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Abstract

We discuss two possible definitions for Sobolev spaces associated
with ultraspherical expansions. These definitions depend on the
notion of higher order derivative. We show that in order to have
an isomorphism between Sobolev and potential spaces, the higher
order derivatives to be considered are not the iteration of the
first order derivatives. Some discussions about higher order Riesz
transforms are involved. Also we prove that the maximal operator
for the Poisson integral in the ultraspherical setting is bounded
on the Sobolev spaces.

1. Introduction

In this paper we introduce Sobolev spaces associated with the second
order differential operator

Lλ = − d2

dθ2
+

λ(λ − 1)

sin2 θ
, θ ∈ (0, π), λ > 0.

This expression can be factorized as

(1) Lλ = D∗
λDλ + λ2,

where Dλ = (sin θ)λ d
dθ (sin θ)−λ and D∗

λ denotes the formal adjoint of Dλ

in L2((0, π), dθ).
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Given β > 0 we consider the fractional integral L
−β

2

λ , see (6). The
ultraspherical potential space, Lp

λ,β , is defined as the range of the oper-

ator L
−β

2

λ on the space Lp(0, π). We endow Lp
λ,β with the norm ‖ · ‖Lp

λ,β

induced by the usual norm in Lp(0, π), that is,

(2) ||f ||Lp

λ,β
= ||g||p,

being f = L
−β

2

λ g and g ∈ Lp(0, π).
Given m ∈ N, the ultraspherical Sobolev space, W

p
λ,m, is defined as

follows. A function f ∈ Lp(0, π) is in W
p
λ,m if Dλ+k−1 ◦Dλ+k−2 ◦· · ·◦Dλ

f ∈ Lp(0, π), for every k = 1, . . . , m. Observe that

(3) Dλ+k−1 ◦ Dλ+k−2 ◦ · · · ◦ Dλ = (sin θ)λ+k

(

1

sin θ

d

dθ

)k

(sin θ)−λ.

We shall write in an abridge form

(4) D(k) = Dλ+k−1 ◦ Dλ+k−2 ◦ · · · ◦ Dλ, k = 1, . . . .

We make the convention D(0) = Id. Along the paper the parameter λ

is a fixed number, hence we believe that the no appearance of λ in D(k)

doesn’t produce confusion to the reader.
We equipped W

p
λ,m with the norm || · ||W p

λ,m
given by

(5) ||f ||W p

λ,m
=

m
∑

k=0

||D(k)f ||p, f ∈ W
p
λ,m.

We study some properties of the spaces Lp
λ,m and W

p
λ,m that lead to

the main result of the paper.

Theorem 1. Let λ > 0, 1 < p < ∞ and m ∈ N. Then W
p
λ,m = Lp

λ,m.

Simplifying matters, the key behind the proof of this theorem is to

establish an inequality of the type ‖D(k)f‖p ∼ ‖Lk/2
λ f‖p, or equivalently

‖D(k)L
−k/2
λ g‖p ∼ ‖g‖p. In other words, two facts have to be proved: first,

the boundedness in Lp(0, π) of the operators D(k)L
−k/2
λ ; secondly, a cer-

tain inverse process that roughly gives ‖g‖p ≤ ‖D(k)L
−k/2
λ g‖p. For the

inverse process we use auxiliary operators, see Proposition 5. In the proof
of these boundedness we use, among other tools, a Muckenhoupt mul-

tiplier transplantation result, see Lemma 1. The operators D(k)L
−k/2
λ

play the role of the “higher order Riesz transforms”. These last thoughts
are contained in Section 3.
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Other higher order Riesz transforms associated with the operator Lλ,

were defined in [5]. Namely Dk
λL

−k/2
λ , where Dk

λ = Dλ◦
k· · ·◦Dλ and Dλ is

the operator defined in (1). These Riesz transforms would suggest to
define the Sobolev space as the subspace of functions f ∈ Lp (0, π) such
that Dk

λf ∈ Lp (0, π), k = 0, 1, . . . , m. This Sobolev space is denoted
by Wp

λ,m and endowed with the norm ‖·‖Wp

λ,m
given by

‖f‖Wp

λ,m
=

m
∑

k=0

∥

∥Dk
λf
∥

∥

p
, f ∈ Wp

λ,m.

In Section 4 and continuing with this line of thought, we ask if a re-
sult like Theorem 1 is possible for these Sobolev spaces, namely are the
spaces Wp

λ,m and Lp
λ,m isomorphic? We prove that although the Riesz

transforms, Dk
λL

−k/2
λ , are bounded in Lp(0, π), the inverse process that

is needed for a theorem like the Theorem 1 doesn’t work. In fact the
Theorem 2 below will be proved. We should mention here that we give

a different proof of the boundedness of the Riesz transforms Dk
λL

−k/2
λ

from the one given in [5].

Theorem 2. Let λ > 0, 1 < p < ∞ and m ∈ N. Then W
p
λ,m is

continuously contained in Wp
λ,m. However W

p
λ,2 6= Wp

λ,2, provided that

0 < λ ≤ 1 − 1
p .

Theorems 1 and 2 suggest that the adjective “Sobolev” has to be given
to the spaces W

p
λ,m.

Finally some properties of these Sobolev spaces W
p
λ,m are analyzed.

In Section 3 it is shown that if W p
m(I), I a real interval, denotes the

classical Sobolev space on I, then W
p
λ,m 6= W p

m(0, π), but if f ∈ W
p
λ,m

then f|(a,b) ∈ W p
m(a, b), for every 0 < a < b < π (Proposition 3). This

fact and the procedure developed by Kinnunen [11], allow us to prove
in Section 5 the following theorem about the maximal operator for the
Poisson integral, Pλ

∗ .

Theorem 3. Let λ > 0 and 1 < p < ∞. Then Pλ
∗ is bounded from W

p
λ,1

into itself.

