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GENERALIZED QUASIDISKS AND CONFORMALITY

Chang-Yu Guo, Pekka Koskela, and Juhani Takkinen

Abstract: We introduce a weaker variant of the concept of linear local connectivity,
sufficient to guarantee the extendability of a conformal map f : D → Ω to the entire

plane as a homeomorphism of locally exponentially integrable distortion. Addition-
ally, we show that a conformal map as above cannot necessarily be extended in this

manner if we assume that Ω is the image of D under a self-homeomorphism of the

plane that has locally exponentially integrable distortion.
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1. Introduction

The concept of a quasidisk is central in the theory of planar quasi-
conformal mappings; see, for example, [2, 4, 7, 20]. One calls a Jordan
domain Ω ⊂ R2 a quasidisk if it is the image of the unit disk D un-
der a quasiconformal mapping f : R2 → R2 of the entire plane. If f is
K-quasiconformal, we say that Ω is a K-quasidisk. Another possibility
is to require that f is additionally conformal in the unit disk D. It is
essentially due to Kühnau [19] that Ω is a K-quasidisk if and only if Ω is
the image of D under a K2-quasiconformal mapping f : R2 → R2 that is
conformal in D, see [8].

A substantial part of the theory of quasiconformal mappings has re-
cently been shown to extend in a natural form to the setting of mappings
of locally exponentially integrable distortion [3, 4, 6, 9, 10, 12, 18,
22, 25]. See Section 2 below for the definition of this class of mappings.
However, very little is known about the analogues of the concept of a
quasidisk. For the model domain

(1.1) Ωs = {(x1, x2) ∈ R2 : 0 < x1 < 1, |x2| < x1+s
1 } ∪B(xs, rs),

where xs = (s + 2, 0) and rs =
√

(s+ 1)2 + 1, s > 0, the situation
is rather well understood: Ωs = f(D) under a homeomorphism with
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locally λ-exponentially integrable distortion if λ < 2/s, but this cannot
happen when λ > 2/s, see [16]. Moreover, if f is additionally required
to be quasiconformal in D, then the critical bound for λ is 1/s, see [15].
Notice the difference to the setting of quasiconformal mappings: instead
of the switch from K to K2 under the additional conformality condition,
one essentially switches from λ to λ/2. One might expect this to be the
case in general, but this turns out not to hold.

Theorem 1.1. Given s > 0, there is a homeomorphism fs : R2 → R2 of
locally exponentially integrable distortion so that

fs(D) = ∆s := B(x′s, r
′
s) \ {(x1, x2) ∈ R2 : x1 ≥ 0, |x2| ≤ x1+s

1 },

where x′s = (−s, 0) and r′s =
√

(s+ 1)2 + 1. On the other hand, there
is no homeomorphism f : R2 → R2 of locally exponentially integrable
distortion such that f is quasiconformal in D and f(D) = ∆s.

In fact, given λ < 2/s, we construct a homeomorphism fλ : R2 → R2

of locally λ-exponentially integrable distortion so that fλ(D) = ∆s.
Suppose then that f : R2 → R2 is a homeomorphism of finite distor-
tion Kf (x) and that g is K-quasiconformal in D with f(D) = ∆s. We
prove below that Kf /∈ Lploc(R2) if p > K/s.

Thus an inward pointing polynomial cusp rules out the extendabil-
ity of a Riemann mapping function to a homeomorphism of locally ex-
ponentially integrable distortion, but such exterior cusps are not that
dangerous.

It is then natural to ask for general sufficient conditions for extend-
ability. Towards this end, let us describe the standard way of extending a
conformal map f : D→ Ω, where Ω is a Jordan domain, to a mapping of
the entire plane. First of all, f can be extended to a homeomorphism be-
tween D and Ω. For simplicity, we denote this extended homeomorphism
also by f . It follows from the Riemann Mapping Theorem there exists a
conformal mapping g : R2 \D→ R2 \Ω such that the complement of the
closed unit disk gets mapped to the complement of Ω. In this correspon-
dence the boundary curve Γ = ∂Ω is mapped homeomorphically onto
the boundary circle ∂D and hence the composed mapping G′ = g−1 ◦ f
is a well-defined circle homeomorphism, called conformal welding. Sup-
pose we are able to extend G′ to the exterior of the unit disk, with the
extension still denoted by G′. Then the mapping G = g ◦G′ will be well-
defined outside the unit disk and it coincides with f on the boundary
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circle ∂D. Finally, if we define

F (x) =

{
G(x) if |x| ≥ 1,

f(x) if |x| ≤ 1,

then we obtain an extension of f to the entire plane. In the case of
a quasidisk, that is when Ω is linearly locally connected (LLC), the
extension G′ can be chosen to be quasiconformal and hence the obtained
map F is also quasiconformal; see [1].

