ON GENERATING FUNCTIONS OF THE JACOBI
POLYNOMIALS

PETER HENRICI

1. Introduction. The series of Jacobi polynomials

(1) S a,0" P()

(a, independent of p and r) has in the case a,=1 already been evaluated
by Jacobi in terms of elementary functions, and there are several other
known cases where it can be summed explicity. The sum of (1) is then
usually called a generating function of the Jacobi polynomials. On the
other hand, according to a particular case of a theorem which we have
proved recently, every function of a certain class of regular solutions
of the partial differential equation

2 2
(2) _a_ng*a’z‘LJr 2,u+1gzi+ 2v+1 ou _,
ox* oy* x ox Y oY

can be represented by a series of type (1), where

p=2"+y,

(3) o
T= xq yv ’

r+y

and may therefore be considered as a generating function of the Jacobi
polynomials in the above sense. This fact is used in the present paper
for the construction of an expansion of type (1) which contains several
known results of this kind as special cases. As a side result we shall
obtain some identities of Cayley-Orr type between the coefficients in the
Taylor expansions of certain products of hypergeometric series.

In what follows « and y are considered as independent complex
variables. Also the variables

(4) r=x+1y, Zr=x—1y

will be used. Our notation of special functions is in accordance with [5].

2. The expansion theorem. The special case k=0 of the main
theorem of [6] is as follows:
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THEOREM. Let
(5) pvA—2, —8, —4, «o- .
Let
U@, y)=Ulz, z%)

be a solution of (2) regular in the domain <Z : |2|<r, |2*|<r (>0)
satisfying the conditions

(6) Uz, 2)=U(—2, —2%)=U(z", 2)
and let
(7) Uz, 0)= 3 a2

n=0

Then u(xz, y) has in F the representation

8 U 1) = 21l PIRG)

where p and t are given by (3) and

(9) T —_ _“_22"72!_ — (ﬂ+V+1)E_72!
" (pt+v+1+4n), (p-l—u—{—lr) (/tﬂ—ui}—2>
2 n 2 n

3. A special solution of (2). We substitute in (2) dipolar coordinates
(¢, ») which we define by

(10) = sinh E . Wsin 7

cosh&+cosy ~ coshé&+cosy

They are connected with (z, 2*) and (p, r) respectively by the relations

cosh 5:1 +22*_14p ,
(1) & .
P S _
cos 7= 1 ,,NZZ —1- P
w @
where
@ =1/ (1—2)(1—2*) =V'1—2pc+p* .

(The square roots are positive for z=2z*=0, p=0.) Since (2) may be
written in the form

(13) div (z**+'y**'grad u)=0
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and since the transformation (10) is isothermal', we obtain for ¢(&, 7)=
u(x, y) the equation

0 k1, 2V + a¢) + a?”)
x? 241 1 + y. 1,,2v+1 ~ =O_
a\" e )T\ Yy,
Setting
s=cosh ¢, t=cosy
and
P& ) =(s+)""S()T(t)

one finds by the usual separation method that both S(s) and T'(¢) have
to satisfy the differential equation

(14) o’ —1) +2(A—|—1)v rﬁ+[z(a+1)—h(n+1)]v 0,

where v=s, I1=p, if V=S, and v=t, A=y, if V=T, & being a separation
parameter. A solution of (14) regular near v=1 is the function

1—w
(15) Vﬁ(/v)zzFl’VX""IC,Z‘I“K/‘{'l, 2
L 2+1

=TI+ 1) (P = 1) MPAw) .

Here P denotes the Legendre function of the first kind.> Tracing back
our substitutions and assuming that none of the numbers p and v is a
negative integer, we may thus define a solution of (2) by

(16) OFp, 7)= —u—v—lVM(l'!“O)Vv(l p)

(U

Evidently this function satisfies the functional relations

17 DE(p, T)y=D¥2\(p, 7)
DL (p, T)=DM(— Py —7).

Among the many possible representations of @%* in terms of
hypergeometric functions we list the following, which is obtained by
substituting equation 3.2 (24) of [5] for the Legendre functions involv-
ed in (15):

1Arlsmg from the conformal transformation z=tanh ¢, (=& +17.
2 The functions V Mv) could also be expressed in terms of Gegenbauer functions.
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pre+l pre+2 ¢
(18) oLV (p, v)=¢ 2 ’ 2 ’

Here we have put
= (L+p) L= )= (L2 (L)
and

x_ 2p(c+1) _ ( 2t ) |

(1+p) 1+2z*

20(r—1) z2—2*\?
Y= = .