Some related results for the Hermite and Laguerre families can be
found in [3], [4], [16], [21] and [10].

Throughout this paper by C we always represent a suitable positive
constant that can change in each occurrence. For every 1 ≤ p < ∞, we
denote as usual by p′ the conjugate exponent of p.
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2. Ultraspherical potential spaces

For every n ∈ N, we denote by ϕλ
n the ultraspherical function defined

by

ϕλ
n(θ) =

Γ(λ)
√

π2
1
2
−λ

(

(n + λ)n!

Γ(n + 2λ)

)
1
2

(sin θ)λPλ
n (cos θ), θ ∈ (0, π),

where Pλ
n is the λ-ultraspherical polynomial of degree n (see [20]). The

family {ϕλ
n}n∈N is an orthonormal and complete system in L2(0, π). For

every n ∈ N, ϕλ
n is an eigenfunction of the operator Lλ, see (1), with

eigenvalue (n + λ)2. The system {ϕλ
n}n∈N has been discussed in the

literature for instance by Askey and Wainger ([1] and [2]).
Negative powers of the operator Lλ can be defined as ultraspherical

multipliers as follows. If β > 0 the operator L
−β
λ is given by

(6) L
−β
λ f =

∞
∑

n=0

aλ
n(f)

(n + λ)2β
ϕλ

n, f ∈ L2(0, π),

where aλ
n(f) =

∫ π

0 f(θ)ϕλ
n(θ) dθ. It is clear that, for every β > 0, L

−β
λ de-

fines a bounded operator from L2(0, π) into itself.
Let Sλ be the linear space generated by the system {ϕλ

n}n∈N of ultras-
pherical functions. This linear space plays an important role in our study.
Sλ is a dense subspace on Lp(0, π), 1 ≤ p < ∞, see [19, Lemma 2.3].

Proposition 1. Let λ > 0, β > 0 and 1 ≤ p < ∞. The operator L
−β
λ is

bounded and one to one on Lp(0, π).

Proof: It is not hard to see that, for each f ∈ Sλ

L
−β
λ f(θ) =

∫ π

0

f(ϕ)Kλ,β(θ, ϕ) dϕ, θ ∈ (0, π),

where

(7) Kλ,β(θ, ϕ) =
1

Γ(2β)

∫ 1

0

(− log r)2β−1

r
Pλ

r (θ, ϕ) dr, θ, ϕ ∈ (0, π),

and the Poisson kernel Pλ
r (θ, ϕ) for 0 < r < 1 and θ, ϕ ∈ (0, π) is given

by (see [15, (2.11) and (2.12), p. 25])

Pλ
r (θ, ϕ)=

λ

π
rλ(1−r2)

∫ π

0

(sin t)2λ−1(sin θ sin ϕ)λ

(1−2r(cos θ cosϕ + sin θ sin ϕ cos t)+r2)λ+1
dt.

We can write, for θ, ϕ, t ∈ (0, π) and 0 < r < 1,

(8) 1 − 2r(cos θ cosϕ + sin θ sin ϕ cos t) + r2

= (1 − r)2 + 2r(1 − cos(θ − ϕ)) + 2r sin θ sin ϕ(1 − cos t).
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Then,

(9) Pλ
r (θ, ϕ) ≤ C

rλ

(1 − r)2λ+1
, θ, ϕ ∈ (0, π).

Moreover, by [15, (4.1)(a), p. 27],

(10) Pλ
r (θ, ϕ) ≤ C

(1 − r)rλ

(1 − r)2 + (θ − ϕ)2
, θ, ϕ ∈ (0, π),

1

2
≤ r < 1.

From (9) and (10), it deduces that for every ϕ ∈ (0, π)

(11)

∫ π

0

Kλ,β(θ, ϕ) dθ≤C

(

∫ π

0

∫ 1

1
2

(− log r)2β−1 1 − r

(1 − r)2+(θ − ϕ)2
dr dθ

+

∫ π

0

∫ 1
2

0

(− log r)2β−1

r1−λ
dr dθ

)

≤ C.

By using the symmetry Kλ,β(θ, ϕ) = Kλ,β(ϕ, θ) we get the boundedness

of L
−β
λ in Lp((0, π)) for every 1 ≤ p < ∞.

Let n ∈ N. For every f ∈ Sλ we have

aλ
n(L−β

λ f) =

∫ π

0

L
−β
λ (f)(θ)ϕλ

n(θ) dθ =
1

(n + λ)2β
aλ

n(f), n ∈ N.

As the operators f →
∫ π

0

L
−β
λ (f)(θ)ϕλ

n(θ) dθ, f →
∫ π

0

f(θ)ϕλ
n(θ) dθ,

are bounded from Lp(0, π) into C and Sλ is dense in Lp(0, π), we obtain

aλ
n(L−β

λ f) =
aλ

n(f)

(n + λ)2β
, f ∈ Lp(0, π).

Suppose that L
−β
λ f = 0, for some f ∈ Lp(0, π). Then aλ

n(f) = 0,
n ∈ N. Hence, according to [18, Theorem 2.2(d)], f = 0. Thus, we

prove that L
−β
λ is one to one on Lp(0, π).

Boundedness of ultraspherical multipliers has been investigated by
several authors (see [7], [15], [6] and [14]). In particular by using the
following lemma one can prove the boundedness in Lp(0, π), 1 < p < ∞,

of L
−m

2

λ , m ∈ N. This lemma is an easy consequence of [14, Corol-
lary 17.11], and it will be useful in the sequel.
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Lemma 1. Let 1 < p < ∞, d ∈ Z and λ, γ > 0. Assume that

g(n) =

J−1
∑

j=0

cj(n + 1)−j + O
(

(n + 1)−J
)

,

where J ≥ 2(λ + γ + 2). Then the operator

Tf(θ) =

∞
∑

n=0

g(n)aγ
n(f)ϕλ

n+d(θ)

is bounded in Lp(0, π).

