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Abstract: A comparison principle for the subdiffusive p-Laplacian in a possibly non-

smooth and unbounded open set is proved. The result requires that the involved sub

and supersolution are positive, and the ratio of the former to the latter is bounded.
As an application, constrained radial symmetry for overdetermined problems is ob-

tained. More precisely, both Dirichlet and Neumann conditions are prescribed on the

boundary of a bounded open set, and the Neumann condition depends on the dis-
tance from the origin. The domain of the problem, unknown at the beginning, turns

out to be a ball centered at the origin if a positive solution exists. Counterexamples

are also discussed.

2010 Mathematics Subject Classification: 35B06, 35N25, 35R35.

Key words: Subdiffusive p-Laplacian, comparison principle, overdetermined prob-

lems, radial symmetry.

1. Introduction

This paper deals with the subdiffusive p-Laplacian, i.e., with the equa-
tion

(1) −∆pu = f(x, u),

where the function f is dominated by the power up−1 as u → +∞.
As usual, ∆p denotes the p-Laplace operator ∆pu = div(|Du|p−2Du),
with p ∈ (1,+∞). The first result is the following weak comparison
principle between a subsolution u and a supersolution v. The composite
functions f(x, u(x)) and f(x, v(x)) are assumed to be measurable, and
the products f(x, u(x))ϕ(x) and f(x, v(x))ϕ(x) summable for all non-

negative ϕ ∈W 1,p
0 (Ω), so that the notions of weak sub and supersolution

make sense.
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Theorem 1.1 (Weak comparison principle). Let Ω be an open set in RN ,
N ≥ 2, possibly non-smooth and unbounded. Let u, v ∈ W 1,p(Ω) be a
weak subsolution and a weak supersolution, respectively, to equation (1)
in Ω, where f is a real-valued function of the variables x ∈ Ω and y ∈
(0,+∞) having the properties indicated above.

(i) In the case when

(2) the ratio
f(x, y)

yp−1
is strictly decreasing in y ∈ (0,+∞)

for a.e. x ∈ Ω,

assume that all of the following conditions are satisfied: u, v > 0
a.e. in Ω, the ratio u/v belongs to L∞(Ω), and (u−v)+ ∈W 1,p

0 (Ω).
Then u ≤ v a.e. in Ω.

(ii) In the case when

(3) the ratio
f(x, y)

yp−1
is non-increasing in y ∈ (0,+∞)

for a.e. x ∈ Ω,

assume that all of the following conditions are satisfied: u > 0
a.e. in Ω, essinf

x∈Ω
v(x) > 0, the ratio u/v belongs to L∞(Ω), and

(u− v)+ ∈W 1,p
0 (Ω). Then u ≤ v a.e. in Ω.

Of course, there is no hope to obtain a comparison principle under
assumption (3) alone: a counterexample is readily obtained with the
equation −∆u = λ1u, where λ1 is the first eigenvalue of the Dirichlet–
Laplacian in Ω, assuming that Ω is a bounded, smooth domain. A
similar situation also occurs with the first eigenfunctions of the p-Laplace
operator: see, for instance, [4, 22] and the references therein.

It is well known, by contrast, that for linear equations the existence
of a supersolution lying far above zero yields a maximum principle (the
generalized maximum principle in [26, Section 5]).

Theorem 1.1 is proved in Section 2. The proof is based on the some-
how weird inequality (8), which is in turn a consequence of the convexity
of the function |ξ|p, p ∈ (1,+∞), with respect to the variable ξ ∈ RN .
Several related results are found in the literature: in particular, Dı́az–
Saá’s inequality [5, 10] and Picone’s identity [2]. An elegant uniqueness
result exploiting the strict convexity of the associated functional Hp(u)
with respect to the function up (hidden convexity) is found in [4]. The
fundamental comparison principle between a p-subharmonic and a p-su-
perharmonic function is proved in [19, 24].
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A weak comparison principle for the subdiffusive p-Laplacian involv-
ing a subsolution u > 0 and a supersolution v > 0 both belonging
to W 1,p

0 (Ω) is found in [1, Section 4.1] together with some extensions
and applications. In particular, Theorem 1.1 in the present paper ex-
tends [1, Lemma 4.1] to the case of non-vanishing boundary values, at
the cost of assuming the ratio u/v bounded.