Before stating our extension result, let us stress that the extendability

of a conformal mapping f : D→ Ω to a homeomorphism f̂ : R2 → R2 of
locally integrable distortion is essentially equivalent to being able to ex-

tend the conformal welding G′ above to this class. Indeed, if f̂ extends f

then g−1 ◦ f̂ extends G to the exterior of D and has the same distortion

as f̂ . Reflecting (twice) with respect to the unit circle one then further

obtains an extension to D\{0}. Hence, one obtains an extension Ĝ′ of G′

to R2 \{0} with distortion that has the same local integrability degree as

the distortion of f̂ . If the latter distortion is sufficiently nice in a neigh-
borhood of infinity (e.g. bounded, see Lemma 3.3 below for the locally
exponentially integrable setting), then this holds in all of R2 as well. In
the setting of Theorem 1.1, the welding G′ is so strongly compressing at
a single point that the known modulus of continuity estimate for (the
inverse) of a mapping of locally exponentially integrable distortion gets
violated. This argument also applies for the comment after Theorem 1.1.

One then expects that the above procedure will produce a mapping of
locally exponentially integrable distortion when the linear local connec-
tivity property is relaxed to a suitable, slightly weaker condition. Our
next result confirms this expectation.

Theorem 1.2. Let Ω ⊂ R2 be a ψ-locally connected Jordan domain with
ψ(r) = Cr

logs log 1
r

for some positive constant C and s ∈ (0, 1
4 ). Then any

conformal mapping f : D → Ω can be extended to the entire plane as a
homeomorphism of locally exponential integrable distortion.

Above, ψ-local connectivity requires that, for each x and all r > 0,

• each pair of points in B(x, r) ∩ Ω can be joined by an arc in
B(x, ψ−1(r)) ∩ Ω, and
• each pair of points in Ω\B(x, r) can be joined by an arc in Ω \
B(x, ψ(r)).

If we were to choose ψ(t) = Ct, then this would reduce to the usual linear
local connectivity condition. Some ψ-local connectivity condition is also
necessary in the setting of Theorem 1.2. For example, the sharp modulus
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of continuity estimates [10], [22] for the extension and its inverse show
that Ω must be ψ-locally connected for ψ(t) = C exp(−t4/λ), but there
is no hope for an exact charaterization.

In the proof of Theorem 1.2, the extension of the circle homeomor-
phism is obtained via results by Zakeri [25]. In fact, we establish in
Section 5 a slightly more general result than Theorem 1.2.

This paper is organized as follows. Section 2 contains the basic defi-
nitions and Section 3 some auxiliary results. We prove Theorem 1.1 in
Section 4 and Theorem 1.2 in Section 5. In the final section, Section 6,
we make some concluding remarks.

Acknowledgement. We wish to thank the anonymous referee for sug-
gestions that both improved our presentation and simplified some of our
reasoning.

2. Notation and Definitions

We sometimes associate the plane R2 with the complex plane C for
convenience and denote by Ĉ the extended complex plane. The closure
of a set U ⊂ R2 is denoted U and the boundary ∂U . The open disk of
radius r > 0 centered at x ∈ R2 is denoted by B(x, r) and simply write D
for the unit disk. The boundary of B(x, r) will be denoted by S(x, r)
and the boundary of the unit disk D is written as ∂D. The symbol Ω
always refers to a domain, i.e. a connected and open subset of R2. We
call a homeomorphism f : Ω → f(Ω) ⊂ R2 a homeomorphism of finite

distortion if f ∈W 1,1
loc (Ω;R2) and

(2.1) ‖Df(x)‖2 ≤ K(x)Jf (x) a.e. in Ω,

for some measurable function K(x) ≥ 1 that is finite almost everywhere.

Recall here that Jf ∈ L1
loc(Ω) for each homeomorphism f ∈W 1,1

loc (Ω;R2)
(cf. [4]). In the distortion inequality (2.1), Df(x) is the formal differ-
ential of f at the point x and Jf (x) := detDf(x) is the Jacobian. The
norm of Df(x) is defined as

‖Df(x)‖ := max
e∈∂D

|Df(x)e|.

For a homeomorphism of finite distortion it is convenient to write Kf

for the optimal distortion function. This is obtained by setting Kf (x) =
‖Df(x)‖2/Jf (x) when Df(x) exists and Jf (x) > 0, and Kf (x) = 1
otherwise. The distortion of f is said to be locally λ-exponentially inte-
grable if exp(λKf (x)) ∈ L1

loc(Ω), for some λ > 0. Note that if we assume
Kf (x) to be bounded, Kf ≤ K, we recover the class of K-quasiconformal
mappings, see [4] for the theory of quasiconformal mappings.
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Recall that a domain Ω is said to be linearly locally connected (LLC)
if there is a constant C ≥ 1 so that

• (LLC-1) each pair of points in B(x, r)∩Ω can be joined by an arc
in B(x,Cr) ∩ Ω, and
• (LLC-2) each pair of points in Ω\B(x, r) can be joined by an arc

in Ω \B(x,C−1r).

