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EXTENDING BOOLEAN OPERATIONS

LeEON HENKIN

The Stone representation theory provides a canonical
method whereby each Boolean algebra A can be embedded
isomorphically in a complete, atomistic Boolean algebra A*,
Jonsson and Tarski have shown how each additive operation
(of any number of places) on A can be extended canonically
to a completely additive operation on A*, in such a way that
whenever an equation involving given additive operations helds
identically in A, the corresponding equation involving the
canonical extensions of those operations will hold identically
in A*, In this paper we present a generalization of this
result,

In order to obtain the stated result involving arbitrary equations,
it is necessary to consider the smallest set @ of operations on A, such
that @ contains all additive operations on A and is closed under
composition of operations. The fact that the elements of @ are not
in general additive complicates the proof of the Jonsson-Tarski theorem.
As a by-product of our work we obtain, in the case of a complete
Boolean algebra A, a characterization of @ in terms of equational
identities which generalize the notion of additivity.

In §1 we present three results, needed in the sequel, concerning
finite intersections of ultrafilters in an arbitrary Boolean algebra A.
In § 2 we introduce various sets of operations (on an arbitrary Boolean
algebra) with which we shall be concerned, and we discuss the
relations among them. In §3 we associate with each operation f on
A a canonical extension f* on A*, and prove our basic results about
them. Finally, in §4, we indicate several ways in which the results
of §3 can be strengthened.

1. Thoughout this section we consider an arbitrary Boolean algebra
A=<4, +,, —,0,1>.

We use the term filter to denote what is sometimes called a dual-
ideal, i.e., a nonempty set X< A which is closed under - and is such
that whenever x€ X and © <y then also ye X. We use the term
wltrafilter to denote maximal proper filters of ; these are filters X
such that for every x € A we have either x ¢ X or —z ¢ X, but not both.

THEOREM 1.1. Let n be a positive integer and suppose that Y,
X ooy Xooy are ultrafilters of N. If Y2 Nicw X; then Y = X; for
some 1 < n.
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Proof. Assume that Y2 ... X; and that for each 1 < n — 1 we
have Y # X,. We shall show that we must have ¥ = X,_,.

From our second assumption we conclude that for each 1 <n — 1
there is some y;€¢Y such that — y;e€ X;. Putting v = I,.,_.y; we
conclude that yeY and — y€(Nicu— X;- From the latter, we see
that for every x € X,_, we have

(—-y =+ ﬂ'/') € ni<n X¢

and hence by our assumption that Y2 ;.. X; we have (—y +x)e Y
for every e X, ,. But yeY and Y is a filter; hence x e Y for each
xeX, ., that is, X, ,< Y. Since Y and X,_, are ultrafilters, this
shows that Y = X,_,, as claimed.

In order to formulate our second result about finite intersections
of ultrafilters, we introduce notation which will be used heavily in the
sequel. If X is any set, we denote the cardinal number of X by | X|.

DEFINITION 1.2. Suppose m is a positive integer and XS A. We set

0, X={yediy=2,+ -+ + x,-, for some x,, -+, 2,,c X}.

THEOREM 1.3. Let Y be a proper filter of A and m a positive
integer. In order that there exist wltrafilters X,, -+-, X,,_, of A such
that Y = Nj<m X;5 1t s necessary and suffictent that whenever Z< A,
| Z|E£m+ 1, and XZ =1, we have Y N 0,Z + 0.

Proof. To prove necessity, assume that Y = ;.. X; for some
ultrafilters X,, ---, X,,_,, and consider any Z& A such that | Z| <m + 1
and ¥Z = 1. From this last equation we see that for each 7 < m
there is some z;€Z such that z;e€ X;. But then N;., X;N0,Z is
nonempty as claimed, since it contains the element z, + -+ 4+ 2,,_,.

To prove sufficiency, recall that every proper filter Y can be
extended to an ultrafilter and is the intersection of all such ultrafilters.
Assume, therefore, that there exist m + 1 distinet ultrafilters X, ---,
X, such that YS M;cns X;; we shall show that there is some ZS A
such that |Z|=m +1,¥Z =1, and YNo,z=0.

