ
−1
D , x ∈ D,

generates Gal(L|F ). For a positive integer f |d we denote by Lf the
subfield of degree f over F in L. Further, let V be a right D-vector space
of finite dimension m and denote its ring of D-linear endomorphisms
by A. Then V is in a natural way a left A⊗F Dop-module. We write G
for A×.

We recall the model of the reduced Bruhat–Tits building Bred(G)
in terms of lattice functions. For more details we recommend [BL02]
and [BT84]. We adopt the following definitions from [BL02].

Definition 2.1. 1. An m-dimensional free oD-submodule of V is an
oD-lattice. We denote the set of all oD-lattices by L(oD, V ). It is
partially ordered by inclusion.

2. A strictly decreasing map Λ from Z to L(oD, V ) is called an oD-lat-
tice chain on V if there is an r ∈ N such that LiπD = Li+r, i ∈ Z.
Two lattice chains L and L′ are Z-translations of each other if there
is an integer m such that Li+m is equal to Li, for all integers i. A
translation class is denoted by [L].
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3. A decreasing map Λ from R to L(oD, V ) is called an oD-lattice
function on V if it is
• left continuous, i.e. Λ(t) = ∩s<tΛ(s), and
• satisfies Λ(t)πD = Λ(t+ 1

d ), t ∈ R.

The set of oD-lattice functions is denoted by Latt1
oD (V ). The map

which sends Λ to (Λ(t− s))t∈R, which we denote by Λ + s, is called
a translation by s. Two oD-lattice functions are equivalent if they
differ by a translation and the set of all classes of oD-lattice func-
tions is denoted by LattoD (V ). For [Λ] ∈ LattoD (V ), the square
lattice function of Λ is defined to be the following oF -lattice func-
tion in A:

t 7→ gΛ(t) := {a ∈ A | a(Λ(s)) ⊆ Λ(s+ t) for all s ∈ R}.

This attachment only depends on the translation class of Λ and is
injective on LattoD (V ), i.e. two different translation classes have
different square lattice functions, see [BL02]. We denote the set
of square lattice functions of A by Latt2

oF (A).
4. The hereditary order aΛ corresponding to Λ is the ring gΛ(0), which

only depends on the translation class of Λ.

Theorem 2.2 ([BL02, I 2.4]). There is a unique G-equivariant, affine
bijection from Bred(G) to LattoD (V ).

Remark 2.3. 1. The apartments of Bred(G) carry over to LattoD (V );
more precisely the set of apartments in LattoD (V ) is in one to one
correspondence with the set of frames in V . A frame is a set of one
dimensional D-sub-vector spaces of V whose direct sum is V . The
apartment corresponding to a frame R is the set LattR(V ) of [Λ]
such that Λ is split by R, i.e.

Λ(t) = ⊕W∈RΛ(t) ∩W,

for all t ∈ R.
2. The inherited simplicial structure on LattoD (V ) is given as follows:

The facet containing [Λ] ∈ LattoD (V ) is

{[Λ′] ∈ LattoD (V )| im(Λ) = im(Λ′)}.

Theorem 2.4 ([Rei03, 39.14]). There are canonical bijections between
the set of Z-translation classes of oD-lattice chains in V , the set of images
of elements of Latt1

oD (V ), and the set of hereditary orders in A:

[L] 7→ im(L) and im(Λ) 7→ aΛ.
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To be parallel to the notation in [BL02] we write I for Bred(G) and
identify it with LattoD (V ). Its simplicial structure is denoted by Ω. We
also call Ω the Euclidean building of G, so in this article a Euclidean
building is a simplicial complex and not its geometric realization.

The simplices are denoted by hereditary orders, i.e. the simplex of x ∈
I is denoted by ax. The square lattice function attached to x is denoted
by gx.

For a frame R, we denote the appartment of I corresponding to R
by IR and its simplicial structure by ΩR, more precisely we have

ΩR = {a ∈ Ω | ∃ [Λ] ∈ LattR(V ) : a = aΛ}.

We also call ΩR the apartment of Ω corresponding to R, i.e. we have
apartments for I and for Ω.

Definition 2.5. Given two simplices a and a′, we write a ≤ a′ if a ⊇ a′.
A vertex of Ω is a simplex which is minimal with respect to ≤. Let b
be a vertex of Ω and a a simplex. We call b a vertex of a if b ≤ a. We
define the simplicial rank of a as the number of vertices of a, and denote
it by rank(a). A simplex of maximal rank is a chamber of Ω.