(1—p) <1—-zz*)

It is easy to see from this representation that the function
Uz, 2*)=0¢"(p, 7)

is regular in |2|<1, |#*|<1 and that it satisfies the symmetry rela-
tions (6). Save for the mentioned exceptional values of the parameters,
(15) defines therefore a solution of (2) for which the assumptions of
the expansion principle of §2 are satisfied.

4. The Jacobi expansion of ¢%*. From (18) we have immediately

pte+l  ptE+2 v—k  v—k+1
(19) Uz, 0)=.F" 2 ’ 2 TR 2 2 ' .

r+1 v+1

If we denote by a, the coefficient of 2*" in the Taylor expansion of the
right hand side of (19), we obtain by the expansion principle the series

#0 Ve (L) v (120 = S Peee)
w n=0

&
which converges if

lz[<<1,  [&¥|<1,
or, what amounts to the same,

lp(- +V/7—1)|<1.

We note the following representations of a, in terms of terminat-
ing hypergeometric series:
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(,v:ﬁ) (z%:',ﬂ,ﬂ) pre+l pE+2
2 ' 2 " 2 b 2 ’ b ’
2y a,= - —F ,
O ,2:;%_%, b=y
o1 (V= E)y #+m+Lx+1,—nj
(22) A =T7n (y+1)n‘3F2[#+1, l4k—y—mn ’
o (p+y+1), p+e+l, p—k, —n;
(23) =T (:»-Jrl)n'SF2 p+1l,  ptv+l |0

Of these, (21) is obtained by straightforward Cauchy multiplication of
the two power series on the right of (19). In order to prove (22), we
consider (20) for the special value r=1 (that is, z=2*). This gives on
the left, using (17),

‘ ‘ e+l p+r+2 0 42
(24) Ulz, 2)=1+22) " (1—=2)"" . 2 2 1+
p+1

By a quadratic transformation [5, eq. 2.11 (34)] this ,F, can be ex-
pressed by one with argument z?, and in view of

, _ (v+1),
Pow(1)= )
(20) thus becomes

L a\k=Y T /z+ls+1,lc+1;z‘ﬂ:l’ = v+
(25) =gy #HET L g = Sraa, U D,

From this (22) follows again by Cauchy multiplication of the series on
the left. Putting r=—1 (or 2= —2*) in (20) leads in a similar way to

@) Qe[ L e S (D
P+1 n=0 n!

The representation (23) of a, is remarkable for the fact that only one
parameter in the ,F, depends on n. It is obtained by expressing the
hypergeometric function on the left of (25) by one with argument
2*/(z*—1), expanding in terms of this argument, expanding the powers
of 2*/(z*—1) in terms of powers of 2* and rearranging.

From (19) it is easily seen by applying Euler’s linear transforma-
tion to the two hypergeometric series simultaneously that U(z, 0) and
hence @, is a symmetric function of g and ». Therefore in (21), (22)
and (23) the variables ¢ and » may be interchanged. Furthermore, in
view of (17) t may be replaced everywhere by —s—1. Many other
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representations for the coefficients a, could be derived from the ones
given above by the application of transformations of generalized hyper-
geometric series of unit argument. One example for this technique
will be given at the end of §6.

5. Special cases. (i) If £=0, (23) yields by Vandermonde’s theorem

a1 (/1+V+1)n [,u’ —n;:l= -1
Ap=7n (v+1), 2y p+v+1 Tn

and from (15) we have

ro-(5)"

Thus (20) reduces to
@7) 2011+ p+ @)1= p+ @)= f}) p"PI(z) .
This is the classical generating series of Jacobi®.
(ii) Since
(28) A(v)=1,

other noteworthy special cases of (20) are to be expected for k=g or
k=y. In the first case we have from (23) (using the symmetry with
respect to ¢ and »)

a, =7 7(#‘*‘ v+ 1)n_ .
(#+1),

Thus (20) yields, if (18) is used on the left,

ptvtl ptut2 20+
(29) (1 +p)#>-1,F, 2 ’ 2 N A+ p)
p+1

— <% (z+r+1), POz .

n=0 (/1 + 1)n

An equivalent formula is easily derived from a bilinear generating
function due to Watson [10] and has been stated explicitly (but with
a slight algebraic error) by Bailey [1, p. 102]. The result is given
correctly by Buchholz [3, p. 143. eq. (20)].