We need a weaker version of this condition, defined as follows. We say
that Ω is (ϕ,ψ)-locally connected ((ϕ,ψ)-LC) if

• (ϕ-LC-1) each pair of points in B(x, r)∩Ω can be joined by an arc
in B(x, ϕ(r)) ∩ Ω, and
• (ϕ-LC-2) each pair of points in Ω\B(x, r) can be joined by an arc

in Ω \B(x, ψ(r)),

where ϕ,ψ : [0,∞) → [0,∞) are smooth increasing functions such that
ϕ(0) = ψ(0) = 0, ϕ(r) ≥ r and ψ(r) ≤ r for all r > 0. For technical
reasons, we assume that the function t 7→ t

ϕ−1(t)2 is decreasing and

that there exist constants C1, C2 so that C1ϕ(t) ≤ ϕ(2t) ≤ C2ϕ(t) and
C1ψ(t) ≤ ψ(2t) ≤ C2ψ(t) for all t > 0. If ϕ−1 = ψ above, as in the
introduction, Ω will simply be called ψ-LC. One could relax joinability
by an arc above to joinability by a continuum, but this leads to the same
concept; see [11, Theorem 3-17]. Notice that if Ω is simply connected
and bounded, then ϕ-LC-1 guarantees that Ω is a Jordan domain.

Finally we define the central tool for us – the modulus of a path
family. A Borel function ρ : R2 → [0,∞] is said to be admissible for
a path family Γ if

∫
γ
ρ ds ≥ 1 for each locally rectifiable γ ∈ Γ. The

modulus of the path family Γ is then

mod(Γ) := inf

{∫
Ω

ρ2(x) dx : ρ is admissible for Γ

}
.

For subsets E and F of Ω we write Γ(E,F,Ω) for the path family con-
sisting of all locally rectifiable paths joining E to F in Ω and abbreviate
mod((Γ(E,F,Ω)) to mod(E,F,Ω). In what follows, γ(x, y) refers to a
curve or an arc from x to y.

3. Auxiliary results

We begin this section by stating the following theorem from Zak-
eri [25], which plays a crucial role in the proof of Theorem 1.2 and
Theorem 6.1 below.
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Theorem 3.1. Given a sense-preserving homeomorphism f : ∂D→ ∂D
and 0 < t < π

2 , set

(3.1) δf (θ, t) = max

{ |f(ei(θ+t))− f(eiθ)|
|f(eiθ)− f(ei(θ−t))| ,

|f(ei(θ−t))− f(eiθ)|
|f(eiθ)− f(ei(θ+t))|

}
and

ρf (t) = sup
θ∈[0,2π]

δf (θ, t).

If

(3.2) ρf (t) = O

(
log

1

t

)
as t→ 0,

then f extends to a homeomorphism g : R2 → R2 of locally exponentially
integrable distortion.

Remark 3.2. If δf (θ, t) or ρf (t) is uniformly bounded by M , then by the
results of Beurling and Ahlfors [5], f extends to a global quasiconformal
mapping.

We continue by proving the lemma that we referred to in connection
with extendability of conformal weldings.

Lemma 3.3. Suppose that f : R2 → R2 is a homeomorphism of lo-
cally exponentially integrable distortion. Then there is a homeomorphism

f̂ : R2 → R2 of locally exponentially integrable distortion so that the dis-

tortion is bounded outside a compact set and with f̂ = f on D.

Proof: We choose M ≥ 1 so large that f(D) ⊂ B ⊂ f(B(0,M)) for some
disk B. Let µf be the Beltrami coefficient of f and set µ = χB(0,2M)µf .

By [4, Theorem 20.4.9] there is a homeomorphism g : R2 → R2 of
locally exponentially integrable distortion and with the Beltrami co-
efficient µ. Since µ vanishes outside B(0, 2M), g is conformal there.

On B(0, 2M), both f and f̂ are solutions to the same Beltrami equa-
tion, and hence [4, Theorem 20.4.9] provides us with a conformal map-
ping h : f(B(0, 2M)) → Ω for some domain Ω ⊂ R2 with g = h ◦ f
on B(0, 2M).

It is easy to check that h is bi-Lipschitz on B. By [24], h extends

to a bi-Lipschitz mapping ĥ : R2 → R2. We define ψ = ĥ−1. Then ψ is

bi-Lipschitz. Finally, we set f̂ = ψ ◦ g. Then f̂ has all the desired
properties.

The following two modulus estimates are standard, see e.g. [13].
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Lemma 3.4. Let E, F be disjoint nondegenerate continua in B(x,R).
Then

(3.3) mod(E,F,B(x,R)) ≥ C0 log

(
1 +

1

t

)
,

where t = dist(E,F )
min{diamE,diamF} and C0 is an absolute constant.

Lemma 3.5. Let 0 < r < R <∞.Then

(3.4) mod(S(x, r), S(x,R), B(x,R) \B(x, r)) =
2π

log R
r

.

Next, we recall the following result on the modulus of continuity of a
quasiconformal mapping, whose proof can be found in [14]; also see [21].

Lemma 3.6. Suppose g : Ω → D is a K-quasiconformal mapping from
a simply connected domain Ω onto the unit disk. Then there exists a
positive constant C, (depending on f), such that for any ω, ξ ∈ Ω,

(3.5) |g(ω)− g(ξ)| ≤ CdI(ω, ξ)
1

2K ,

where dI(ω, ξ) is defined as infγ(ω,ξ)⊂Ω diam(γ(ω, ξ)). In particular, if Ω
above is ϕ-LC-1, then

(3.6) |g(ω)− g(ξ)| ≤ Cϕ(|ω − ξ|) 1
2K .