In the case when f(x, u) if monotone in u, the strong comparison prin-

ciple for positive u, v ∈ W 1,p
0 (Ω) is proved in [7]. If, instead, f = f(u)

and p > (2N + 2)/(N + 2), a strong comparison principle is found in [9]
(see also [27]). More precisely, assuming u ≤ v in a bounded smooth
domain Ω, Theorem 1.4 of [9] states that either u < v in Ω or u ≡ v.
For the strong minimum principle, which is a strong comparison prin-
ciple against the null function, see [25, 30, 31]. Comparison principles
for more general equations under different assumptions are found, for
instance, in [6, 8, 29].

Concerning the interior (respectively, global) C1,α-regularity of
bounded weak solutions to (1), the reader may consult the classical pa-
per [29] (respectively, [23]). However, regularity is not involved in the
proof of Theorem 1.1.

As an application, the symmetry result stated in Theorem 1.2 is estab-
lished. As before, the open set Ω is not required to be a priori smooth,
but now it must be bounded and containing the origin. Moreover, the
function f depends on x through r = |x|, and is denoted by f(r, y). It
is defined for all r ∈ (0,+∞) and y ∈ [0,+∞); takes on positive values
whenever y > 0, and it is subject to conditions (H1)–(H3) and (4) listed
below. Such conditions are inspired by [10], with some modifications.
In particular, the set Ω will be treated as an unknown of the problem,
and therefore we need the assumptions to hold independently of its size.
We also require f(r, y) to be monotone in r:

(H1) For almost every r ∈ (0,+∞), the function y 7→ f(r, y) is a con-
tinuous function of y ∈ [0,+∞). Furthermore, for every fixed y ∈
[0,+∞), the function r 7→ f(r, y) is bounded and non-increasing.

(H2) There exists a constant ε0 ∈ (0, p−1] such that for a.e. r ∈ (0,+∞)
the function y 7→ f(r, y)/yp−1−ε0 is monotone non-increasing with
respect to y ∈ (0,+∞). The constant ε0 is independent of r. Since

f(r, y)

yp−1
=

f(r, y)

yp−1−ε0
1

yε0
,

it follows that the ratio in the left-hand side is strictly decreasing:
this is assumption (H2) in [10].
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(H3) For every bounded interval (0, r0) there exists a constant C(r0)
such that f(r, y) ≤ C(r0)(yp−1 + 1) for a.e. r ∈ (0, r0) and for all
y ∈ [0,+∞). We also assume that

(4) lim
y→0+

f(r, y)/yp−1 = +∞ for almost every r ∈ (0,+∞).

Provided that such assumptions are satisfied, we have:

Theorem 1.2 (Constrained radial symmetry). Let Ω be a bounded open
set in RN , N ≥ 2, containing the origin, and let q(r) be a real-valued
function of r ∈ (0,+∞) such that

(5) the ratio
q(r)

r
p
ε0
−1

is strictly increasing in r,

where ε0 is the constant in (H2). If there exists a weak solution u ∈
C1(Ω), positive in Ω, to the overdetermined problem{

−∆pu = f(|x|, u) in Ω,

u(x) = 0, |Du(x)| = q(|x|) for x ∈ ∂Ω,

then Ω is a ball centered at the origin.

Note that condition (H2) is in competition with (5): we are led to
search for a small ε0 in order to facilitate (H2), but not so small to
prevent (5) from holding.

Let us compare the result to the celebrated achievements of Serrin [28]
and Weinberger [32]. Remarkably, they showed that if there exists a
solution u to −∆u = 1 in a sufficiently smooth domain Ω satisfying both
u = 0 on ∂Ω and |Du| = constant on ∂Ω, then Ω is a ball.