Proposition 1 gives sense to the potential spaces, Lp
λ,β , defined in (2).

It is not hard to see that (Lp
λ,β , ‖ · ‖Lp

λ,β
) is a Banach space. Moreover,

since Sλ is a dense subspace of Lp(0, π) [19, Lemma 2.3], by taking into

account that L
− β

2

λ Sλ = Sλ, we get that Sλ is a dense subspace of Lp
λ,β .

3. Ultraspherical Sobolev spaces

A standard procedure shows that the space (W p
λ,m, || · ||W p

λ,m
), see (5),

is a Banach space. It is clear that W
p
λ,m+1 is contained in W

p
λ,m. Next

we establish properties of these Sobolev spaces.

Proposition 2. Let λ > 0, 1 ≤ p < ∞ and m ∈ N. The linear space Sλ

is a dense subspace of W
p
λ,m.

Proof: Note firstly that, according to [20, (4.7.14), p. 81], we have that

(12) D(k)ϕλ
n = (−1)k

√

Γ(n + 1)Γ(n + 2λ + k)

Γ(n − k + 1)Γ(n + 2λ)
ϕλ+k

n−k, n, k ∈ N,

where D(k) is defined in (4). Here and in the sequel ϕλ
n = 0 when n < 0.

Then, since λ > 0, D(k)ϕλ
n ∈ Lp(0, π), k = 0, 1, . . . , m. Hence, Sλ is

contained in W
p
λ,m.

Assume now that f ∈ W
p
λ,m. We first prove that, for every k =

0, 1, . . . , m,

(13) aλ+k
n (D(k)f) =

∫ π

0

f(θ)(D(k))∗ϕλ+k
n (θ) dθ, n ∈ N,

where (D(k))∗ = (−1)k(sin θ)1−λ
(

1
sin θ

d
dθ

)k
(sin θ)λ+k−1 is the formal ad-

joint of D(k) in L2(0, π).
Let n ∈ N and k = 0, 1, . . . , m. Note that for k = 0 (13) is obvious,

then suppose k ≥ 1. We choose a sequence {φl}l∈N of smooth functions
satisfying:
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(1) suppφl ⊂
(

1
2l , π − 1

2l

)

; φl(x) = 1, x ∈
(

1
l , π − 1

l

)

; 0 ≤ φl(x) ≤ 1,
for every l ∈ N;

(2) For each s ∈ N, there exists Cs > 0 such that

∣

∣

∣

∣

ds

dθs
φl(θ)

∣

∣

∣

∣

≤ Cs
1

θs(π − θ)s
, θ ∈ (0, π) and l ∈ N.

Since D(k)f ∈ Lp(0, π) and φl(θ) → 1, as l → ∞, for every θ ∈ (0, π),
one has

∫ π

0

D(k)(f)(θ)ϕλ+k
n (θ) dθ = lim

l→∞

∫ π

0

D(k)(f)(θ)φl(θ)ϕ
λ+k
n (θ) dθ

= lim
l→∞

∫ π

0

f(θ)(D(k))∗(φl(θ)ϕ
λ+k
n (θ)) dθ.

By using Leibniz rule we get, for every θ ∈ (0, π) and l ∈ N,

(D(k))∗(φl(θ)ϕ
λ+k
n (θ))

= (−1)k(sin θ)1−λ

(

1

sin θ

d

dθ

)k

((sin θ)λ+k−1ϕλ+k
n (θ)φl(θ))

= (−1)k
k
∑

j=0

(

k

j

)

(−1)j(sin θ)k−jD∗
λ+k−jD

∗
λ+k−(j−1) . . . D∗

λ+k−1(ϕ
λ+k
n (θ))

×
(

1

sin θ

d

dθ

)k−j

(φl(θ)).

(14)

Taking into account that

(15) D∗
λϕλ+1

n−1(θ) = −
√

n(n + 2λ)ϕλ
n(θ), θ ∈ (0, π),

we can write, for each θ ∈ (0, π) and j = 1, . . . , k,

(16) D∗
λ+k−j . . .D∗

λ+k−1(ϕ
λ+k
n (θ))

= (−1)j

√

Γ(n + j + 1)Γ(n + 2(λ + k))

Γ(n + 1)Γ(n + 2(λ + k) − j)
ϕ

λ+k−j
n+j (θ).
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On the other hand, a straightforward manipulation allows us to obtain
∣

∣

∣

∣

(

1

sin θ

d

dθ

)s

(φl(θ))

∣

∣

∣

∣

≤ C

s
∑

t=1

∣

∣

∣

∣

1

(sin θ)2s−t

dt

dθt
φl(θ)

∣

∣

∣

∣

≤ C
1

(sin θ)2s
, θ ∈ (0, π), s, l ∈ N.

(17)

By combining (14), (16), and (17) we deduce that
∣

∣

∣(D(k))∗(φl(θ)ϕ
λ+k
n (θ)) − φl(θ)(D(k))∗(ϕλ+k

n (θ))
∣

∣

∣ ≤ CFl(θ), θ ∈ (0, π),

where 0 ≤ Fl(θ) ≤ C, θ ∈ (0, π) and l ∈ N, and liml→∞ Fl(θ) = 0,
θ ∈ (0, π).

Then, convergence dominated theorem leads to

lim
l→∞

∫ π

0

f(θ)(D(k))∗(φl(θ)ϕ
λ+k
n (θ)) dθ= lim

l→∞

∫ π

0

f(θ)φl(θ)(D(k))∗(ϕλ+k
n (θ)) dθ

=

∫ π

0

f(θ)(D(k))∗(ϕλ+k
n (θ)) dθ,

and (13) is proved.
By using again (16) for j = k ,we conclude that

(18) aλ+k
n (D(k)f) = (−1)k

√

Γ(n + k + 1)Γ(n + 2(λ + k))

Γ(n + 1)Γ(n − k + 2(λ + k))
aλ

n+k(f).