Finally, we finish this section with a general upper modulus estimate
for certain curve families.

Lemma 3.7. Let Ω ⊂ R2 be a ϕ-LC-1 Jordan domain. Let α ⊂ ∂Ω
be an arc and ω ∈ ∂Ω be a point with d = d(ω, α) > 0. Moreover, let

γ′ ⊂ Ĉ\Ω be the hyperbolic geodesic joining ω to ∞, i.e. γ′(0) = ω and
γ′(∞) = ∞. Then there exist a positive constant δ > 0, depending only
on Ω, and a positive constant C such that d+ diamα < δ implies

(3.7) mod(γ′, α,R2 \ Ω) ≤ 2π

log 2

(
100C2

∫ d+diamα

d
20

t

ϕ−1(t)2
dt+ 2

)
.

In particular, if Ω is LLC-1, then

(3.8) mod(γ′, α,R2 \ Ω) ≤ 2π

log 2

(
100C2 log

20(d+ diam(α))

d
+ 2

)
.

Proof: We claim first that there exist positive constants δ and C such
that d(γ′(t), ∂Ω) < δ implies

(3.9) diam(γ′([0, t])) ≤ 2ϕ(Cd(γ′(t), ∂Ω)) =: Φ(d(γ′(t), ∂Ω)).

Towards this end, let g : R2 \D→ R2 \Ω be a conformal mapping. Then
there exists a constant δ, depending on g, such that g(B(0, 3/2) \ D)
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contains Ωδ, where Ωδ consists of those points in the complement of Ω
whose distance to Ω is strictly less than δ. If d(γ′(t), ∂Ω) < δ, then
standard harmonic measure estimates at g−1(γ′(t)) provide us with a
crosscut β of R2 \ Ω in g(B(0, 3/2)\D) that separates γ′((0, t)) from
infinity in R2 \ Ω so that γ′(t) ∈ β and diam(β) ≤ Cd(γ′(t), ∂Ω). Using
the ϕ-LC-1 condition, on easily obtains

diam(γ′([0, t])) ≤ Cd(γ′(t), ∂Ω) +ϕ(Cd(γ′(t), ∂Ω)) ≤ 2ϕ(Cd(γ′(t), ∂Ω)),

as desired.
Next, notice that, by Lemma 3.5,

(3.10) mod(γ′([0,∞)) \B(γ′(0), 2d+ 2 diam(α)), α,R2\Ω) ≤ 2π

log 2
.

To complete the proof of the lemma, we only need to estimate

mod(γ′([0,∞)) ∩B(γ′(0), 2d+ 2 diam(α)), α,R2 \ Ω).

Observe that d(γ′(t), ∂Ω) < 2d + 2 diam(α) if γ′(t) ∈ B(γ′(0), 2d +
2 diam(α)). We thus choose the constant δ in our claim to be δ/2 from
the first paragraph of this proof.

Write r = diam(α), x = γ′(0), and set B(0) = B(x, d/2). Set B(t) =
B(γ′(t), d(γ′(t), ∂Ω)/2) when γ′(t) ∈ B(x, 2d + 2r) \ B(x, d/2). By the
Vitali Covering Theorem we can find a subfamily of these balls, B0 =
B(0), B1 = B(γ′(t1)), . . . , Bk = B(γ′(tk)) covering γ′([0,∞))∩B(x, 2d+
2r) so that 1

5Bi ∩ 1
5Bj = ∅ for i 6= j. Notice that each path that joins

γ′([0,∞)) ∩ B(γ′(0), 2d + 2 diam(α)) to α in R2 \ Ω necessarily meets
both Bi and exits R2 \ 2Bi for some 0 ≤ i ≤ k. Hence the modulus of
our path family is no more than 2π

log 2 (k+ 1). Therefore, we only need to

estimate the number k + 1 of balls from above.
To this end, let Aj = B(γ′(0), 2−j+1(r + d))\B(γ′(0), 2−j(r + d)).

Notice that Bi ∩ 1
5B0 = ∅ for i = 1, . . . , k; actually even Bi ∩ B0 = ∅.

From 2−j(r + d) ≥ d/10, we deduce j ≤ log 10(r+d)
d := τ . Let ki be the

number of the balls {Bm}km=1 that intersect Ai, i = 1, . . . , τ . Then (3.9)
and a packing argument show that

kiΦ
−1(2−i(r + d))2 ≤ 25 · 2−2(i+1)(r + d)2.

It follows immediately that

k ≤
τ∑
i=1

ki ≤ 25

τ∑
i=1

2−2(i+1)(r + d)2

Φ−1(2−i(r + d))2
.
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Since t
Φ−1(t)2 is non-decreasing, we have

k ≤ 25

∫ 2(r+d)

d
10

t

Φ−1(t)2
dt = 100C2

∫ d+r

d
20

t

ϕ−1(t)2
dt.

4. Proof of Theorem 1.1

We begin by recalling a modulus of continuity estimate from [17].