3. Cyclic vectors and matrices

The invariants which are considered in this article are vectors or ma-
trices modulo cyclic permutation.

3.1. Vectors.

Definition 3.1. Let R be an arbitrary non-empty set, Vec(R) be the
set of finite dimensional row-vectors with entries in R, i.e.

Vec(R) :=

∞⋃
i=1

R1×i.

We call two elements w, w′ of Vec(R) equivalent if they have the same
dimension, say s, and if there is a k such that

w′ = (wk, . . . , ws, w1, . . . , wk−1).

The equivalence class is denoted by 〈w〉 and it is a called a cyclic vector.
We often skip the round brakets and write 〈w1, . . . , wk〉. The set of
equivalence classes of Vec(R) is denoted by CVec(R).

We now represent a cyclic vector with entries in N0 in a different way,
to be able to attach a dual cyclic vector. There is a canonical map from
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CVec(N0) to N0 which maps a cyclic vector to its sum of the coordinates,
and we write CVec(N0)+ for the preimage of N. Consider the map

pairs : CVec(N0)+ → CVec(N2),

defined via

pairs(〈w〉) := 〈(wi0 , i1 − i0), (wi1 , i2 − i1), . . . , (wik , i0 + s− ik)〉,

where (wij )0≤j≤k is the subsequence of the non-zero coordinates.

Lemma 3.2. The map pairs is bijective.

Proof: By the definition of pairs we can rebuild 〈w〉 directly from
pairs(〈w〉) and thus pairs is injective. The preimage of an element

〈(a0, b0), (a1, b1), (a2, b2), . . . , (ak, bk)〉

of CVec(N2) contains the cyclic class of the vector w = (wi)1≤i≤
∑k

l=0 bl

defined via

wi =

{
aj , if i = 1 +

∑j
l=0 bl

0, else
.

Thus pairs is surjective.

On CVec(N2) there is a canonical bijection T which maps an element

〈(a0, b0), (a1, b1), (a2, b2), . . . , (ak, bk)〉

to

〈(b0, a1), (b1, a2), (b2, a3), . . . , (bk, a0)〉,
and it induces the bijection ( )c := pairs−1 ◦T ◦ pairs of CVec(N0)+. We
call 〈w〉c the dual of 〈w〉.

3.2. Matrices.

For r, s, t ∈ N, Mr,s(t) denotes the set of r × s-matrices with non-
negative integer entries, such that

• in every column there is an entry greater than zero, and
• the sum of all entries is t.

For a matrixM = (mi,j) ∈ Mr,s(t), we define the vector row(M) ∈ N1×rs
0

to be

(m1,1,m1,2, . . . ,m1,s,m2,1, . . . ,m2,s, . . . ,mr,1, . . . ,mr,s).

Two matrices M,N ∈ Mr,s(t) are said to be equivalent if row(M) and
row(N) are. The equivalence class, denoted by 〈M〉, is called a cyclic
matrix.
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Example 3.3. 2 0
1 3
0 1

 v

1 2
0 1
3 0

 .

4. Embedding types

For a field extension E|F we denote by ED|F the maximal field exten-
sion in E|F , which is F -algebra isomorphic to a subfield of L. Its degree
is the greatest common divisor of d and the inertia degree of E|F .

Definition 4.1. An embedding is a pair (E, a) satisfying

1. E is a field extension of F in A,
2. a is a hereditary order of A, normalized by E×.

Two embeddings (E, a) and (E′, a′) are said to be equivalent if there is
an element g ∈ G, such that gEDg

−1 = E′D and gag−1 = a′.

Remark 4.2. In each equivalence class of embeddings there is a pair such
that the field can be embedded in L.

Until the end of this section we fix a D-basis of V and identify A
with Mm(D).

Definition 4.3. Let f |d and r ≤ m. A matrix with f rows and
r columns is called an embedding datum if it belongs to Mf,r(m). Given
an embedding datum λ = (λi,j)1≤i≤f, 1≤j≤r, we define the pearl embed-
ding as follows. The pearl embedding of λ (with respect to the fixed
D-basis of V ) is the embedding (Eλ, aλ), which satisfies the following
conditions:

1. Eλ is the image of the monomorphism

x ∈ Lf 7→ diag(D1(x), D2(x), . . . , Dr(x)) ∈ Mm(D),

where

Dj(x) = diag(σ0(x)1λ1,j , σ
1(x)1λ2,j , . . . , σ

f−1(x)1λf,j
)

and 1k is the identity matrix with k rows, in particular Eλ|F is
unramified of degree f .