Since X,, ---, X,, are distinct ultrafilters we can find elements
Loy + 0y Tp_y, With ;€ X; for each j < m, such that z; ¢ X;, and hence
—x;e€X;, whenever j #14,1=0, ---, m. Putting =, = 1I,., —x,; we
infer that z,¢€ X, while —z,€X; for each 7 < m. The elements
X v+, &, are distinct (indeed, they are pairwise disjoint, nonzero
elements of A), so that if we put Z = {x,, ---, «,,} we have |z| = m + 1.
Also XZ=1. To see YNo,Z =0 assume, on the contrary, that
there is some ye Y No,Z. Then by 1.2, there must be elements
Zyy *r*y By €Z with y=2,+ -+ + 2,_,. We can, therefore, find an
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element x;€ Z, j < m + 1, such that y < —«; and hence y ¢ X;. But
since y € Y, this contradicts our hypothesis that Y S ;cm+: X;. This
contradiction, arising from the assumption Y N 6,Z # 0, completes our
proof.

We conclude this section with another characterization of finite
intersections of ultrafilters.

THEOREM 1.4. Let W be a filter of U, p a positive integer. Then
the following conditions are equivalent:

(1) Whenever ZS A, Z is finite, and XZec W, then for some
teo,Z we have te W.

(ii) There is some set G of ultrafilters of A such that |G| < p
and W=NG.

Proof. First assume that (i) holds. In case 0 e W so that W = A,
we can show that (i) is satisfied by taking G to be empty. If 0¢ W,
so that W is a proper filter, we can apply 1.3 to obtain (ii), since
whenever 37 = 1 we have ¥Zc¢ W and hence Wno,Z + 0 by ().

Conversely, assume that (ii) holds. If G is empty so that W = A,
then (i) holds trivially. In the contrary case, say G = {X,, ---, X,_,}
where each X, is an ultrafilter of 9. Now take any finite Z< A such
that ¥Z ¢ W. Then by (ii) we have XZ ¢ X, for each ultrafilter X, e G.
Hence for each ¢+ < p there is some Z; ¢z such that Z, ¢ X,;. But then

Ry A+ ev +zpﬁleni<pXi'

Putting ¢t = Y, ,2; we thus have te0,Z and te W by (ii). This proves
(i), and completes the proof that (i) and (ii) are equivalent.

2. We again consider an arbitrary Boolean algebra
S‘)I:<A’ +, %y _70,1>y

and we now define certain sets of operations on A with which we
shall be concerned in § 3 below. For any positive integer n» we denote
by ™A the n-fold Cartesian power of A, and for any xec”A and each
1 < n we let x; be the 7th projection of x on A. An n-place operation
on A is simply a function from "A to A. In the following definition
we use the notations x + y and « < y where z, y e "A. The operation +
and the relation < are here understood to be those of the Boolean
algebra "2, so that (z + y); = =, + y, for each 7 < n, and z < y if
and only if (x; < y; for every 7 < m). Also, if j, n are positive integers
such that j < n, and if #, y €A, we use the notation x=; y to mean
that ¢, = y; for all 7 = 7, © < n.
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DeriniTION 2.1. Let n be a positive integer and f an n-place
operation on A. We say that f is

(i) monotonic if, whenever 2, y € "4 and © < ¥, we have fx < fy;

(ii) p-additive (where p is any positive integer) if, whenever
XS4, | X|=<p+1, and there is a j < n such that « =, y for all
x, ye X, we have

fEX)=2{fzze0,X};

(iii) completely p-additive if, whenever X & "4, and there is a
Jj <m such that © =; y for all »,ye X, and 3¥X exists in ", then
also Y{fz:zec0,X} exists and equals f(JX).

For each positive integer » we let @,(%) (or simply @,) be the
set of all p-additive operations on 2, and we set @, = U, @,, the union
being taken over all pogitive integers p. Similarly, we let @) be
the set of all completely p-additive operations on U, and we set
.20 = U, ;).

REMARK 2.2. For any positive integers » and p one can easily
derive from Definitions 2.1 and 1.2 a set of % equational identities in
n + p variables characterizing those n-place operations which are in @,.
For example, a 3-place operation f on a Boolean algebra U will be in
@,(2) if and only if the following equations hold identically in :

fle, + @ + @y, vy, 2) = flow, + @, ¥, ?)

+ f@o 4 @, Y, 2) + [l + @ 9, 2)
S@ Yo + vy + ¥ 2) = F@, Y + ¥, )

+ A& Yo + Yo 2) + S Y + Yoy 2)
fla, ¥, 2, + 2 + 2) = fla, y, 2y + 7))

+ Az, ¥, 23 + 20) + floe, ¥, 2 + 2) .

From such an equational characterization of @, one sees that the
1-additive operations are precisely those operations called additive by
Jonsson and Tarski in [2]. Obviously for each positive integer p we
have @< @, and so ¢, < @,. The following theorems give other re-
lations among the sets defined in 2.1, and some basic properties of
these sets which will be useful in the sequel.

