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1. Introduction and main results

In this paper we study the weighted Fock spaces F2
ϕ(C)

F2
ϕ(C) =

{
f ∈ Hol(C) : ‖f‖2ϕ =

∫
C
|f(z)|2e−2ϕ(|z|) dm(z) <∞

}
;

here dm is area measure and ϕ is an increasing function defined on
[0,+∞), limr→∞ ϕ(r) = ∞. We assume that the radial weight ϕ(z) =
ϕ(|z|) is C2 smooth and strictly subharmonic on C, and set

ρ(z) = (∆ϕ(z))−1/2,

so that ∆ϕ(r) = ϕ′′(r) + ϕ′(r)/r (r > 0). One more condition on ϕ is
that for every fixed C we have

ρ(r + Cρ(r)) � ρ(r), 0 < r <∞.
(The notation A � B means that there is a constant C independent of
the relevant variables such that C−1B ≤ A ≤ CB.) In particular, this
holds if ρ′(r) = o(1), r →∞. The function ρ plays the role of a scaling
parameter, see the definition of dρ below.

Typical ϕ are power functions,

ϕ(r) = ra, a > 0.

For such functions ϕ we have

ρ(r) � r1−a/2, r > 1.
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Furthermore, if

ϕ(r) = (log r)2,

then

ρ(r) � r, r > 1.

Given z, w ∈ C, we define a scaled distance function

dρ(z, w) =
|z − w|

min(ρ(z), ρ(w))
.

We say that a subset Λ of C of is dρ-separated if

inf
λ6=λ∗
{dρ(λ, λ∗), λ, λ∗ ∈ Λ} > 0.

Next, we introduce a family of sufficiently regular subsets Λ in C
defined as the zero sets for the functions in a special class.

Definition 1. Given γ ∈ R, we say that an entire function S belongs
to the class Sγ if

(1) the zero set Λ of S is dρ-separated, and
(2)

|S(z)| � eϕ(z) d(z,Λ)

ρ(z)

1

(1 + |z|)γ
, z ∈ C.

For constructions of such functions in radial weighted Fock spaces see,
for example, [1, 2, 5, 7].

In the standard Fock spaces (ϕ(r) = r2) the classes Sγ were introduced
by Lyubarskii in [4]. They are analogs of the sine type functions for the
Paley-Wiener space, and their zero sets include rectangular lattices and
their perturbations.

Definition 2. A set Λ ⊂ C is called a weak interpolation set for F2
ϕ(C)

if for every λ ∈ Λ there exists fλ ∈ F2
ϕ(C) such that fλ(λ) = 1 and

fλ|Λ\{λ} = 0.
A set Λ⊂C is called a uniqueness set for F2

ϕ(C) if for every f ∈ F2
ϕ(C),

the relation f |Λ = 0 implies that f = 0.

Theorem 3. Let φ and ρ be as above. Given S ∈ Sγ , consider its zero
set Λ. Then

(a) Λ is a uniqueness set for F2
ϕ(C) if and only if γ ≤ 1,

(b) Λ is a weak interpolation set for F2
ϕ(C) if and only if γ > 0.
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Denote by kz the reproducing kernel of F2
ϕ(C):

〈f,kz〉F2
ϕ(C) = f(z), f ∈ F2

ϕ(C), z ∈ C.

The sequence Λ ⊂ C is called sampling for F2
ϕ(C) if

‖f‖2ϕ � ‖f‖2ϕ,Λ :=
∑
λ∈Λ

|f(λ)|2

kλ(λ)
, f ∈ F2

ϕ(C),

and interpolating for F2
ϕ(C) if for every v = (vλ)λ∈Λ with ‖v‖ϕ,Λ < ∞

there exists f ∈ F2
ϕ(C) such that

v = f |Λ.

It is obvious that each sampling sequence for F2
ϕ(C) is a set of unique-

ness for F2
ϕ(C) and each interpolation sequence for F2

ϕ(C) is a weak

interpolation set for F2
ϕ(C).

The sequence Λ⊂C is called complete interpolating sequence for F2
ϕ(C)

if it is simultaneously interpolating and sampling for F2
ϕ(C).