2. a is a hereditary order in standard form according to the partition

m = n1 + · · ·+ nr where nj :=
∑f
i=1 λi,j , i.e. a is the set of block

matrices such that the (i, j)-th block has size ni × nj and has all
its entries in oD if i ≥ j and in pD if i < j, respectively.
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Theorem 4.4 ([BG00, 2.3.3 and 2.3.10]). 1. Two pearl embeddings
are equivalent if and only if the embedding data are equivalent.

2. In every class of embeddings there is a pearl embedding.

Definition 4.5. Let (E, a) be an embedding. It is equivalent to a pearl
embedding (Eλ, aλ), by the above theorem. The cyclic matrix 〈λ〉 is
called the embedding type of (E, a). This definition does not depend on
the choice of the basis by the Skolem–Noether Theorem. If (E, a) has
embedding type 〈λ〉 with λ∈Mf,r(m), then r=rank(a) and f=[ED : F ].

5. The map jE

Notation 5.1. For this section let E|F be a field extension in A and
we set AE to be the centralizer of E in A, i.e.

AE := ZA(E) := {a ∈ A | ab = ba∀ b ∈ E}.

We denote the Euclidean building of A×E by ΩE and its geometric real-
ization by IE .

The next results are taken from [BL02].

Theorem 5.2 ([BL02, Theorem II 1.1.]). There exists a unique map

jE : IE
×
→ IE ,

such that for any x∈IE× and t∈R, we have gjE(x)(t)=AE∩gx(e(E|F )t).
The map jE satisfies the following properties:

1. it is bijective,
2. it is A×E-equivariant, and
3. it is affine.

Moreover its inverse j−1
E is the only map IE → I such that 2 and 3 hold.

We briefly give Broussous and Lemaire’s description of jE in terms
of lattice functions but only in the case where E|F is isomorphic to a

sub-extension Lf |F of L|F . Then E ⊗F L ∼=
⊕f−1

k=0 L coming from the

decomposition 1 =
∑f−1
k=0 1k labeled such that the Gal(L|F )-action to the

second factor gives σ(1k) = 1k−1 for k ≥ 1 and σ(10) = 1f−1. Applying
it on the E ⊗F L-module V , we get V =

⊕
k Vk, where Vk := 1kV .

Remark 5.3. In this situation, AE ∼= EndZD(Lf )(V0) ∼= Mm(ZD(Lf )).
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Theorem 5.4 ([BL02, II 3.1.]). In terms of lattice functions, jE satis-
fies j−1

E ([Θ]) = [Λ], with

Λ(s) :=

f−1⊕
k=0

Θ

(
s− k

d

)
πkD, s ∈ R,

where Θ is an oZD(Lf )-lattice function on V0.

6. Embedding types through barycentric coordinates

In this section we keep the notation of Section 5. We need a notion
of orientation on ΩED

to order the barycentric coordinates of a point
in IED

.

Definition 6.1. Let e and e′ be vertices of Ω joined by an edge, and let
L and L′ lattice chains corresponding to e and e′, respectively. The edge
between e and e′ is oriented towards e′, if there are lattices Γ ∈ im(L) and
Γ′ ∈ im(L′), such that Γ ⊇ Γ′ with the quotient having κD-dimension 1,
i.e. κF -dimension d. We write e → e′. If x is a point in I then there is
a chamber C ∈ Ω such that x lies in the closure of |C|, i.e. in⋃

S≤C

|S|.

The vertices of C can be given as

e1 → e2 → · · · → em → e1.

If (µi) are the barycentric coordinates of x with respect to (ei), i.e.

x =
∑
i

µiei,

then the class 〈µ〉 is called the cyclic (simplicial) type of x in Ω.

Remark 6.2. 1. In general, not every edge has an orientation.
2. Definition 6.1 applies for IED

as well. The skew field is then
ZD(L[ED:F ]) instead of D and one has to substitute d by d

[ED:F ] .

The above chosen orientation is just the choice of one of the direc-
tions of rotation of the Coxeter diagram of Ω.