THEOREM 2.3. If fe®, then f is monotonic.
Proof. By 2.1 it suffices to show, for each positive integer p,

that every element of @, is monotonic. Suppose, therefore, that f is
an n-place operation on A with fe @,, and consider any «, y € "4 such
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that * < y. We must show that fz < fy.
Choose z®, «+-, 2" e”A so that #® = x, and for each 7 =0, ---,
n — 2 we have z%*" =, 2% and (" = y,.,. Clearly, then, we will
have 2 < "+ for each ¢ =0, ---, n — 2, and 2" = y. By transi-
tivity of < it suffices for us to show that fx* < fa'+v for all ¢ < n — 1.
Fixing an arbitrary 7 < n — 1, take X = {2, x“+"}, Then, since
fe®,, we can conclude (by 2.1 and 1.2) that

f(x(i) -+ x(H—l)) — fx(i) + fm<i+l) + f(x(i) + x<i+1))

—the last term on the right being omitted in case p = 1. Since 2 <
2 we thus get fxt*9 = fa' + fa+Y, which gives fa < fx“+" ag
desired.

LEMMA 2.4. Let f be an m-place operation on A. In order that
fed, it is necessary and sufficient that for every finite X S "A such
that for some j < m we have x =; y for all x,ye X,

*) f@X) = {fy:yeo,X}.

Proof. Sufficiency is immediate from 2.1. Necessity is proved by
induection on | X|, as follows.

Assume that fe®,. If | X| < p+ 1 we see that equation (*) will
hold directly from 2.1. Consider, therefore, any ¢ = p + 1. Let us
make the induction hypothesis that the equation. (*) holds whenever
| X| < g, and consider an arbitrary set Y = {y¢°, .--, ¥} containing
q + 1 distinct elements of A such that for some j < n we have
yP=; y® for all 7,k < q.

Put 2 =y fori =20, ---,q¢ — 2 and £ = yl= 4 y @, Setting
X = {z9, «-+, 2V} we obviously have z* =; «® for all 4, £k < g, and
so we can apply our induction hypothesis to obtain

(1) fEX) =3{fzizeo0,X}.
Also, we clearly have
(2) X =23Y.

Now consider any ze¢,X. By 1.2 and definition of X we clearly
have z = ¥Z for some Z< Y such that |Z]| < p + 1. Hence, since

fed, we get

fe=X{ft:teo,Z}
< X{ft:teo,Y}.

Since this holds for each zeo,X, we thus get,
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Y{fzizeo0,X} < X{ft:teo,Y}
which, with (1) and (2) gives
(3) fEY) < X{ft:teo,Y}.

The opposite inequality follows from the monotonicity of f. Hence in
(3) we may replace < by =, showing that the equation (*) holds for
Y. This completes our proof by mathematical induction.

COROLLARY 2.5. If p < q then 0, 0,.

Proof. Suppose p < q and let fe®,; say f is an nm-ary operation
on A. Consider any X< "A such that | X| =<q¢ + 1, and such that
for some j < n we have z =; y for all 2, ye X. By 2.4 we have

fCX) =2{fy:yeo,X}.
Since, by 1.2, we have ¢,X< ¢, X, this gives
fCX) = X fy:yeo,X}.

The converse inequality follows by 2.3, which gives fe®, by 2.1.
This proves 2.5.

REMARK 2.6. In general we have @,(A <Z)@,(A) when p < q. For
example, let A be the set of all binary relations on w (the set of all
natural numbers), and consider the Boolean algebra

91:<Ay Uy m,NJ @’20)>'

To obtain an operation in @, which is not in @,, consider the 1-
place operation f on A such that fx = x;x for every xe€ A. (Here
x; ¢ is the relative product of the relation x with itself, so that for
any 1, j€® we have {1, 5> ¢ fx if and only if there is some k € ® such
that {4, kyex and <k, j>ex.)

To see that ¢ @,, consider the relations « = {<0,1>} and y = {1, 2>}.
Clearly fx = fy = @, but f(x Uy) = {0, 2)}; hence f(x U y) = fx U fvy.
On the other hand it is easy to see that for any relations z, z, z,€ A
we have

SR U2z U2) = fl2,Uz) U SR U2) U Sz U2),

so that fe®,.