Let 0 ≤ k ≤ m. By (12) and (18) we can write, for every 0 ≤ r < 1
and θ ∈ (0, π),

D(k)Pλ
r (f)(θ)=

∞
∑

n=k

rn+λaλ
n(f)(−1)k

√

Γ(n+1)Γ(n+2λ+k)

Γ(n−k+1)Γ(n+2λ)
ϕλ+k

n−k(θ)

=

∞
∑

n=k

rn+λaλ+k
n−k(D(k)f)ϕλ+k

n−k(θ)

=

∞
∑

n=0

rn+λ+kaλ+k
n (D(k)f)ϕλ+k

n (θ)=Pλ+k
r (D(k)f)(θ),

(19)

where, for every g ∈ Lp(0,∞), Pλ
r (g) denotes the Poisson integral of g

associated with the ultraspherical system {ϕλ
n}n∈N and it is given by

Pλ
r (g)(θ) =

∞
∑

n=0

rn+λaλ
n(g)ϕλ

n(θ), 0 ≤ r < 1 and θ ∈ (0, π).
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Also, for every l ∈ N, l > k, 0 < r < 1 and θ ∈ (0, π),

(20) D(k)

(

∞
∑

n=l+1

rn+λaλ
n(f)ϕλ

n(θ)

)

=

∞
∑

n=l−k+1

rn+λ+kaλ+k
n (D(k)f)ϕλ+k

n (θ).

[14, (2.8), p. 9] is used to obtain that ‖ϕγ
n‖q ≤ Cγ,q, n ∈ N, with γ > 0

and 1 ≤ q ≤ ∞. This justifies differentiation under the sum sign in (19)
and (20) and allows us to show that

∥

∥

∥

∥

∥

D(k)

(

∞
∑

n=l+1

rn+λaλ
n(f)ϕλ

n(θ)

)∥

∥

∥

∥

∥

p

≤
∞
∑

n=l−k+1

rn+λ+k||ϕλ+k
n ||p||D(k)f ||p||ϕλ+k

n ||p′

≤ C||D(k)f ||p
∞
∑

n=l−k+1

rn+λ+k, 0 ≤ r < 1.

(21)

Let ε > 0. According to [18, Theorem 2.2(d)] we have that

(22) Pλ
r (g) → g, as r → 1, in Lp(0, π).

Then there exists r0 ∈ (0, 1) such that

(23) ||D(k)(Pλ
r0

(f) − f)||p < ε, 0 ≤ k < m,

and from (21) there exists l0 ∈ N for which

(24)

∥

∥

∥

∥

∥

D(k)

(

∞
∑

n=l0+1

rn+λ
0 aλ

n(f)ϕλ
n

)∥

∥

∥

∥

∥

p

< ε, 0 ≤ k ≤ m.

Thus by (23) and (24), we conclude that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

D(k)

(

l0
∑

n=0

rn+λ
0 aλ

n(f)ϕλ
n − f

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

< 2ε, 0 ≤ k ≤ m,

that is,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

l0
∑

n=0

rn+λ
0 aλ

n(f)ϕλ
n − f

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

W p

λ,m

< 2(m + 1)ε.

We now present some relations between our ultraspherical Sobolev
spaces and the classical Sobolev spaces W p

m(a, b) on (a, b) with 0 ≤ a <

b ≤ π.
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Proposition 3. Let λ > 0, 1 ≤ p < ∞ and m ∈ N. Assume that
f ∈ W

p
λ,m. Then

(i) f ∈ W p
m(a, b), for every 0 < a < b < π.

(ii) f is in W p
m(0, π), provided that supp(f) ⊂ [a, b] ⊂ (0, π).

Moreover, if m ≥ 1 there exist g1 ∈ W p
m(0, π) \ W

p
λ,m and g2 ∈ W

p
λ,m \

W p
m(0, π), when λ ≤ 1 − 1

p , p > 1.

Proof: To see (i) and (ii) it is sufficient to note that if f ∈ W
p
λ,m,

dk

dθk
f ∈

Lp(K) for every compact subset K of (0, π) and k = 0, 1, . . . , m.
The function g1(θ) = 1, θ ∈ (0, π), is in W p

m(0, π) and it is not
in W

p
λ,m. On the other hand g2(θ) = (sin θ)λ, θ ∈ (0, π), is in W

p
λ,m.

However, d
dθg2(θ) = λ(sin θ)λ−1(cos θ), θ ∈ (0, π), is not in Lp(0, π)

when p > 1 and λ ≤ 1 − 1
p .

Our objective now is to prove Theorem 1. Previously we need to
establish the boundedness of some operators.

Lemma 2. Let λ > 0, 1 ≤ p ≤ ∞ and k ∈ N. Then the projector
operator Pk defined by

Pk(f) =
k
∑

n=0

aλ
n(f)ϕλ

n, f ∈ Lp(0, π),

is bounded on Lp(0, π).

Proof: It is sufficient to note that

‖Pk(f)‖p ≤
k
∑

n=0

‖ϕλ
n‖p‖ϕλ

n‖p′‖f‖p, f ∈ Lp(0, π),

where p′ denotes the conjugate exponent of p.

Proposition 4. Let λ > 0, 1 < p < ∞ and k ∈ N. We define the
operator Rk

λ,1 on Sλ by

Rk
λ,1f = D(k)L

− k
2

λ f, f ∈ Sλ.

Then Rk
λ,1 can be extended to Lp(0, π) as a bounded operator from Lp(0, π)

into itself.

Proof: According to (12) we can write

Rk
λ,1f =

∞
∑

n=k

(−1)k

√

Γ(n+1)Γ(n+2λ+k)

Γ(n+1−k)Γ(n+2λ)

1

(n + λ)k
aλ

n(f)ϕλ+k
n−k, f ∈ Sλ.
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We denote by g the function

g(n) = (−1)k

√

Γ(n + 1)Γ(n + 2λ + k)

Γ(n + 1 − k)Γ(n + 2λ)

1

(n + λ)k
, n = k, k + 1, . . . .