Proposition 6.3. The notion of cyclic type does not depend on the
choice of the chamber C and the starting vertex e1.

Proof: Let x be a point of I contained in |C| and |C ′| for two chambers C
and C ′. Let e1 → e2 → · · · → em → e1 and e′1 → e′2 → · · · → e′m → e′1
be the vertices of C and C ′, respectively. It is clear that the cyclic type
does not depend on the choice of the starting vertex e1, and we can
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thus assume without loss of generality that e1 = e′1. Let (µi) be the
barycentric coordinates of x w.r.t. (ei). We have to show that they are
also the barycentric coordinates w.r.t. (e′i).

Let (µ′i) be the barycentric coordinates of x w.r.t. (e′i). By e1 = e′1, we
have µ1 = µ′1. Without loss of generality let µ1 be non-zero. If µ1 = 1,
then the other coordinates are zero and we are done. In case of µ1 < 1
let i2 and i′2 be the first indexes greater than 1, such that µi2 and µ′i′2

are

non-zero, respectively. Without loss of generality assume i′2 ≤ i2. Let j
be the index such that ej is equal to e′i′2

. Then µj is equal to µ′i′2
and

j ≥ i2 by the definition of i2. Thus we have to prove that the inequalities

i′2 ≤ i2 ≤ j

are equalities. Let L and L′ be lattice chains of e1 and ej , respectively,
and choose L ∈ im(L) and L′ ∈ im(L′) such that L ⊃ L′ ⊃ LπD. Then
the κD-dimension of L/L′ is equal to j − 1 and i′2 − 1. Thus j is equal
to i′2. The result follows by induction.

We denote by xa the barycenter of a in I.

Theorem 6.4. Let (E, a) be an embedding of A with embedding type 〈λ〉
and suppose a has rank r. If 〈µ〉 is the cyclic type of jED

(xa), then the
following hold.

1. [ED : F ]rµ ∈ Nm0 , and
2. 〈row(λ)〉 = 〈[ED : F ]rµ〉c.

Remark 6.5. With Theorem 6.4 we can calculate the embedding type
from the cyclic type. For example take r = 2, f = 6, m = 7 and assume
that jED

(xa) is

3

12
e1 +

2

12
e2 +

1

12
e3 +

0

12
e4 +

0

12
e5 +

4

12
e6 +

2

12
e7,

and thus

pairs(〈12µ〉)=pairs(〈3, 2, 1, 0, 0, 4, 2〉)=〈(3, 1), (2, 1), (1, 3), (4, 1), (2, 1)〉.

From the dual

〈12µ〉c = pairs−1(〈(1, 2), (1, 1), (3, 4), (1, 2), (1, 3)〉
= 〈1, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 0〉
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applying Theorem 6.4 we can deduce the embedding type of (E, a):
1 0
1 3
0 0
0 1
0 1
0 0

 .

For the proof we can restrict to the case where E = ED because (E, a)
is equivalent to (ED, a) and the statement of Theorem 6.4 just uses ED
instead of E. We put f := [E : F ], i.e.

E ∼= Lf ⊆ L
and

F ⊆ E ⊆ AE ⊆ A.
Firstly we need some lemmas. The action of G on square lattice functions
by conjugation induces the following maps. For g ∈ G we have:

1. mg : Ω→ Ω, a 7→ gag−1,
2. |mg| : I → I, where |mg|(x) is defined to be the element z of I,

such that the square lattice function satisfies

gz(t) = ggx(t)g−1, t ∈ R,
and

3. cg : IE → IgEg−1 defined via

gcg(y)(t) = ggy(t)g−1, t ∈ R,

i.e. in terms of square lattice functions cg is a map from Latt2
oE (AE)

to Latt2
ogEg−1

(gAEg
−1).

We say that a map between partially oriented graphs preserves orien-
tations if an oriented edge is mapped to an oriented edge such that the
direction is preserved.

Lemma 6.6. The maps |mg| and cg are affine bijections which induce
orientation preserving isomorphisms on the simplicial structures of the
Euclidean buildings. In particular, mg preserves the embedding type, cg
the cyclic type, and the following diagram commutes:

IE×
|mg|//

jE

��

I(gEg−1)×

jgEg−1

��
IE

cg // IgEg−1
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Proof: The lemma follows directly from the definitions of the maps in-
volved.