Lemma 4.1. Let f : G→ f(G) be a homeomorphism of finite distortion
with Kf ∈ Lploc(G) for some 1 ≤ p < ∞. Then, for each compact set
F ⊂ f(G), there is a constant CF so that

|f−1(x)− f−1(y)| ≤ CF log−p/2(CF /|x− y|)
in F.

We will need a modulus of continuity type estimate for our quasicon-
formal mapping f on the boundary of the unit disk. This is obtained
via rather standard path family arguments. One could obtain the esti-
mate below from the behavior of the corresponding conformal mapping
and decomposition. Because of the lack of a good reference, we give a
detailed proof.

Lemma 4.2. Let f : R2 → R2 be a homeomorphism such that f(D) = ∆s

and suppose that the restriction of f to D is K-quasiconformal. Let
E′t = {x ∈ ∂∆s : |x| ≤ t, x1 ≥ 0} and Et = f−1(E′t). Then for all ε > 0,
there exists t0 > 0 and a constant C > 0, such that

(4.1) diamE′t ≤ C(diamEt)
2−ε
K

for all 0 < t < t0.

Proof: Let ε > 0. As f is an homeomorphism, we may pick 0 < t0 <
1/e2π such that diamEt0 < 1. When 0 < t < t0 the set E′t0 \ E′t ⊂ ∂∆s

consists of two separate continua that we denote F ′1 and F ′2 and we
write F1 and F2 for their preimages with respect to f , respectively. As f
is a homeomorphism, F1 and F2 are also two separate continua and Et0 \
Et = F1 ∪ F2 ⊂ ∂D. Denote Γ := Γ(F1, F2,D) and Γ′ := Γ(F ′1, F

′
2,∆s).

From the K-quasiconformality of f it follows that

(4.2) mod(Γ) ≤ Kmod(Γ′).

Choose a ∈ Et such that dist(a, F1) = dist(a, F2) and denote d1 :=
dist(a, F1) and d2 := d1 + 1

2 mini=1,2 diamFi. If ρ is admissible for Γ,

we may assume that it is also defined on R2 \ D and that ρ(x) = 0
for all x ∈ R2 \ D. Since S(a, r) now intersects both F1 and F2 for all



202 C.-Y. Guo, P. Koskela, J. Takkinen

d1 < r < d2, the previous assumptions on ρ and Hölder’s inequality
imply that for each such r

(4.3) 1 ≤
(∫

S(a,r)

ρ dσ

)2

≤ πr
∫
S(a,r)

ρ2 dσ,

where dσ is the length element of the circle S(a, r). By applying Fubini’s
theorem together with (4.3) we obtain∫

D
ρ2 dx ≥

∫ d2

d1

∫
S(a,r)

ρ2 dσ dr ≥
∫ d2

d1

1

πr
dr =

log(d2/d1)

π
.

As d1 ≤ 2 diamEt and ρ was an arbitrary admissible function for Γ, we
readily obtain from the previous estimate that

(4.4) mod(Γ) ≥
log
(
1 +

mini=1,2 diamFi
4 diamEt

)
π

.

To obtain an upper bound, we define ρt : R2 → R by setting

ρt(x) =

{
1

(2π−arctan ts0)|x| if t/e2π < |x| < 1,

0 otherwise.

One easily observes that ρt is admissible for Γ(F ′1, F
′
2,∆s) and thus

mod(Γ′) ≤
∫
R2\Ωs

ρ2
t (x) dx ≤

∫
B(0,1)\B(0,t/e2π)

ρ2
t (x) dx

≤ 2π

(2π − arctan ts0)2

∫ 1

t/e2π

1

r
dr

≤ 1

2π − 2 arctan ts0
log

(
e2π

diamE′t

)
.

(4.5)

Finally, by combining (4.2), (4.4) and (4.5) and taking t0 sufficiently
small in the beginning, the claim (4.1) readily follows.

We need yet another modulus of continuity estimate. This can be
proven via a modification to the proof of the preceding lemma. Recall the
definition of E′t from the previous lemma. The key is that mod(E′t, F,R2\
∆s) ≤ CF t

s for any fixed F ⊂ R2 \ ∆s and all sufficiently small t. We
omit the details.
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Lemma 4.3. Let g : R2 \D→ R2 \∆s be conformal. Then f extends to
a homeomorphism ĝ between the closures of these domains and there is
a constant C so that

ts ≥ C log−1(C/diam(ĝ−1(E′t)))

for all sufficiently small t > 0.

Theorem 1.1 is an immediate consequence of the following two results.
First we give a stronger version of the non-existence part of Theorem 1.1
as Theorem 4.4 and after this the constructive proof for the existence of a
suitable mapping onto the domain from Theorem 4.4 as Proposition 4.5.