It is clear that g(n) = (−1)k
√

p(n)
(n+λ)2k , n = k, k + 1, . . . , where p is a

polynomial with degree 2k. Let us write g(z) = (−1)k
√

p(z)
(z+λ)2k , |z| > k,

and consider the function h(z) = g
(

1−z
z

)

, |z| < δ, for some δ > 0 small
enough. Then

h(z) = (−1)k

√

p(1−z
z )z2k

(1 + (λ − 1)z)2k
, |z| < δ.

Since limz→0 p
(

1−z
z

)

z2k = 1 and p(1−z
z )z2k is a polynomial, h is holo-

morphic in {z ∈ C : |z| < δ}, when δ is small enough. Then, for
every l ∈ N,

g(n) =

l
∑

j=0

cj
1

(n + 1)j
+ O

(

1

(n + 1)l+1

)

,

when n ≥ n0 = n0(λ, k), for a certain n0 ∈ N. We define gJ , J ∈ N, by

gJ(n) =















J−1
∑

j=0

cj
1

(n + 1)j
, 0 < n < n0,

g(n), n ≥ n0.

Let us choose J ≥ 2(2λ + k + 2). Applying Lemma 1, we get that the
operator Rk

λ,1,J defined by

Rk
λ,1,Jf =

∞
∑

n=k

gJ(n)aλ
n(f)ϕλ+k

n−k, f ∈ Sλ,

can be extended to Lp(0, π) as a bounded operator.
Also, by proceeding as in the proof of Lemma 2 we can establish that

the operator Rk
λ,1−Rk

λ,1,J is a bounded operator from Lp(0, π) into itself.

Thus, we conclude that Rk
λ,1 can be extended to Lp(0, π) as a bounded

operator from Lp(0, π) into itself.
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Proposition 5. Let λ > 0, 1 < p < ∞ and k ∈ N. We define on Sλ+k

the operator

Rk
λ,2f = (D(k))∗ L

−k
2

λ+kf, f ∈ Sλ+k.

Then, Rk
λ,2 can be extended to Lp(0, π) as a bounded operator from Lp(0, π)

into itself.

Proof: Let f ∈ Sλ+k. According to (16) for j = k, we have that

Rk
λ,2f =

∞
∑

n=0

(−1)k

(n + λ + k)k

√

Γ(n + 2λ + 2k)Γ(n + k + 1)

Γ(n + k + 2λ)Γ(n + 1)
aλ+k

n (f)ϕλ
n+k.

By proceeding as in the proof of Proposition 4 we can see that Rλ,2

can be extended to Lp(0, π) as a bounded operator from Lp(0, π) into
itself.

We can write, for every f ∈ Sλ,

Rk
λ,2R

k
λ,1f =

∞
∑

n=k

Γ(n + 2λ + k)Γ(n + 1)

Γ(n + 2λ)Γ(n − k + 1)

1

(λ + n)2k
aλ

n(f)ϕλ
n.

In the next proposition we prove the boundedness of the inverse of
Rk

λ,2R
k
λ,1 on the linear space Sλ,k ={f ∈ Sλ : aλ

n(f) = 0, n = 0, 1, . . . , k−
1}.

Proposition 6. Let λ > 0, 1 < p < ∞ and k ∈ N. The operator T k
λ

defined by

T k
λ f =

∞
∑

n=k

Γ(n + 2λ)Γ(n − k + 1)(λ + n)2k

Γ(n + 2λ + k)Γ(n + 1)
aλ

n(f)ϕλ
n, f ∈ Sλ,

can be extended as a bounded operator from Lp(0, π) into itself.

Proof: Fix J ≥ 4(λ + 1). By proceeding as in the proof of Proposition 4
we first take a function gJ such that

gJ(n) =
Γ(n + 2λ)Γ(n − k + 1)(λ + n)2k

Γ(n + 2λ + k)Γ(n + 1)
,

for n large enough. In order to establish the boundedness property for
the operator T k

λ , it is then sufficient to prove that the operator

T k
λ,Jf =

∞
∑

n=k

gJ(n)aλ
n(f)ϕλ

n, f ∈ Sλ,
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can be extended to Lp(0, π) into itself. Moreover, Lemma 2 allows us to
reduce the boundedness of T k

λ,J to functions f ∈ Sλ,k. Indeed, suppose
that

(25) ‖T k
λ,Jf‖p ≤ C‖f‖p, f ∈ Sλ,k.

Let f ∈ Sλ. We write f = f0 + f1, where f0 = Pk−1f . Then

Tλ,Jf = T k
λ,Jf0 + T k

λ.Jf1 = T k
λ,Jf1.

Since f1 ∈ Sλ,k, by (25) and Lemma 2 we get that

‖T k
λ,Jf‖p = ‖T k

λ,Jf1‖p ≤ C‖f1‖p ≤ C(‖f‖p + ‖f0‖p) ≤ C‖f‖p.

Finally, to prove the boundedness of the operator T k
λ,J on Sλ,k we apply

Lemma 1.

Proof of Theorem 1: Sλ is a dense subspace of W
p
λ,m (Proposition 2) and

of Lp
λ,m ([19, Lemma 2.3]). Moreover, if (fn)∞n=1 is a sequence such that

fn → f , as n → ∞, in W
p
λ,m or in Lp

λ,m, then fn → f , as n → ∞,

in Lp(0, π). Hence, to see that W
p
λ,m = Lp

λ,m it is sufficient to show that
there exists C > 0 such that

(26)
1

C
‖f‖W p

λ,m
≤ ‖f‖Lp

λ,m
≤ C‖f‖W p

λ,m
, f ∈ Sλ.