The following lemma gives a geometric interpretation of the map

{cyclic matrices} → {cyclic matrices with only one column}
〈λ〉 7→ 〈row(λ)T 〉.

Lemma 6.7 (Rank reduction lemma). Assume there is a field exten-
sion K|F of degree s in E|F , where 2 ≤ s ≤ m. Suppose a is a vertex in

ΩE
×

such that a∩ZA(K) is a facet of rank s in ΩE
×

K and assume (E, a)
has embedding type 〈λ〉 and (E, a ∩ ZK(A)) has embedding type 〈λ′〉.
Then we get

row(λ) ∼ row(λ′), i.e. λ ∼ row(λ′)T .

Proof: By Lemma 6.6 it is enough to show the result only for one em-
bedding equivalent to (E, a). For simplicity of exposition, we restrict
ourselves to the case of s = 2. The argument for s > 2 is similar.
We fix a D-basis of V . Then (E, a) is equivalent to the pearl embed-
ding (Eλ, aλ) of λ, and moreover aλ is Mm(oD). Now we apply a per-
mutation p on (Eλ, aλ) such that the odd exponents of σ in pEλp

−1 are
behind all even exponents, i.e. pEλp

−1 is the image of

x ∈ Lf 7→ diag(Mn1
(x),Mn2

(x)), n1 :=
∑
i odd

λi, n2 :=
∑
i even

λi

where Mn1(x) = diag(σ0(x)1λ1 , σ
2(x)1λ3 , . . . , σ

f−2(x)1λf−1
)

and Mn2
(x) = diag(σ1(x)1λ2

, σ3(x)1λ4
, . . . , σf−1(x)1λf

).

We conjugate p(Eλ, aλ)p−1 by the matrix diag(1n1
, π−1
D 1n2

) to obtain
an embedding (E′, a′) with the following properties. Let K ′|F be the
field extension of degree two in E′|F .

• K ′ is the image of the diagonal embedding of L2 in Mm(D) and
its centralizer is Mm(DK′), where DK′ := ZD(L2). This follows
because even powers of πD commute with L2.
• The intersection of a′ with Mm(DK′) is a hereditary order in stan-

dard form with invariant 〈n1, n2〉. The positivity of the integers ni
follows from the assumption that this intersection is a facet of
rank 2.

Since πDK′ := π2
D is a prime element of DK′ which normalizes L and

since the powers of σ occurring in the description of E′ are even we can
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read the embedding type of (E′, a′ ∩Mm(DK′)) directly. It is the class
of 

λ1 λ2

λ3 λ4

...
...

λf−1 λf

 .

Thus the result follows.

The next lemma shows that changing the skew field does not change
the embedding type.

Lemma 6.8 (Changing skew field lemma). Let D′ be a skew field cen-
tral and of finite index d over a non-Archimedean local field F ′. Sup-
pose further that L′|F ′ is a maximal unramified field extension in D′|F ′
normalized by a uniformizer πD′ of D′. Let V ′ be an m-dimensional
right D′-vector space. Denote the Euclidean building of GLm(D′) by Ω′

and let Σ, Σ′ be the apartments of Ω, Ω′ corresponding to the standard
bases (vi), (v′i), respectively. Then Σ′ is fixed by the image E′ of the di-
agonal embedding of L′f in Mm(D′). Assume further that E is the image

of the diagonal embedding of Lf in Mm(D). Under these assumptions
the map defined by[

t 7→
⊕
i

vip
[d(t+αi)]+
D

]
7→

[
t 7→

⊕
i

v′ip
[d(t+αi)]+
D′

]
from |Σ| to |Σ′| is the geometric realization |φ| of an isomorphism φ of
simplicial complexes which preserves orientations and embedding types.
The latter means that if a′ is the image of a hereditary order a under φ
then the embedding types of (E, a) and (E′, a′) equal.

We want to remark that there is no condition about how F is related
to F ′, so they could have different residue characteristics, but the map φ
in the statement is of course only a map between apartments, and not
between buildings.

Proof: We define φ to map the class of a lattice chain L with

Lj =
⊕
i

vip
νi,j
D

to the class of L′ with
L′j =

⊕
i

v′ip
νi,j
D′ .