Let kλ = kλ/‖kλ‖ϕ,2 be the normalized reproducing kernel at λ. Let
Λ ⊂ C. We say that {kλ}λ∈Λ is a Riesz basis in F2

ϕ(C) if it is complete
and for some C > 0 and each finite sequence {aλ} we have

1

C

∑
λ∈Λ

|aλ|2 ≤

∥∥∥∥∥∑
λ∈Λ

aλ kλ

∥∥∥∥∥
2

ϕ

≤ C
∑
λ∈Λ

|aλ|2.

Note that in F2
ϕ(C), interpolation and sampling can be expressed in

terms of geometric properties of reproducing kernels: interpolation
means that the sequence of the associated reproducing kernels is a Riesz
basis in its closed linear span; sampling means that this sequence is a
frame (see [9, Chapter 3]). Standard duality arguments show that the
system {kλ}λ∈Λ is a Riesz basis in F2

ϕ(C) if and only if Λ is a complete

interpolating sequence for F2
ϕ(C).

In 1992 Seip and Wallstén [8, 10] characterized interpolating and
sampling sequences in these spaces when ϕ(r) = r2. Their results show
that there are no sequences which are simultaneously interpolating and
sampling, and hence there are no unconditional or Riesz bases in this
situation. The situation changes in small Fock spaces when the weight
increases slowly. Borichev and Lyubarskii [2] have shown that for ϕ(r) =
(log r)2 there exist Riesz bases in F2

ϕ(C). Furthermore [9, 3, 2], the

space F2
ϕ(C) does not admit Riesz bases of the (normalized) reproducing

kernels for regular ϕ, (log r)2 = o(ϕ(r)), r →∞.
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By Theorem 3, for 0 < γ ≤ 1 the family {kλ}λ∈Λ is a complete
minimal family in F2

ϕ(C). Thus the family{
S/[S′(λ)(· − λ)]

}
λ∈Λ

is the biorthogonal system and we associate to any f ∈ F2
ϕ(C) the formal

(Lagrange interpolation) series

f ∼
∑
λ∈Λ

f(λ)
S

S′(λ)(· − λ)
.

This series converges unconditionally in F2
ϕ(C) if {kλ}λ∈Λ is a Riesz basis

in F2
ϕ(C). Otherwise, it does not necessarily unconditionally converge

in F2
ϕ(C), and it is natural to ask whether this series admits a summation

method if we modify (slightly) the norm of the space.
Denote by Λ = {λk} the zero sequence of S ordered in such a way that

|λk| ≤ |λk+1|, k ≥ 1. Similarly to Lyubarskii [4] and Lyubarskii-Seip [6],
we obtain the following result:

Theorem 4. Let 0 ≤ β ≤ 1, γ + β ∈ (1/2, 1), and let S ∈ Sγ . Suppose
that

(1) r1−2β = O(ρ(r)), r → +∞.

Then for every f ∈ F2
ϕ(C) we have

(2) lim
N→∞

∥∥∥∥∥f − S
N∑
k=1

f(λk)

S′(λk)(· − λk)

∥∥∥∥∥
ϕβ

= 0,

where ϕβ(r) = ϕ(r) + β log(1 + r).

The result corresponding to β = 1/2, ϕ(r) = r2, ρ(r) � 1 is contained
in [6, Theorem 10]. On the other hand, in the case ϕ(r) = (log r)a,
1 < a ≤ 2, ρ(r) � r(log r)1− a2 , r > 2, the space F2

ϕ(C) contains Riesz
bases of (normalized) reproducing kernels [2]. Furthermore, our theorem
shows that in the case r . ρ(r), r > 1, when S ∈ Sγ , γ ∈ (1/2, 1), the
interpolation series converges already in F2

ϕ(C). (The notation A . B
means that there is a constant C independent of the relevant variables
such that A ≤ CB.)

In the case 0 < a ≤ 2, ϕ(r) = ra, ρ(r) � r1−a/2, r > 1, we can choose
a/4 ≤ β ≤ 1 with appropriate γ as in Theorem 4. Thus, the closer we
are to φ(r) = (log r)2, ρ(r) � r, r > 2, the less we should modify the
norm (by the smaller β) to get convergence in (2). Now, it is interesting
to find out how sharp is condition (1) in Theorem 4.
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Theorem 5. Let 0 < a ≤ 2, ϕ(r) = ra, r > 1. If 0 ≤ β < a/4, γ ∈ R,
and S ∈ Sγ , then there exists f ∈ F2

ϕ(C) such that∥∥∥∥∥f − S
N∑
k=1

f(λk)

S′(λk)(· − λk)

∥∥∥∥∥
ϕβ

6→ 0, N →∞.