Contrary to what one may expect, if we replace the boundary condi-
tion |Du| = constant with |Du(x)| = q(|x|) for x ∈ ∂Ω, then the cor-
responding overdetermined problem may well be solvable even though
the domain Ω is not a ball. A counterexample is readily obtained by
letting Ω ⊂ R2 be an ellipse in canonical position. Indeed, the solu-
tion u0 ∈ H1

0 (Ω) to −∆u = 1 is symmetric with respect to both axes.
Denoting by a > b the semi-axes, for every r ∈ [b, a] the intersection
Sr = ∂Ω ∩ {|x| = r} has the same kind of symmetry as u, and therefore
we are legitimated to define q(r) = |Du0(x)| where x is any point in Sr.
Thus, we end up with an overdetermined problem

(6)

{
−∆u = 1 in Ω,

u(x) = 0 and |Du(x)| = q(|x|) for x ∈ ∂Ω,

which is solvable although Ω is not a disc. Another counterexample is
constructed with an ellipse having one focus at the origin: this example,
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worked out in [18, Section 5], relies on the fact that the boundary of
such a domain intersects any circle centered at O in at most two points,
the other two being imaginary.

What are convenient properties of the function q, capable of implying
that problem (6) is solvable only if Ω is a ball? A sufficient condition
is indicated in [18, Theorem 3.1]: more precisely, if the ratio q(r)/r is
monotone non-decreasing, then Ω must be a ball centered at the origin
in order that problem (6) is solvable. Such a condition has an optimality
character: indeed, if we allow

d

dr

q(r)

r
≥ −ε0

for some constant ε0 > 0, then we may always construct a counterexam-
ple (the one just mentioned) no matter how small ε0 is.

Theorem 1.2 shows that condition (5) suffices to obtain radial sym-
metry for problems governed by the subdiffusive p-Laplacian. Such kind
of symmetry is told constrained because it occurs with respect to a pre-
scribed point (the origin) due to the structure of the Neumann data. For
free radial symmetry, i.e., symmetry for translation-invariant problems
involving the p-Laplacian, see [12] and the references therein.

The novelty of Theorem 1.2 lies in the fact that here f(r, y) is not
assumed to have the special form f(r, y) = ym as in [18, Theorem 3.1],
nor to be non-increasing in y as in [16, Theorem 1.1]. Instead, the
weaker condition (H2) is required. The proof is given in Section 4, after a

preliminary investigation of the positive, radial solution uR ∈W 1,p
0 (BR)

to

(7) −∆pu = f(|x|, u).

More precisely, by means of a scaling technique, the rate of increase
of the boundary gradient |DuR(x)||x|=R with respect to the radius R
of the ball BR is estimated (see Section 3). Then, using a comparison
argument, we show that assumption (5) on the rate of increase of q(r)
prevents an either non-spherical, or non-centered-at-O open set Ω from
having a solution to the given problem.

The method described above was outlined in [18]. It is a refinement
of the one used in [21], which required more restrictive assumptions.
Further applications are found in [3, 14, 15, 16, 17, 18, 20]. In par-
ticular, the paper [21] that started the series deals with domains with
cavities: these are also considered in [15, 16, 17, 20]. Boundary con-
ditions leading Ω to be an ellipsoid, instead of a ball, are considered
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in [14, 17, 18, 21]. More general equations have been taken into ac-
count: for instance, degenerate operators including the p-Laplacian are
considered in [16, 18, 20]; the equation of constant mean (respectively,
Gaussian) curvature has been investigated in [18]; the case when the
right-hand side is Dirac’s delta function is considered in [3].

2. Weak comparison principle

This section is devoted to the proof of Theorem 1.1. The result ex-
tends [18, Theorem 7.1], which applies to the special case f(x, y) =
a(x)yp−1, a ∈ L∞(Ω). As there, the argument is based on inequality (8)
below. Other strategies may be taken in consideration: for instance, in
the case (2) of strict monotonicity, the result would follow by extend-
ing Dı́az–Saá’s inequality [10] to the possibly unbounded, quasi-open
set Ω+ = {x ∈ Ω | u(x) > v(x)}. In fact, an extension of Dı́az–Saá’s
inequality to the whole RN is given in [5].

Lemma 2.1 (Weird inequality). Extend the function |ξ|p−2ξ at ξ = 0
by continuity in case p ∈ (1, 2]. Then, for every ξ, η ∈ RN , λ ∈ [0, 1] and
p ∈ (1,+∞) we have:

(8) |ξ|p − p|η|p−2η · ξ + (p− 1)|η|p

≥ λ
(
|ξ|p−2ξ · η + (p− 2)|η|p − (p− 1)|η|p−2η · ξ

)
.

Equality holds if and only if ξ = η.