We only show that the embedding type is preserved. The other prop-
erties are verified easily. We take the two lattice chains L and L′ with
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corresponding hereditary orders a and a′. Applying from the left an
appropriative permutation matrix P and an appropriative diagonal ma-
trix T (resp. T ′), whose non-zero entries are powers of the corresponding
prime element, we obtain simultaneously lattice chains corresponding to
hereditary orders b, b′ in the same standard form. More precisely T ′ is
obtained from T by substituting πD′ for πD. Thus, (TPEP−1T−1, b)
and (T ′PE′P−1T ′−1, b′) have the same embedding type, and thus, by
conjugating back, (E, a) and (E′, a′) have the same embedding type.

We now fix a D-basis v1, . . . , vm of V and therefore a frame

R := {viD | 1 ≤ i ≤ m}
and Σ = ΩR the apartment of Ω corresponding to R. The algebra A is
identified with Mm(D). By the affine bijection |Σ| ∼= Rm−1 which maps

[Λ] with Λ(t) =
⊕
i

p
[(t+αi)d]+
D to ((α1 − α2)d, . . . , (αm−1 − αm)d),

we can introduce affine coordinates on |Σ|. We denote the points of |Σ|
corresponding to the vectors 0,(f, 0, . . . , 0), (0, f, 0, . . . , 0), . . . ,(0, . . . , 0, f)
by Q1, Q2, . . . , Qm.

Remark 6.9. The vertices of Σ are exactly the simplices corresponding
to the points of

Q1 +

m∑
i=2

1

f
Z(Qi −Q1).

Remark 6.10. For an element g ∈ ∩mi=1(EndD(viD))×, i.e. a diago-
nal matrix, the map |mg| induces an affine bijection of |Σ|. If g is
diag(1, . . . , 1, πkD, 1, . . . , 1), with πkD in the i-th row, then |mg| is of the
form

x 7→ x+
k

f
(Qi+1 −Qi),

where Qm+1 is understood to mean Q1. To prove this statement it is
enough to prove it for elements x of |Σ| corresponding to vertices and
group elements g of the above simple form with k = 1. The latter is an
easy calculation using a lattice chain corresponding to x.

Example 6.11. Let us assume E is the image of the diagonal embedding
of Lf in Mm(D), i.e.

E = {diag(x, . . . , x) | x ∈ Lf}.
Then AE and jE simplify, i.e.

1. AE ∼= EndDE
(W ) with DE := ZD(Lf ) and W :=

⊕
i viDE .
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2. The geometric realization of Σ is a subset of IE× .
3. For [Λ] ∈ I we have

jE([Λ]) = [Λ ∩W ],

where Λ ∩W denotes the lattice function

x 7→ Λ(x) ∩W.

4. The image of jE ||Σ| is the geometric realization of the apartment ΣE
which belongs to the frame {viDE | 1 ≤ i ≤ m} and in affine
coordinates the map has the form

x ∈ Rm−1 7→ 1

f
x ∈ Rm−1.

5. The vertices of ΣE are the points of |ΣE | with affine coordinate
vectors in Zm−1. Specifically the points Pi := jE(Qi) are vertices
of a chamber of ΣE .

6. The edge between Pi and Pi+1 is oriented towards Pi+1.

Proof of Example 6.11: The statement 1 is trivial and 5 and 6 follow
from 4.

For 2: We have |Σ| ⊆ IE× because, for an oD-lattice function Λ split
by R, the action of an element of E× on Λ is the multiplication of every
lattice Λ(t) by a fixed element x ∈ D×.

For 3 and 4: We use the decomposition

V = W ⊗DE
D = W ⊕WπD ⊕Wπ2

D ⊕ · · · ⊕Wπf−1
D .

The function IE → I which maps [Γ] ∈ IE to [Λ] ∈ I defined by

Λ(t) :=

f−1⊕
i=0

Γ

(
t− i

d

)
πiD,

is affine and A×E-equivariant. By Theorem 5.2 it has to be j−1
E and thus

jE([Λ]) is equal to [Λ∩W ]. The appearance of jE in terms of coordinates
follows now from

p
[t]+
D ∩DE = p

[ t
f ]+

DE
,

for t ∈ R.

Proof of Theorem 6.4: By Lemma 6.6 and Theorem 4.4 we can assume
that we are in the situation of Example 6.11 above and that there is a di-
agonal matrix h consisting of powers of πD with non-negative exponents
less than f such that

(hEh−1, hah−1)

is the pearl embedding of λ. We consider two cases for the proof.
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Case 1: a has rank 1, i.e.

hah−1 = Mm(oD) = aQ1
,

and λ has only one column. We get xa from Q1 by applying mh−1 which
is a composition of maps mg where g differs from the identity matrix by
only one diagonal entry πkD. Now Remark 6.10 gives

xa = Q1 −
m∑
j=1

aj
f

(Qj+1 −Qj),

where aj = k − 1 if
k−1∑
i=1

λi < j ≤
k∑
i=1

λi.