Assume that f, g ∈ Sλ such that f = L
−m

2

λ g. We write g = g1 + g2,

where g1 =
∑m−1

n=0 aλ
n(g)ϕλ

n =
∑m−1

n=0 (n + λ)maλ
n(f)ϕλ

n. Then, according
to Propositions 5 and 6, since Rm

λ,1g2 = Rm
λ,1g, we get

‖f‖Lp

λ,m
= ‖g‖p ≤ ‖g1‖p + ‖g2‖p

≤
m−1
∑

n=0

(n + λ)m‖ϕλ
n‖p‖ϕλ

n‖p′‖f‖p + ‖T m
λ Rm

λ,2R
m
λ,1g2‖p

≤ ‖f‖p

m−1
∑

n=0

(n + λ)m‖ϕλ
n‖p‖ϕλ

n‖p′ + ‖T m
λ Rm

λ,2R
m
λ,1g‖p

≤ C(‖f‖p + ‖Rm
λ,1g‖p) ≤ C(‖f‖p + ‖D(m)L

−m
2

λ g‖p)

≤ C(‖f‖p + ‖D(m)f‖p) ≤ C‖f‖W p

λ,m
.



234 J. J. Betancor et al.

On the other hand, Propositions 4 and 1 lead to

‖f‖W p

λ,m
=

m
∑

k=0

‖D(k)f‖p =
m
∑

k=0

‖D(k)L
−m

2

λ g‖p =
m
∑

k=0

‖Rk
λ,1L

−m−k
2 g‖p

≤ C

m
∑

k=0

‖L−m−k
2 g‖p ≤ C‖g‖p = C‖f‖Lp

λ,m
.

Thus (26) is established.

4. Alternative definition of Sobolev spaces

As we said in the introduction the n-th order Riesz transform associ-
ated with the operator Lλ is given by

Rk
λf = Dk

λL
−k

2

λ f, f ∈ Sλ.

We observe that Dk
λ = Dλ◦

k· · ·◦Dλ = (sin θ)
λ dk

dθk (sin θ)
−λ

, for every k ∈
N. By using Propositions 4 and 5 we will prove that Rk

λ can be extended
to Lp (0, π) as a bounded operator, for every k ∈ N and 1 < p < ∞. As
it was mentioned our proof is different from the one presented in [5].

Proposition 7. Let λ > 0, k ∈ N and 1 < p < ∞. Then Rk
λ defines a

bounded operator from Lp (0, π) into itself.

Proof: We denote by Λ = 1
sin θ

d
dθ . A carefull analysis shows that, for

every k ∈ N,

(27)
dk

dθk
=

k
∑

ℓ=1

pℓ,k(θ)(sin θ)ℓΛℓ,

where

pℓ,k(θ) =



























Nℓ,k
∑

m=0

cℓ,k
m

(

cos θ

sin θ

)2m

, when ℓ + k is even,

Nℓ,k
∑

m=0

dℓ,k
m

(

cos θ

sin θ

)2m+1

, when ℓ + k is odd,

for certain constants cℓ,k
m and dℓ,k

m . Here, Nℓ,k depends on ℓ and k as it
is indicated in the following table:
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k even k odd

1 ≤ ℓ ≤ k
2

k
2 < ℓ ≤ k 1 ≤ ℓ ≤ [k

2 ] + 1 [k
2 ] + 1 < ℓ ≤ k

ℓ even [ ℓ
2 ] k

2 − [ ℓ
2 ] [ ℓ

2 ] − 1 [k
2 ] − [ ℓ

2 ]

ℓ odd [ ℓ
2 ] k

2 − [ ℓ
2 ] − 1 [ ℓ

2 ] [k
2 ] − [ ℓ

2 ]

Hence, for every θ ∈ (0, π),

(28) |pℓ,k(θ)| ≤ C(sin θ)−
k
2
+|ℓ− k

2
|, if k is even and 1 ≤ ℓ ≤ k,

and

(29) |pℓ,k(θ)| ≤ C(sin θ)−[ k
2
]+|ℓ−[ k

2
]−1|, if k is odd and 1 ≤ ℓ ≤ k.

Let f ∈ Sλ. From (27) and taking into account (12) and (18), it
deduces that, for every k ∈ N,

Dk
λL

−k
2

λ f(θ) =

k
∑

ℓ=1

pℓ,k(θ)D(ℓ)L
− k

2

λ f(θ)

=

k
∑

ℓ=1

pℓ,k(θ)D(ℓ)L
− k−ℓ

2

λ L
− ℓ

2

λ f(θ)

=

k
∑

ℓ=1

pℓ,k(θ)L
− k−ℓ

2

λ+ℓ D(ℓ)L
− ℓ

2

λ f(θ)

=

k
∑

ℓ=1

pℓ,k(θ)L
− k−ℓ

2

λ+ℓ Rℓ
λ,1f(θ), θ ∈ (0, π).

(30)

By using estimations (28) and (29) we then obtain that, for each θ ∈
(0, π),

|Dk
λL

−k
2

λ f(θ)| ≤ C





k
2
∑

ℓ=1

∣

∣

∣

∣

1

(sin θ)ℓ
L
− ℓ

2

λ+ℓL
−k−2ℓ

2

λ+ℓ Rℓ
λ,1f(θ)

∣

∣

∣

∣

+

k
∑

ℓ=k
2
+1

∣

∣

∣

∣

1

(sin θ)k−ℓ
L
−k−ℓ

2

λ+ℓ Rℓ
λ,1f(θ)

∣

∣

∣

∣



 ,
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when k is even, and

|Dk
λL

−k
2

λ f(θ)| ≤ C





[ k
2
]+1
∑

ℓ=1

∣

∣

∣

∣

1

(sin θ)ℓ−1
L
− ℓ−1

2

λ+ℓ L
−k−2ℓ+1

2

λ+ℓ Rℓ
λ,1f(θ)