Proof: The inequality appears in the proof of [18, Theorem 7.1]. By
exploiting the convexity of |ξ|p, a different proof is given here (and a
typo in the last term is corrected). The tangent hyperplane to the graph
of |ξ|p at some point ξ = η is the graph of the function ξ 7→ p|η|p−2η ·
(ξ − η) + |η|p. Hence we have

(9) |ξ|p ≥ p|η|p−2η · (ξ − η) + |η|p

and (by strict convexity) equality holds if and only if ξ = η. Inequal-
ity (9) may be rewritten as A(ξ, η) ≥ 0, where A(ξ, η) = |ξ|p− p|η|p−2η ·
ξ + (p − 1)|η|p denotes the left-hand side of (8). Consequently, it is
immediate to recognize that

(1− λ)pA(ξ, η) + λ
(
A(ξ, η) +A(η, ξ)

)
≥ 0,

with equality if and only if ξ = η. By inserting the definition of A(ξ, η)
into the inequality above we obtain (8).

We can now prove the weak comparison principle.
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Proof of Theorem 1.1: Most of the argument is common to both claims.
Differences are pointed out at the end of the proof. Since u is a subso-
lution to (1), we have∫

Ω

|Du|p−2Du ·Dϕdx ≤
∫

Ω

f(x, u(x))ϕ(x) dx

for all non-negative ϕ ∈ W 1,p
0 (Ω). The function ϕ = (u − v)+ is an

admissible test function by assumption, and vanishes outside the set
Ω+ = {x ∈ Ω | u(x) > v(x)}. Hence we have∫

Ω+

|Du|p−2Du ·D(u− v)+ dx ≤
∫

Ω+

f(x, u)(u− v)+ dx.

In the case (3) of mild monotonicity, and a fortiori if (2) holds, we may
write

(10)

∫
Ω+

|Du|p−2Du ·D(u− v)+ dx ≤
∫

Ω+

f(x, v)
(u
v

)p−1

(u− v)+ dx.

More precisely, if strict monotonicity (2) holds, and if the set Ω+ has a
positive measure, then the preceding inequality is also strict: this fact
will be used in the conclusion. To proceed in the estimate, we are led to
use

(11) ψ =
(u
v

)p−1

(u− v)+

as a test function in

(12)

∫
Ω

f(x, v(x))ψ(x) dx ≤
∫

Ω

|Dv|p−2Dv ·Dψ dx.

Indeed, with such a ψ the left-hand side of (12) coincides with the right-
hand side of (10). The definition (11) is well posed because v > 0 a.e.
in Ω by assumption. Let us check that ψ is an admissible test function.
Clearly, ψ ∈ Lp(Ω) because the ratio u

v is bounded by assumption. To

see that ψ ∈W 1,p
0 (Ω), and its gradient is given by

(13) Dψ = (p− 1)
(
u
v

)p−2 (u
v − 1

)+ (
Du− u

vDv
)

+
(
u
v

)p−1
D(u− v)+,

recall that weak differentiability is (up to the choice of a suitable repre-
sentative) equivalent to absolute continuity along almost all lines paral-
lel to the coordinate axes, together with local summability of the par-
tial derivatives with respect to the N -dimensional Lebesgue measure:
see [13, Section 7.3 and Problem 7.8] for details. Concerning the first
term in the right-hand side of (13), note that the singularity of tp−2

at t = 0 when p ∈ (1, 2) plays no role because when t = u
v < 1 the

factor (uv − 1)+ vanishes. Using the function ψ defined in (11) as a
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test function in the inequality (12), we may estimate the right-hand side
of (10) and find∫

Ω+

(
|Du|p−2Du ·D(u− v)+ − |Dv|p−2Dv ·Dψ

)
dx ≤ 0.

The remainder of the proof consists in proving that the function under
the sign of integral is non-negative, hence it must vanish almost ev-
erywhere. Now the weird inequality (8) comes into play. Define ξ, η by
letting ξ = Du

u and η = Dv
v , and observe that the ratio λ(x) = v(x)/u(x)

belongs to the interval (0, 1) for every x ∈ Ω+ by definition. With this
notation, and taking (13) into account, the preceding inequality is short-
ened as follows: ∫

Ω+

upB(ξ, η, λ) dx ≤ 0,

where B(ξ, η, λ) is given by

B(ξ, η, λ) = |ξ|p − p|η|p−2η · ξ + (p− 1)|η|p

− λ
(
|ξ|p−2ξ · η + (p− 2)|η|p − (p− 1)|η|p−2η · ξ

)
.