Thus, for the power weights ϕ(r) = ra, 0 < a ≤ 2, we really need
to modify the norm to get the convergence, and the critical value of β
is a/4.

Acknowledgements. The authors are grateful to Alexander Borichev
for very helpful discussions and comments, and to the referee for her/his
valuable remarks.

2. Proofs

2.1. Proof of Theorem 3. (a) If γ > 1 then Sγ ⊂ F2
ϕ(C) and S|Λ = 0.

Hence Λ is not a uniqueness set.
If γ ≤ 1, then Sγ ∩ F2

ϕ(C) = ∅. Suppose that there exists g ∈ F2
ϕ(C)

such that g|Λ = 0. Then g = FS for an entire function F , and we have

(3)

∫
C
|F (w)|2|S(w)|2e−2ϕ(w) dm(w) <∞.

Given Ω ⊂ C, denote

I[Ω] =

∫
Ω

|F (w)|2 d2(w,Λ)

(1 + |w|)2γρ2(w)
dm(w).

By (3), we have

I[C] <∞.
Denote by D(z, r) the disc of radius r centered at z. Let

Ωε =
⋃
λ∈Λ

D(λ, ερ(λ)),

where ε is such that the discs D(λ, 2ερ(λ)) are pairwise disjoint. We
have

I[C] = I[C\Ω2ε]+
∑
λ∈Λ

I[D(λ, 2ερ(λ))\D(λ, ερ(λ))]+
∑
λ∈Λ

I[D(λ, ερ(λ))].

It is clear that

I[C\Ω2ε] ≥ c1
∫
C\Ω2ε

|F (w)|2

(1 + |w|)2γ
dm(w).
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On the other hand,∫
D(λ,ερ(λ))

|F (w)|2 dm(w) ≤ c2
∫
D(λ,2ερ(λ))\D(λ,ερ(λ))

|F (w)|2 dm(w),

and, hence,

I[D(λ, 2ερ(λ))\D(λ, ερ(λ))] ≥ c3I[D(λ, ερ(λ))].

Therefore ∫
C

|F (w)|2

(1 + |w|)2γ
dm(w) <∞,

the function F is constant, and g = cS. Since Sγ ∩F2
ϕ(C) = ∅, we get a

contradiction. Statement (a) is proved.

(b) Let γ > 0. Set

fλ(z) =
S(z)

S′(λ)(z − λ)
, λ ∈ Λ.

It is obvious that fλ ∈ F2
ϕ(C), fλ|(Λ\{λ}) = 0 and fλ(λ) = 1. Hence

Λ is a weak interpolation set. If γ ≤ 0, λ ∈ Λ, then, by (a), Λ\{λ} is a
uniqueness set for F2

ϕ(C). Therefore, Λ is not a weak interpolation set

for F2
ϕ(C).

2.2. Proof of Theorem 4. We follow the scheme of proof proposed
in [4, 6] and concentrate mainly on the places where the proofs differ.
We need some auxiliary notions and lemmas. The proof of the first
lemma is the same as in [1, Lemma 4.1].

Lemma 6. For every δ > 0, there exists C > 0 such that for functions f
holomorphic in D(z, δρ(z)) we have

|f(z)|2e−2ϕ(z) ≤ C

ρ(z)2

∫
D(z,δρ(z))

|f(w)|2e−2ϕ(w) dm(w).

Definition 7. A simple closed curve γ = {r(θ)e−iθ, θ ∈ [0, 2π]} is
called K-bounded if r is C1-smooth and 2π-periodic on the real line
and |r′(θ)| ≤ K, θ ∈ R.

Let γ ∈ R, S ∈ Sγ , and let Λ = {λk} be the zero set of S ordered in
such a way that |λk| ≤ |λk+1|, k ≥ 1. We can construct a sequence of
numbers RN →∞ and a sequence of contours ΓN such that:

(1) ΓN = RNγN , where γN are K-bounded with K > 0 independent
of N .

(2) dρ(Λ,ΓN ) ≥ ε for some ε > 0 independent of N .
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(3) {λk}N1 lie inside ΓN and {λk}∞N+1 lie outside ΓN .

(4) ΓN ⊂ {z : RN − ρ(RN ) < |z| < RN + ρ(RN )}.
Indeed, for some 0 < ε < 1 the discs Dk = D(λk, ερ(λk)) are disjoint.