Thus in barycentric coordinates jE(xa) has the form

f − am + a1

f
P1 +

a2 − a1

f
P2 + · · ·+ am − am−1

f
Pm,

and therefore

µ :=

(
f − am + a1

f
,
a2 − a1

f
, . . . ,

am − am−1

f

)
satisfies part 1 of the theorem. If (λil)1≤l≤s is the subsequence of non-
zero entries we define the indices

jl := λi1 + λi2 + · · ·+ λil−1
+ 1, 2 ≤ l ≤ s,

and j1 := 1. This are the indices where the µj are non-zero, more
precisely from

jl =

il−1∑
i=1

λi + 1 ≤
il∑
i=1

λi

we obtain for aj the following values:

aj = ajl = il − 1, jl ≤ j < jl+1, and aj = ajs = is − 1, js ≤ j ≤ m,
and thus the subsequence of non-zero entries of fµ is

(fµjl) = (f − is + i1, i2 − i1, i3 − i2, . . . , is − is−1).

Therefore pairs(〈fµ〉) is equal to

〈(f − is + i1, λi1), (i2 − i1, λi2), (i3 − i2, λi3), . . . , (is − is−1, λis)〉
and this is precisely pairs(〈row(λ)〉c).

Case 2: Assume the rank r of a is not 1. Here we want to use rank
reduction. We fix an unramified field extension L′|F of degree rd in an
algebraic closure of F . Denote by D′ a skew field which is a central
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cyclic algebra over F with maximal field L′ and an L′-normalizing prime
element πD′ , i.e.

D′ =

dr−1⊕
i=0

L′πiD′ , πD′L
′π−1
D′ = L′, and πdrD′ = πF .

The images of L′r, L
′
rf under the diagonal embedding of L′ in Mm(oD′)

are denoted by F ′, E′, respectively, and the apartment of the Euclidean
building Ω′ of GLm(D′) corresponding to the standard basis is denoted
by Σ′, i.e. we have a field tower

E′ ⊇ F ′ ⊇ F,

apartments Σ′E′ , Σ′F ′ , Σ′ of Ω′E′ , Ω′F ′ , Ω′ and reduced Bruhat–Tits build-
ings I ′E′ , I ′F ′ , I ′, respectively. We then obtain a commutative diagram
of bijections, where the lines are induced by isomorphisms of chamber
complexes which preserve orientations,

|Σ|
|φF | //

jE

��

|Σ′F ′ |

jE′

��
|ΣE |

|φE | // |Σ′E′ |

The map |φF | is given by[
x 7→

m−1⊕
i=0

vip
[d(x+αi)]+
D

]
7→

[
x 7→

m−1⊕
i=0

v′ip
[d(x+αi)]+
ZD′ (L

′
r)

]
and |φE | analogously. Here (v′i) is the standard basis of D′m. Because
of Lemma 6.8, the map |φF | preserves the embedding type and thus we
can finish the proof by applying Lemma 6.7 to

Σ′ → Σ′F ′ → Σ′E′ .

More precisely, φF (a) is a facet of rank r in Σ′F ′ . Its barycenter has
affine coordinates in 1

rZ
m−1 and therefore its preimage under jF ′ is a

point y with integer affine coefficients, i.e. it corresponds to a vertex
of Ω′. To emphasize the base field we write field extensions as the index
of j. Because

jE′|F ′(xφF (a))) = jE′|F ′(jF ′|F (y)) = jE′|F (y),

the theorem follows now from the rank reduction lemma and Case 1.



516 D. Skodlerack

References

[BG00] P. Broussous and M. Grabitz, Pure elements and inter-
twining classes of simple strata in local central simple algebras,
Comm. Algebra 28(11) (2000), 5405–5442. DOI: 10.1080/

00927870008827164.
[BL02] P. Broussous and B. Lemaire, Building of GL(m,D)

and centralizers, Transform. Groups 7(1) (2002), 15–50. DOI:

10.1007/s00031-002-0002-5.
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