By (8) it follows that ξ = η a.e. in Ω+, and an equality sign holds
in (10). Thus, if strict monotonicity (2) holds, we deduce that |Ω+| = 0
and Claim (i) follows. If, instead, v keeps far from zero, then the ratio

ρ = (u − v)+/v belongs to W 1,p
0 (Ω). The equality ξ = η a.e. in Ω+

implies Dρ = 0 a.e. in the whole set Ω, hence ρ = 0 a.e. in Ω. The last
equality proves Claim (ii).

Uniqueness results may be derived from Theorem 1.1. For instance,
in the case (3) of mild monotonicity, we have:

Corollary 2.2 (Uniqueness). Let Ω be an open set in RN , N ≥ 2,
possibly non-smooth and unbounded, and let u1, u2 ∈ W 1,p(Ω) be two
solutions to {

−∆pu = f(x, u) in Ω,

u− g ∈W 1,p
0 (Ω),

where the function f satisfies (3), and g is a prescribed function in
W 1,p(Ω). If there exist two positive constants c1, c2 > 0 such that
c1 < ui(x) < c1 for i = 1, 2 and for a.e. x ∈ Ω, then u1 = u2 a.e.
in Ω.
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3. Radial solutions

As mentioned in the introduction, the proof of Theorem 1.2 relies on
a preliminary investigation of the radial case. From now on, assumptions
(H1)–(H3) and (4) are in effect. We make use of the known existence
and uniqueness results [4, 10] for bounded, smooth domains under ho-
mogeneous boundary conditions in order to ensure that equation (7) has

a unique, radial, positive solution uR ∈ W 1,p
0 (BR) in the ball BR cen-

tered at the origin. Such a solution is also bounded, and belongs to the
class C1,α(BR) [10, 11, 23, 29].

The main purpose of the following lemma is to estimate the rate of
increase of the boundary gradient |DuR(x)||x|=R when the radius R is
let vary.

Lemma 3.1 (Rate of increase of the boundary gradient). For every
given R ∈ (0,+∞), the gradient DuR(x) vanishes if and only if x = 0;
when R is let vary, the product R1−(p/ε0)|DuR(x)||x|=R is monotone non-
increasing in R.

Proof: Writing uR(x) = v(|x|) for a convenient function v(r) of the real
variable r, and integrating equation (7), we arrive at

|v′(r)|p−2v′(r) =
−1

rN−1

∫ r

0

tN−1f(t, v(t)) dt for r ∈ (0, R].

From the representation above we see that the gradient DuR(x) is con-
tinuous in x and does not vanish outside the origin, which proves the
first claim.

In order to investigate the product R1−(p/ε0)|DuR(x)||x|=R, we follow
the scaling procedure used in [16, Lemma 4.2]. Consider 0 < R1 <

R2 and denote by uRi
the positive solution to (7) in W 1,p

0 (BRi
), i =

1, 2. Define t = R2/R1 > 1. Let us check that the rescaled function
w(x) = t−p/ε0uR2

(tx), which is defined in the ball BR1
and vanishes

on ∂BR1
, is a subsolution to (7). By computation we have ∆pw(x) =

t1+(p−1)(1−(p/ε0))(∆puR2)(tx) for x ∈ BR1 . Using the equation for uR2 ,
and the definition of w(x), we may write

(14) −∆pw(x) = t1+(p−1)(1−(p/ε0))f(|tx|, tp/ε0w(x)).

Since assumption (H2) holds with a positive constant ε0, we have tp/ε0w>
w and we may write

f(|tx|, tp/ε0w(x))

(tp/ε0w(x))p−1−ε0
≤ f(|tx|, w(x))

(w(x))p−1−ε0
.
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By ruling out the term w(x) in the denominators, we arrive at

f(|tx|, tp/ε0w(x)) ≤ t(p−1−ε0)p/ε0f(|tx|, w(x)).

The power of t multiplying f in the last term cancels with the one in (14),
and therefore we obtain −∆pw(x) ≤ f(|tx|, w(x)). Finally, since f(r, u)
is non-increasing in r by assumption, we conclude that −∆pw(x) ≤
f(|x|, w(x)), hence w is a subsolution to (7) in W 1,p

0 (BR1
), as claimed.