For some δ = δ(ε) > 0 we have

ερ(λk) > 4δρ(λN ),
∣∣|λk| − |λN |∣∣ < δρ(λN ).

Fix ψ ∈ C∞0 [−1, 1], 0 < ψ < 1, such that ψ > 1/2 on [−1/2, 1/2].
Put

Ξ =

{
k :
∣∣|λk| − |λN |∣∣ < 1

4
δρ(λN )

}
,

denote λk = rke
iθk , k ∈ Ξ, and set

r(θ) = 1 +
∑
k∈Ξ

sk
δρ(λN )

|λN |
ψ

(
|λN |
δρ(λN )

(θ − θk)

)
,

where sk = 1, k ≤ N , sk = −1, k > N .
Finally, set

γN =
{
r(θ)eiθ, θ ∈ [0, 2π]

}
.

Lemma 8.

RNρ(RN )

∫
γN

|f(RNζ)|2e−2ϕ(RNζ)|dζ| → 0, N →∞.

Proof: Set

CN =
⋃
ζ∈γN

D(RNζ, ρ(RNζ)).

Since

ρ(RNζ) � ρ(RN ), ζ ∈ γN ,
by Lemma 6 we have

RNρ(RN )

∫
γN

|f(RNζ)|2e−2ϕ(RNζ)|dζ|

. RNρ(RN )

∫
γN

[
1

ρ(RNζ)2

∫
D(RNζ,ρ(RNζ))

|f(w)|2e−2ϕ(w) dm(w)

]
|dζ|

� RN
ρ(RN )

∫
CN

|f(w)|2e−2ϕ(w)

(∫
γN

χD(RNζ,ρ(RNζ))(w)|dζ|
)
dm(w)

.
∫
CN

|f(w)|2e−2ϕ(w) dm(w)→ 0, N →∞.
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Proof of Theorem 4. Let χN (z) = 1 if z lies inside ΓN and 0 otherwise.
Put

ΣN (z, f) = S(z)

N∑
k=1

f(λk)

S′(λk)(z − λk)
,

and set

IN (z, f) =
1

2πi

∫
ΓN

f(ζ)

S(ζ)(z − ζ)
dζ.

The Cauchy formula gives us that

IN (z, f) =

N∑
k=1

f(λk)

S′(λk)(z − λk)
− χN (z)

f(z)

S(z)
, z /∈ ΓN .

Hence,

ΣN (z, f)− f(z) = S(z)IN (z, f) + (χN (z)− 1)f(z),

and to complete the proof of the theorem, it remains only to verify that

‖SIN (·, f)‖ϕβ → 0, N →∞.
Let ω be a Lebesgue measurable function such that

(4)

∫ ∞
0

∫ 2π

0

|ω(reit)|2e−2ϕ(r)(1 + r)−2βr dr dt ≤ 1,

and let

JN (f, ω) =

∫ ∞
0

∫ 2π

0

ω(reit)S(reit)IN (reit, f)e−2ϕ(r)(1 + r)−2βr dr dt.

By duality, it remains to show that

sup |JN (f, ω)| → 0, N →∞,
where the supremum is taken over all ω satisfying (4).

We have

2πiJN (f, ω) =

∫
ΓN

f(ζ)

S(ζ)

∫
C

ω(z)S(z)

z − ζ
e−2ϕ(z)(1 + |z|)−2β dm(z) dζ

=

∫
ΓN

f(ζ)

S(ζ)

∫
C

φ(z)

z − ζ
(1 + |z|)−β−γ dm(z) dζ,

where

φ(z) = [ω(z)e−ϕ(z)(1 + |z|)−β ][S(z)e−ϕ(z)(1 + |z|)γ ].

Note that ∫
C
|φ(z)|2 dm(z) ≤ C.
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Set
ψ(z) = RNφ(RNz)

(here ψ depends on N). We have∫
C
|ψ(z)|2 dm(z) ≤ C.

Changing the variables z = RNw and ζ = RNη, we get

2πiJN (f, ω) = RN

∫
γN

f(RNη)

S(RNη)

∫
C

ψ(w)

w − η
(1 +RN |w|)−β−γ dm(w) dη.

Consider the operators

TN (ψ)(η) =

∫
C

ψ(w)

w − η
|w|−β−γ dm(w), ψ ∈ L2(C, dm(w)).