Theorem 4.4. Let f : R2 → R2 be a homeomorphism of finite distortion
such that f(D) = ∆s, Kf ∈ Lploc(R2) for some 1 ≤ p <∞, and that the
restriction of f to D is K-quasiconformal. Then necessarily p ≤ K/s.
Proof: The discussion after the Theorem 1.1 applies as well to the qua-
siconformal welding G′ = g−1 ◦ f. Hence, Lemma 4.1 guarantees that
h := G′−1 has a modulus of continuity of the form

|h(x)− h(y)| ≤ CF log−p/2(CF /|x− y|).
But h = f−1 ◦ g and hence the desired bound follows by combining
Lemma 4.2 with Lemma 4.3.

Proposition 4.5. For the domain ∆s and λ < 2/s, there exists a
homeomorphism f : R2 → R2 of finite distortion such that exp(λKf ) ∈
L1

loc(R2) and f(D) = ∆s.

Proof: Notice that ∆s is essentially the reflection of Ωs with respect to a
suitable circle. Thus the desired mapping can be obtained by reflection
and suitable modifications to the mapping constructed in [23]. We leave
the technical details to the interested reader.

5. Proof of Theorem 1.2

Theorem 1.2 follows from the following more general result by choos-
ing ϕ = ψ−1 and ψ(t) = Ct log−s log 1

t , for 0 < s < 1
4 .

Theorem 5.1. Let Ω ⊂ R2 be a (ϕ,ψ)-locally connected Jordan domain
with

(5.1) lim
r→0

r · ϕ−1 ◦ ψ(r)

(ϕ−1 ◦ ϕ−1 ◦ ψ(r))2 · log log 1
r

= 0,

where ϕ, ψ satisfy the technical conditions from Section 2. Then any
conformal mapping f : D → Ω can be extended to the entire plane as a
homeomorphism of locally exponentially integrable distortion.
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Proof: Since Ω is a Jordan domain, f extends to a homeomorphism be-
tween D and Ω and we denote also this extension by f . Let ei(θ−t), eiθ

and ei(θ+t) be three points on S. Since f is a sense-preserving homeo-
morphism, f(ei(θ−t)), f(eiθ) and f(ei(θ+t)) will be on the boundary of Ω
in order. Let g : R2 \D→ R2 \Ω be a conformal mapping from the Rie-
mann Mapping Theorem. Then g extends to a homemorphism between
R2 \ D and R2 \ Ω. As before, we still denote this extension by g.

D
1

f
Ω

f(0)

ei(θ−t)

eiθ

ei(θ+t)

ζ

η

f(eiθ)

f(ei(θ−t))

0

Figure 1. The first part of the proof.

For simplicity we denote by γf (θ−t, θ) the arc from f(eiθ) to f(ei(θ−t))
on ∂Ω and analogously for the notation γf (θ, θ + t). In view of Theo-
rem 3.1, one aims to estimate δg−1◦f (θ, t) in terms of t and θ. The-
orem 3.1 guarantees that we may assume that diam(γf (θ, θ + t)) +
diam(γf (θ − t, θ))� dist(f(0), ∂Ω).

We first show that there exists a constant C1 > 0 such that

(5.2) ϕ(dist(f(ei(θ−t)), γf (θ, θ + t))) ≥ C1ψ(diam(γf (θ, θ + t))/2).

Suppose that equation (5.2) fails to hold for C1 = 1/2. Let ζ ∈
γf (θ, θ + t) be a point such that

|f(ei(θ−t))− ζ| = dist(f(ei(θ−t)), γf (θ, θ + t)) := d

and η ∈ γf (θ, θ + t) such that |ζ − η| ≥ diam(γf (θ,θ+t))
2 . We consider

the disk B∗ = B(ζ,
diam(γf (θ,θ+t))

2 ). Clearly η, f(0) /∈ B∗, and thus the
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ψ-LC-2 condition implies that we may find a curve γ(f(0), η) joining f(0)

and η in Ω, with the property γ(f(0), η) ∩ B(ζ, ψ(
diam(γf (θ,θ+t))

2 )) = ∅.
For simplicity, we denote by Bψ∗ the disk B(ζ, ψ(

diam(γf (θ,θ+t))
2 )). Since

Ω is ϕ-LC-1, there is a curve γ(f(ei(θ−t)), ζ) ⊂ Ω joining f(ei(θ−t)) and ζ,
with diameter less than or equal to ϕ(|f(ei(θ−t))− ζ|).

Now consider the modulus mod(γ(f(ei(θ−t)), ζ), γ(f(0), η),Ω). Every
curve joining γ(f(ei(θ−t)), ζ) and γ(f(0), η),Ω) has a subcurve joining
S(ζ, ϕ(d)) and Sψ∗, and hence Lemma 3.5 gives us the upper bound

(5.3) mod(γ(f(ei(θ−t)), ζ), γ(f(0), η),Ω) ≤ 2π

log
ψ(diam(γf (θ,θ+t))/2)

ϕ(d)

.

On the other hand, let

γ(1, 2) = f−1(γ(f(ei(θ−t)), ζ)), γ(0, 4) = f−1(γ(f(0), η)).