The case k=y does in view of (17) not lead to something new. A

3See [5, eq. 10.8 (29)] and, for several direct proofs of the expansion, [9, p. 68].
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similar, but not equivalent formula can be deduced from (20) by
putting k=p+1 or x=p+1.
If k=p=y», we obtain from (20) and (29) in virtue of (28) and

the classical generating series of the Gegenbauer polynomials
(T)"V‘”'_l= i Pn.C;?uiH/z(T) .
n=0

(iii) Also in the cases p=+1 (or v=+4) the Jacobi polynomials
reduce to Gegenbauer polynomials. Since @¢* likewise may be ex-
pressed in terms of Gegenbauer functions, (20) takes then the form of
an addition theorem for these functions. This result has been given
by us already elsewhere [7].

(iv) Putting p=r/s* and letting rk—oo, we obtain from (20) and
(23), since
(30) lim Vi(1—2w/e*) = [A+1; w],

K—>00

the well-known formula (see the references to equation (42) of [6])

1 r—1 & P
31 F[: +1;7'ff*'vle [ +1;r ]: P& .
( ) o 2 i 2 nz=:0 (/l+1)n(”+ 1)72 (T)

With the exception of a result of Brafman [2], the special cases
of (20) mentioned above cover to our knowledge all simple (that is, not
bilinear) known generating functions of the Jacobi polynomials which
are valid for general values of x and u.'

6. Identities of Cayley-Orr type. The formulae (19), (25) and (26)
suggest identities between the coefficients of the expansions of certain
hypergeometric products which in a symmetric way may be stated as
follows :

Each of the three identities

K=y v 1» ; & n
@ =gy [FFEEL AL S G,
(b) (l_C)K_MzFL I:L/-I—K/-i-yl;-li-l-l ’ C:l‘_‘n%(/""l)nAnCn»

4+ Brafman’s result, which was originally established as a corollary to Bailey’s decom-
position formula for Appell’s function F), has been proved by our method without the use
of Bailey’s formula in [6].
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p+e+1 p+e+2 v—k v—k+1 |
(C) I [ 2 ’ 2 ’ C:lel l:—2‘ ’ 2 ’ C}
r+1 v+1
(/,%@H) <ﬂ,,+V+2)
had 2 n 2 n
- (ptv+l),

implies the other two.

This result is of a type considered first by Cayley and Orr [8].
While (a)~(b) is a special case of a result by Burchnall and Chaundy
(see [4, eq. (13)]), the two equivalencies (a)~(c) and (b)~(c) as well
as the method of their derivation seem to be new. Identities of this type
have been investigated either by a discussion of the ordinary dif-
ferential equations satisfied by the products of hypergeometric functions
(for recent results obtained by this method, see [4]) or by transform-
ations of the generalized hypergeometric series arising in the Cauchy
multiplication of the power series under consideration. An account of
Bailey’s and Whipple’s work in this direction can be found in [1]. In
order to render our above result independent of the consideration of a
special partial differential equation, we sketch a short proof of it by
Whipple’s method. By reasons of symmetry it suffices to prove (a)~
(¢). This amounts to a direct proof of the equality of (21) and (22).
We first transform the ;F, in (22) into a saalschiitzian ., by equation
4.5 (1) of [1]. This gives

_ (v=F) p+e+1, 841, —n;
(32) = oy, P L, The—y—n

pte+l p—g

b

, prv+1l4+n, —n;

=([t+y+1),z_ 7 2 2
(v+1), °° P pty+1 pty+2
’ 2 2

The desired result is now established by transforming the .F’; according
to equation 7.2 (1) of [1]. We emphasize that it is also possible to prove
(a)~(c) by the differential equation method of Burchnall and Chaundy.
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Added in proof: Without giving details we mention an interesting “confluent” case
of the generating function (20). This is obtained by setting

r=*2—§—1, k= —vy
v
(x, ¥ fixed) and letting v—>oo. The result is the well-known series (sce [9], p. 98)
e (=)n! : p(x+y) [ xyp
Ve L () L, (X () o7 = (14-0)-F-lex g o=,
o (ll«‘lL].)n ) ( )Ly (J)P ( p) p 1+{) olfy M <1+0>_>

where L,(*) denotes the Laguerre polynomial.