Since γ+ β ∈ (1/2, 1), by [6, Lemma 13], the operators TN are bounded
from L2(C, dm(w)) into L2(γN ) and

sup
N
‖TN‖ <∞.

Hence, by Lemma 8 and by the property r1−2β = O(ρ(r)), r → ∞, we
get

JN (f, ω) . R1−β−γ
N

∣∣∣∣∫
γN

f(RNη)

S(RNη)
TN (ψ)(η) dη

∣∣∣∣
. R1−β

N

∫
γN

|f(RNη)|e−ϕ(RNη)|TN (ψ)(η)| |dη|

.

(
RNρ(RN )

∫
γN

|f(RNη)|2e−2ϕ(RNη)|dη|
)1/2

× ‖TN (ψ)‖L2(γN ) → 0, N →∞.
This completes the proof.

2.3. Proof of Theorem 5. It suffices to find f ∈ F2
ϕ(C) and a se-

quence Nk such that (in the notations of the proof of Theorem 4)

(5) Ak =

∥∥∥∥∥SχNk
∫

ΓNk

f(ζ)

S(ζ)(· − ζ)
dζ

∥∥∥∥∥
ϕβ

6→ 0, k →∞.

We follow the method of the proof of [6, Theorem 11]. Let us write down
the Taylor series of S:

S(z) =
∑
n≥0

snz
n.
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Since S ∈ Sγ , by Cauchy’s inequality, we have

|sn| . inf
r>0

er
a r

r1− a2

1

(1 + r)γ
r−n

. inf
r>0

er
a

r−n−γ+ a
2

. exp
(
−n
a

ln
n

ae
− γ

a
lnn

)
, n > 0.

Choose 0 < ε < a
2 − 2β. Given R > 0 consider

SR =
∑

|n−aRa|<R
a
2
+ε

snz
n.

Then for every n we have

|S(z)− SR(z)|e−|z|
a

= O(|z|−n),
∣∣|z| −R∣∣ < ρ(R), R→∞.

Next we use that for some c > 0 independent of n, we have∫ ∞
0

r2n+1e−2ra dr ≤ c
∫
|r−(na )1/a|<n(1/a)−(1/2)

r2n+1e−2ra dr.

Therefore,

‖SR‖2ϕ =
∑

|n−aRa|<R
a
2
+ε

π|sn|2
∫ ∞

0

r2n+1e−2ra dr

≤
∑

|n−aRa|<R
a
2
+ε

c|sn|2
∫
|r−(na )1/a|<n(1/a)−(1/2)

r2n+1e−2ra dr

≤
∑

|n−aRa|<R
a
2
+ε

c|sn|2
∫
|r−R|<c1R1− a

2
+ε
r2n+1e−2ra dr

≤
∑
n≥0

c|sn|2
∫
|r−R|<c1R1− a

2
+ε
r2n+1e−2ra dr

= c

∫
|r−R|<c1R1− a

2
+ε

∑
n≥0

|sn|2r2n+1e−2ra dr

= c

∫∣∣|z|−R∣∣<c1R1− a
2
+ε
|S(z)|2e−2|z|a dm(z) ≤ c2R2− a2 + ε− 2γ.



Convergence of Lagrange Interpolation 131

Fix κ such that

1− a

4
+
ε

2
− γ < κ < 1− β − γ.

Choose a sequence Nk, k ≥ 1, such that for Rk = |λNk | we have
Rk+1 > 2Rk, k ≥ 1, and∣∣∣∣∣∣e−|z|a

∑
m 6=k

SRm(z)R−κm

∣∣∣∣∣∣ ≤ 1

|z|γ+1
,
∣∣|z| −Rk∣∣ < ρ(Rk), k ≥ 1.

Set
f =

∑
k≥1

SRkR
−κ
k .

Then f ∈ F2
ϕ(C), and

f

S
= R−κk +O(R−1−κ

k ) on ΓNk , k →∞.

Hence, ∣∣∣∣∣S(z)

∫
ΓNk

f(ζ)

S(ζ)(z − ζ)
dζ

∣∣∣∣∣ ≥ cR−κk e|z|
a

(1 + |z|)γ
, |z| < Rk

2
,

and finally

Ak ≥ cR−κk

(∫ Rk/2

0

r1−2β dr

(1 + r)2γ

)1/2

→∞, k →∞.

This proves (5) and thus completes the proof of the theorem.
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