Then γ(1, 2) is an arc from ei(θ−t) to f−1(ζ) and γ(0, 4) an arc from 0
to f−1(η). Invoking Lemma 3.4, one concludes that

(5.4) mod(γ(1, 2), γ(0, 4),D) ≥ C2,

for some constant C2 > 0.
By conformal invariance, estimate (5.3) together with (5.4) implies

that

(5.5) ψ

(
diam(γf (θ, θ + t))

2

)
≤ C3ϕ(d),

as desired.
Analogously, one concludes that also

ϕ(dist(f(ei(θ+t)), γf (θ − t, θ))) ≥ C1ψ(diam(γf (θ − t, θ))/2).

We now estimate δg−1◦f (θ, t)), applying (5.2) if diam(g−1(γf (θ, θ +
t))) ≥ diam(g−1(γf (θ− t, θ))) and its analogue otherwise. Let us assume
that we are in the former case.

Let γ′ : [0,∞) → R2\Ω be the hyperbolic geodesic joining f(ei(θ−t))
to ∞, i.e. γ′(0) = f(ei(θ−t)) and γ′(∞) = ∞. Lemma 3.7 gives the
modulus bound

(5.6) mod(γ′, γf (θ, θ + t),R2 \ Ω) ≤ C1

∫ d+diam(γf (θ,θ+t))

d
20

t

ϕ−1(t)2
dt.

Set r = diam(γf (θ, θ + t)). Then it follows from (5.5) that

ϕ−1(C−1
3 ψ(r/2)) ≤ d ≤ r.
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P1

P2

P3

P4

f(eiθ)

f(ei(θ−t))
f(ei(θ+t))

0

(g−1 ◦ f)(ei(θ−t))

(g−1 ◦ f)(γf )

g−1

∞
∞

Figure 2. The second part of the proof.

Thus, (5.6) yields that

mod(γ′, γf (θ, θ + t),R2 \ Ω) ≤ C1

∫ 2r

1
20ϕ
−1(C−1

3 ψ(r/2))

t

ϕ−1(t)2
dt.

Monotonicity of t
ϕ−1(t)2 implies the further upper bound

40 · r · ϕ−1(C−1
3 ψ(r/2))

ϕ−1(ϕ−1(C−1
3 ψ(r/2)))2

:= Π(r).

Our assumption (5.1) together with the doubling and inverse doubling
conditions for ϕ and ψ show that for all sufficiently small r

(5.7) Π(r) ≤ C0

2
log log

1

r
,

where C0 is the constant from Lemma 3.4.
Recalling that diam(g−1(γf (θ, θ + t))) ≥ diam(g−1(γf (θ − t, θ))),

Lemma 3.4 gives

(5.8) log δg−1◦f (θ, t) ≤ C−1
0 mod(g−1(γ′), g−1(γf (θ, θ + t)),R2 \ D).
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Since modulus is conformally invariant, combining (5.6), (5.7) and
(5.8), we arrive at

(5.9) δg−1◦f (θ, t) ≤ exp(C−1
0 Π(r)) ≤ exp

(
1

2
log log(1/r)

)
.

On the other hand, by applying Lemma 3.6 and noticing that our tech-
nical assumptions on ϕ implies that ϕ−1(t) ≥ Ctα for some α > 0, we
obtain that

r ≥ Cϕ−1(t2) ≥ Ct2α.
In conclusion, for sufficiently small t,

(5.10) ρg−1◦f (t) = sup
θ∈[0,2π]

δg−1◦f (θ, t) = O

(
log

1

t

)
.

Therefore, Theorem 3.1 allows us to complete the proof.

6. Concluding remarks

Let us begin by pointing out that our extension results also hold for
quasiconformal mappings in the sense that any quasiconformal mapping
f : D → Ω extends to the entire plane as a homeomorphism of locally
exponentially integrable distortion in the setting of Theorem 5.1 and
consequently also in the setting of Theorem 1.2. This is easily seen by
analyzing the arguments that we have used in the proof of Theorem 5.1:
the only essential change is that the constant 2π in (5.3) gets changed
to 2Kπ.

Secondly, as mentioned in the introduction, polynomial interior cusps
rule out the possibility of a locally exponentially integrable distortion
extension, but polynomial exterior cusps do not. Thus one expects for a
similar phenomenon in our general extension result. The following result
shows that this is indeed the case, but one needs to examine the proof
of Theorem 5.1.

Theorem 6.1. There exists δ > 0 so that the following holds. Let
Ω ⊂ R2 be a Jordan domain that satisfies one of the following conditions:

(a) Ω is LLC-1 and ψ-LC-2 with ψ(r) = Cr
logα 1

r

for some positive con-

stant C and some 0 < α < δ.
(b) Ω is LLC-2 and ϕ-LC-1 with ϕ−1(r) = Cr

logs log 1
r

for some positive

constant C and some 0 < s < 1
3 .

Then any conformal mapping f : D→ Ω can be extended to the entire
plane as a homeomorphism of locally exponentially integrable distortion.
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Proof of Theorem 6.1: First of all, the claim under assumption (b) di-
rectly follows from Theorem 5.1. For the proof of our claim under as-
sumption (a), we need to examine the proof of Theorem 5.1. We only
point out the crucial differences in what follows.