∣

∣

∣

∣

+
k
∑

ℓ=[ k
2
]+2

∣

∣

∣

∣

1

(sin θ)k−ℓ
L
− k−ℓ

2

λ+ℓ Rℓ
λ,1f(θ)

∣

∣

∣

∣



 ,

in the case that k is odd.
Hence, according to Propositions 1 and 4, the boundedness of the

operator R(k)
λ will be established when we prove that, for every λ > 0

and j ∈ N, the operator

Cλ,jf =
1

(sin θ)j
L
− j

2

λ+jf

is bounded from Lp (0, π) into itself. We proceed by induction on j.
Indeed, let λ > 0 and 1 < p < ∞. Note firstly that

R1
λ,2f = D∗

λL
− 1

2

λ+1f = − (sin θ)
−λ d

dθ

(

(sin θ)
λ

L
− 1

2

λ+1f
)

= − (sin θ)
−λ d

dθ

(

(sin θ)
2λ+1

(sin θ)
−λ−1

L
− 1

2

λ+1f
)

= − (2λ + 1)
cos θ

sin θ
L
− 1

2

λ+1f − (sin θ)λ+1 d

dθ

(

(sin θ)−λ−1
L
− 1

2

λ+1f
)

= − (2λ + 1)
cos θ

sin θ
L
− 1

2

λ+1f − R1
λ+1,1f, f ∈ Sλ+1.

Thus, by Propositions 4 and 5 the operator f → cos θ
sin θ L

− 1
2

λ+1f is bounded

from Lp (0, π) into itself. Also, by Proposition 1, L
− 1

2

λ+1 is bounded
on Lp (0, π). Then
∫ π

0

∣

∣

∣

∣

1

sin θ
L
− 1

2

λ+1f (θ)

∣

∣

∣

∣

p

dθ ≤ C

(

∫ 3π
4

π
4

∣

∣

∣L
− 1

2

λ+1f (θ)
∣

∣

∣

p

dθ

+

(

∫ π
4

0

+

∫ π

3π
4

)

∣

∣

∣

∣

cos θ

sin θ
L
− 1

2

λ+1f (θ)

∣

∣

∣

∣

p

dθ

)

≤ C ‖f‖p
p , f ∈ Lp (0, π) .

Hence Cλ,1 is bounded from Lp (0, π) into Lp (0, π).
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Suppose now that the operator Cλ,j is bounded on Lp (0, π), for ev-
ery λ > 0 and j = 0, . . . , s, where s ∈ N. Let us see that the opera-
tor Cλ,s+1 is bounded on Lp (0, π), with λ > 0 fixed. By using Leibniz
rule it follows that, for every f ∈ Sλ+s+1,

Rs+1
λ,2 f = (D(s+1))∗L

− s+1

2

λ+s+1f

= (−1)s+1 (sin θ)−λ+1

(

1

sin θ

d

dθ

)s+1
(

(sin θ)λ+s
L
− s+1

2

λ+s+1f
)

= (−1)s+1
s+1
∑

j=1

(

s + 1

j

)

(sin θ)
−2λ−s−j

(

1

sin θ

d

dθ

)s+1−j

×
(

(sin θ)
2(λ+s)+1

)

Dλ+s+j ◦ · · · ◦ Dλ+s+1L
− s+1

2

λ+s+1f + Tλ,sf,

(31)

where the operator Tλ,s is defined by

Tλ,sf = (−1)s+1 (sin θ)−2λ−s

(

1

sin θ

d

dθ

)s+1
(

(sin θ)2(λ+s)+1
)

L
− s+1

2

λ+s+1f.

We observe that (12) and (18) lead to

Dλ+s+j ◦· · ·◦Dλ+s+1L
− s+1

2

λ+s+1f = L
− s+1−j

2

λ+s+1+jR
j
λ+s+1,1f, j = 1, . . . , s+1.

Also, a straightforward manipulation shows that

∣

∣

∣

∣

∣

∣

s+1
∑

j=1

(

s + 1

j

)

(sin θ)
−2λ−s−j

(

1

sin θ

d

dθ

)s+1−j

×
(

(sin θ)
2(λ+s)+1

)

L
− s+1−j

2

λ+s+1+jR
j
λ+s+1,1f

∣

∣

∣

∣

∣

∣

≤ C

s+1
∑

j=1

∣

∣

∣

∣

∣

1

(sin θ)
1+s−j L

− s+1−j
2

λ+2j+s+1−jR
j
λ+s+1,1f

∣

∣

∣

∣

∣

.
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From this estimation, and by using the induction hypothesis and
Proposition 4 we deduce that the operator

f →
s+1
∑

j=1

(

s + 1

j

)

(sin θ)
−2λ−s−j

(

1

sin θ

d

dθ

)s+1−j

×
(

(sin θ)
2(λ+s)+1

)

L
− s+1−j

2

λ+s+1+jR
j
λ+s+1,1f

is bounded from Lp (0, π) into itself.
Hence, from (31) and Proposition 5, it follows that the operator Tλ,s

is bounded from Lp (0, π) into itself. We can write

(sin θ)
−2λ−s

(

1

sin θ

d

dθ

)s+1
(

(sin θ)
2(λ+s)+1

)

=
q (θ)

(sin θ)
s+1 ,

where θ ∈ (0, π), q ∈ C∞ (R), q(0) 6= 0 and q(π) 6= 0. By choosing δ > 0
such that q(θ) 6= 0 for θ ∈ [0, δ] ∪ [π − δ, π] we have that

∫ π

0

|Cλ,s+1f (θ)|p dθ ≤
(

∫ δ

0

+

∫ π

π−δ

)

∣

∣

∣

∣

1

q (θ)
Tλ,sf (θ)

∣

∣

∣

∣

p

dθ

+ C

∫ π−δ

δ

∣

∣

∣L
− s+1

2

λ+s+1f (θ)
∣

∣

∣

p

dθ

≤ C

(∫ π

0

|Tλ,sf (θ)|p dθ +

∫ π

0

∣

∣

∣L
− s+1

2

λ+s+1f (θ)
∣

∣

∣

p

dθ

)

≤ C ‖f‖p
p ,

for f ∈ Lp (0, π). Hence Cλ,s+1 is bounded on Lp (0, π).
Thus, the proof is finished.