Let us compare uR1
(x) and w(x). Since the gradients DuR1

(x) and
Dw(x) = t1−(p/ε0)(DuR2)(tx) do not vanish along ∂BR1 , the ratio w/uR1

is bounded in BR1
and Claim (i) of Theorem 1.1 applies. It follows that

w ≤ uR1
in BR1

, and since both functions vanish on ∂BR1
we also

have |Dw(x)||x|=R1
≤ |DuR1

(x)||x|=R1
. Now, recalling the expression

of Dw given before, and since t = R2/R1, the last inequality becomes

R
1−(p/ε0)
2 |DuR2

(x)||x|=R2
≤ R1−(p/ε0)

1 |DuR1
(x)||x|=R1

, which is what we
intended to prove.

Remark. If f(r, y) is non-increasing in y then we may relax the mono-
tonicity assumption of f in r as in [16, Lemma 4.2]. There, it is re-
quired that the product r1+(p−1)σf(r, y) is non-increasing in r for some
σ ∈ (−∞, 1], and it turns out that

(15) Rσ|DuR(x)||x|=R is non-increasing in R.

The two results agree in the special case when f(x, y) is non-increasing
both in r and in y. Indeed, in such a case we may take ε0 = p− 1 in the
preceding lemma and get that R−1/(p−1)|DuR(x)||x|=R is non-increasing
in R, which corresponds to (15) with σ = −1/(p− 1).

4. Constrained radial symmetry

Combining the weak comparison principle and the radial estimate
established in the preceding sections, we may finally prove Theorem 1.2.

Proof of Theorem 1.2: Let x1 (respectively, x2) be a point on the bound-
ary ∂Ω that minimizes (resp. maximizes) the distance to the origin, and
define R1 = |x1| ≤ |x2| = R2. The aim of the proof is to show that
R1 = R2. Let us compare the solution u with the positive radial solu-
tions uRi

∈ W 1,p
0 (BRi

), i = 1, 2, of equation (7). More precisely, let us
check that

(16) uR1 ≤ u in BR1 and u ≤ uR2 in Ω.
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It suffices to verify that the assumptions of Theorem 1.1, Claim (i), are
satisfied. Condition (2) holds true as a consequence of (H2). Further-
more, u > 0 in Ω by assumption. It remains to check that the ra-
tios uR1

/u and u/uR2
are bounded. To this end, recall that u ∈ C1(Ω)

by assumption, and uRi ∈ C1,α(BRi), i = 1, 2 as mentioned at the begin-
ning of Section 3. Furthermore, by Lemma 3.1 the gradient DuRi does
not vanish along ∂BRi

. Let us prove that Du does not vanish along ∂Ω.
Observe that the set Ω obviously satisfies the interior sphere condition
at x1 ∈ ∂Ω ∩ ∂BR1

. Since −∆pu > 0 in Ω, and since u is positive in Ω
and vanishes at x1, by Hopf’s lemma we have |Du(x1)| > 0, hence

(17) q(R1) > 0.

This and (5) imply q(r) > 0 for all r ≥ R1. Thus, Du does not vanish
along ∂Ω, as claimed, and therefore the ratio uR1

/u is bounded in B1,
and u/uR2

is bounded in Ω. Consequently, Claim (i) of Theorem 1.1
applies, and we arrive at (16). Taking into account that uR1(x1) = u(x1)
and u(x2) = uR2(x2), inequalities (16) imply

(18) |DuR1(x1)| ≤ |Du(x1)| and |Du(x2)| ≤ |DuR2(x2)|.

According to Lemma 3.1, the product R1−(p/ε0)|DuR(x)||x|=R is
non-increasing with respect to the radius R, hence we may write

R
1−(p/ε0)
2 |DuR2

(x2)| ≤ R
1−(p/ε0)
1 |DuR1

(x1)|. By combining the last in-
equality with (18), we obtain

R
1−(p/ε0)
2 |Du(x2)| ≤ R1−(p/ε0)

1 |Du(x1)|,

from which we deduce R
1−(p/ε0)
1 q(R1) ≤ R

1−(p/ε0)
2 q(R2). By (5), we

then have R1 = R2, and the conclusion follows.
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