In this case, the estimate (5.5) becomes

(6.1) ψ

(
diam(γf (θ, θ + t))

2

)
≤ Cd,

and the modulus estimate (5.6) becomes

(6.2) mod(γ′, γf (θ, θ + t),R2 \ Ω) ≤ C ′1 log
diam(γf (θ, θ + t))

d
.

Using conformal invariance as in the proof of Theorem 5.1 and the above
estimate, we arrive at

(6.3) δg−1◦f (θ, t) ≤ C ′1
( r
d

)C′2 ≤ C ′1( r

ψ(r)

)C′2 (ψ(r)

d

)C′2
,

where r = diam(γf (θ, θ+ t)), Estimate (6.1) together with the fact that
r

ψ(r) is non-increasing further implies that

(6.4) δg−1◦f (θ, t) ≤ C ′1
( |f(ei(θ+t))− f(eiθ)|
ψ(|f(ei(θ+t))− f(eiθ)|)

)C′2
.

Using our assumption that r
ψ(r) is non-increasing one more time together

with Lemma 3.6, we obtain

(6.5) δg−1◦f (θ, t) ≤ C ′1
( |f(ei(θ+t))− f(eiθ)|
ψ(|f(ei(θ+t))− f(eiθ)|)

)C′2
≤ C ′1

(
t2

ψ(t2)

)C′2
.

It follows easily from our assumption on ψ that

(6.6) ρg−1◦f (t) = sup
θ∈[0,2π]

δg−1◦f (θ, t) = O

(
log

1

t

)
as t→ 0. Once again, Theorem 3.1 allows us to complete the proof.

Thirdly, recall from Section 4 that extendability is not possible for
the model domain that contains a single inward polynomial cusp. The
following observation shows that the critical case here is logarithmic. We
consider the domain

(6.7) ∆=B((−1, 0),
√

5)\{(x1, x2)∈R2 : x1 > 0, |x2| < x1 log−1 e/x1}.
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This domain is (ϕ,ψ)-locally connected with ϕ(t) = Ct log 3
t and ψ(t) =

Ct, and hence not covered by Theorem 5.1 that allows for possibly in-
finitely many cusps, but of lower order. Therefore we construct our
mapping by hand.

Theorem 6.2. There is a homeomorphism f : R2 → R2 of locally ex-
ponentially integrable distortion such that f : D→ ∆ is quasiconformal.
Conversely, the degree of the local exponential integrability of such an
extension cannot exceed a bound that depends on the quasiconformality
constant.

Proof: The construction of the desired mapping f is quite similar to that
used in [23], but we need to ensure that f is quasiconformal in D. For
this we rely on ideas from [15, 23] and only point out the difference with
construction from the proof of Proposition 4.5.

Differently from [23], we set

g(r) = r, H(r) = log−1(e/r)

and define linear functions Lir : ]−π2 , π2 [ → R and Lor : [π2 ,
3π
2 ] → R by

setting

Lir(θ) =
2θ

π
arctanH(r) and

Lor(θ) = 2θ − π +

(
2− 2θ

π

)
arctanH(r).

Continuing all the constructions as in [23], one concludes that

Kf2(x) ≤ C log(e/|x|) + E(x),

for all x ∈ B ∩ HR, where E : R2 → R is some bounded function and
that Kf2(x) ≤ C for x ∈ B\HR. The first claim then follows.

The second claim is obtained via a modification to the proof of Theo-
rem 1.2. We only indicate the necessary changes. First of all, the upper
bound for the analog of Lemma 4.3 is now C log−2( 3

t ). Secondly, instead
of relying on Lemma 4.1, one uses the estimate the modulus of continuity
from [10]. Finally, we combine these estimates with Lemma 4.2.
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Jyväskylä, Jyväskylä, 2010.

http://dx.doi.org/10.1016/j.anihpc.2009.01.012
http://dx.doi.org/10.1016/j.anihpc.2009.01.012
http://dx.doi.org/10.1007/BF02392360
http://dx.doi.org/10.5186/aasfm.1988.1303
http://dx.doi.org/10.5186/aasfm.1988.1303
http://dx.doi.org/10.1007/s00205-005-0394-1


Generalized Quasidisks and Conformality 211

[14] P. Koskela, J. Onninen, and J. T. Tyson, Quasihyperbolic
boundary conditions and capacity: Hölder continuity of quasicon-
formal mappings, Comment. Math. Helv. 76(3) (2001), 416–435.
DOI: 10.1007/PL00013214.

[15] P. Koskela and J. Takkinen, Mappings of finite distortion: for-
mation of cusps. Publ. Mat. 51(1) (2007), 223–242. DOI: 10.5565/

PUBLMAT−51107−10.
[16] P. Koskela and J. Takkinen, A note to “Mappings of finite

distortion: formation of cusps II” [MR2354095], Conform. Geom.
Dyn. 14 (2010), 184–189. DOI: 10.1090/S1088-4173-2010-00211-0.

[17] P. Koskela and J. Takkinen, Mappings of finite distortion: for-
mation of cusps. III, Acta Math. Sin. 26(5) (2010), 817–824. DOI:
10.1007/s10114-010-7565-1.

[18] P. Koskela, A. Zapadinskaya, and T. Zürcher, Mappings
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