Finally we can give the proof of Theorem 2, see Introduction, which
establishes the relation between the spaces W

p
λ,m and Wp

λ,m.

Proof of Theorem 2: Assume that f ∈ W
p
λ,m. By Theorem 1 there exists

g ∈ Lp (0, π) such that f = L
−m

2

λ g and ‖g‖p is equivalent to ‖f‖W p

λ,m
.

Then, by Propositions 7 and 1, for every k = 0, 1, . . . , m, we have that

∥

∥Dk
λf
∥

∥

p
=
∥

∥

∥Dk
λL

−m
2

λ g
∥

∥

∥

p
=
∥

∥

∥Rk
λL

−m−k
2

λ g
∥

∥

∥

p
≤C

∥

∥

∥L
−m−k

2

λ g
∥

∥

∥

p
≤ C ‖f‖W p

λ,m
.

Thus we conclude that W
p
λ,m is continuously contained in Wp

λ,m.
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It is not difficult to see that, if 0 < λ ≤ 1 − 1
p , the function f(θ) =

θ (sin θ)
λ

is in Wp
λ,2 but not in W

p
λ,2.

5. A maximal operator on the ultraspherical Sobolev
spaces

Kinnunen [11] (see also [12] and [13]) proved that the Hardy-Little-
wood maximal operator is bounded in the classical Sobolev space W

p
1(R

n)
for every 1 < p < ∞. In this section we prove that the maximal opera-
tor associated with the Poisson integral for the operator Lλ is bounded
from W

p
λ,1 into itself, for every 1 < p < ∞.

The maximal operator associated with {Pλ
r }0≤r<1 is defined by

Pλ
∗ (f) = sup

0≤r<1
|Pλ

r (f)|.

This operator Pλ
∗ is bounded from Lp(0, π) into itself, for every 1 < p <

∞ and from L1(0, π) into L1,∞(0, π) [18, Theorem 2.2]. Now we can
give the proof of Theorem 3.

Proof: Let f ∈ W
p
λ,1 and let {rj}∞j=1 be an enumeration of the rational

numbers in (0, 1). Then, we have

Pλ
∗ (f)(θ) = sup

j∈N

|Pλ
rj

(f)(θ)| = sup
k∈N

max
1≤j≤k

|Pλ
rj

(f)(θ)|, θ ∈ (0, π).

Let j ∈ N. According to [15, Theorem 3], Pλ
rj

(f) ∈ C∞(0, π). Moreover,

by (19)

DλPλ
rj

(f)(θ) = Pλ+1
rj

(Dλ(f))(θ), θ ∈ (0, π).

Then, by using [18, Theorem 2.2], we conclude that Pλ
rj

(f) ∈ W
p
λ,1.

Hence, Pλ
rj

(f) ∈ W
p
1 (a, b), for every 0 < a < b < π (see Proposition 3).

By [8, Lemma 7.6] we get that, for every k ∈ N and 0 < a < b < π,

∣

∣

∣

∣

d

dθ
max

1≤j≤k
|(sin θ)−λPλ

rj
(f)(θ)|

∣

∣

∣

∣

≤ max
1≤j≤k

∣

∣

∣

∣

d

dθ
|(sin θ)−λPλ

rj
(f)(θ)|

∣

∣

∣

∣

,

a.e. θ ∈ (0, π).

Hence
∣

∣

∣

∣

Dλ

(

max
1≤j≤k

∣

∣

∣Pλ
rj

(f)(θ)
∣

∣

∣

)∣

∣

∣

∣

≤ max
1≤j≤k

∣

∣

∣Pλ+1
rj

(Dλf)(θ)
∣

∣

∣ ,

a.e. θ ∈ (0, π) and k ∈ N.
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From [18, Theorem 2.2] again, we can find C > 0 for which
∥

∥

∥

∥

max
1≤j≤k

∣

∣

∣Pλ
rj

f
∣

∣

∣

∥

∥

∥

∥

W p

λ,1

≤ C‖f‖W p

λ,1
k ∈ N.

The sequence
{

Fk = max1≤j≤k

∣

∣

∣Pλ
rj

(f)
∣

∣

∣

}

k∈N

is bounded in W
p
λ,1. W

p
λ,1,

after renorming, is isometrically isomorphic to a closed subspace of
Lp(0, π) × Lp(0, π). Then W

p
λ,1, after renorming, is reflexive and the

closed unit ball in W
p
λ,1 is sequentially compact in the weak topology.

Hence, there exists a subsequence {Fkl
}l∈N

of {Fk}k∈N and a func-
tion g ∈ W

p
λ,1 such that

Fkl
→ g, as l → ∞,

in the weak topology of W
p
λ,1 and ‖g‖W p

λ,1
≤ C‖f‖W p

λ,1
. Since Fkl

(θ) →
Pλ
∗ (f)(θ), as l → ∞, for θ ∈ (0, π), and {Fkl

}l∈N is increasing, we
conclude that Pλ

∗ (f) = g and the proof of Theorem 3 is finished.

The argument in the proof of the last theorem can be used in those
cases in which formulas (12) and (18) produce identities like (19). This
is the case of the maximal operator associated with partial sums for
ultraspherical expansions. In fact the following theorem can be proved
with these ideas and [9, Theorem F].

Theorem 4. Let 1 < p < ∞. The maximal operator Sλ
∗ defined by

Sλ
∗ (f) = sup

N∈N

∣

∣

∣

∣

∣

N
∑

n=0

aλ
n(f)ϕλ

n

∣

∣

∣

∣

∣

is bounded from W
p
λ,1 into itself.
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