This idea is easily elaborated to obtain a 1-place operation
fo€ (@, ~ @,) for each p =1,2, ---. Simply take f, to be the oper-
ation f above, and set f,..# = (f,®); ¢ for each xze A.
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THEOREM 2.7. Let g be an (n + 1)-place operation on A with
g€ D, (resp., g€ @;). Let te A, and let f be the n-place operation on
A such that, for each z€ ™A, fz = g(Ryy *++, iy t). Then fe @, (resp.,
fed).

Proof. Obvious.

The following theorem generalizes the distributive law for additive
operations.

THEOREM 2.8. Let f be an mn-place operation on A. For each
X A and j <mn let X; ={x;:xe X}, and set

Xt=X,x X, X - xX,_,.

In order that fe @, (resp., fe®;) it is necessary and suffictent that
for every finite X< "A (resp., every X ="A such that 3X exists in
") we have

(*) FREX) = Z{ftiteo,(X7)}.

Proof. The sufficiency of (*) is immediate from the fact that
whenever X< "A, and for some j < » we have & =; y for all z, y € X,
then X+ = X. Necessity is proved by induction on . In case n =1
we see that (*) follows directly from 2.4 (resp., 2.1 (iii)), since X+ = X
for any X < A.

Now make the induction hypothesis that (*) holds for any n-place
operation fe @, (resp., fe®;). Consider any (n + 1)-place g € @, (resp.,
ge®:), and any XS “+*YA such that X is finite (resp., such that ¥ X
exists in "*V9).

For each ze ™A let ¥y e "4 be such that ¥/ = (3X), for
eachj<mnandy® =, LetY = {y®:2xeX}. Clearly Y = ¥X and
y =, 2 for all y,zeY; hence our hypothesis on g yields

(1) 92X) = J{gutuecao,Y}.

By definition of X+ and Y we see that for any teo,(X™*) there
is some v €0,Y such that v = ¢. Hence from (1) and the monotonicity
of g we obtain

(2) 9(2X) =z 3{gt: teo,(XH)} .
Next consider any weo,Y. By definition of Y we see that
(3) u=y*» for some teo,X.

Choosing and fixing such a ¢, we consider the n-place operation f such
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that for any ze¢"A we have fz =g, ++*,2,.,t,). By 2.7, fe®,
(resp., fe @;).

Now for each we ™A let w' e"A be such that w} = w; for all
j < m, and for each W<t Alet W' = {w': we W}. Since X exists
in A, clearly Y(X') exists in "4 and 3(X') = (FX)'. Also (X")* =
(X*)'. Hence we can apply our induction hypothesis to the mn-place
operation f, obtaining

(4) ARX)) = Z{fviveo,(X*)}.
But by definition of f we have
FEX)) = g((FX )y + =5 (2X)nsy 2a)
= gu by (3) and definition of y‘*.
Hence from (4) we get
(5) gu = Z{fviveo,(X*)}.

Finally, for any veo,(X*') we have fv = gw for some we g,(X™),
as we see from the definitions of f and X+ by taking w; = v, for each
j <mn and w, = t,, and recalling that t e ¢,X (cf. (3)). Hence (5) yields

(6) gu < X{gw: we o,(XH)} .

Since # was chosen as an arbitrary element of ¢,Y, we can combine
(1) with (6) to obtain

(7) 9(2X) = Jgw: we o, (XH)}.

Putting (2) and (7) together, we see that the equation (*) of Theorem
2.8 holds for the (= + 1)-place operation g, completing our proof by
mathematical induction.

COROLLARY 2.9. Let f be an m-place operation on A with fe @,
(resp., f€®@). Put q =n-p. Then for any XS"A such that X is
finite (resp., such that XX exists in ") we have

fCX) =2{futuecoX}.

Proof. Let X+ be obtained from X as in 2.8. It is evident that
for any ¢ e X+ there is some y € 0,X such that y = x, and hence for
any teo,(X*) there is some ue€o,(X) such that w = ¢, and hence
fu = ft by monotonicity of f. Applying 2.8 we thus obtain

FfCX) < X{futueo X}.

The opposite inequality is again obtained by monotonicity, and 2.9
follows.
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If f is any m-place operation and g, - -, g._, are n-place operations
on A, we can compose them to obtain the operation f[g, «--, gm_il,
i.e., the n-place operation & such that hx = f(g.x, -, ¢g._.%) for every

xe"A. The following theorem shows that the sets @, and @ are
each closed under composition of operations.

THEOREM 2.10. Let f be an m-place operation, let g, +++, Gm_s
be n-place operations, and put b = flgo, +++, Gu_s]. Assume that fc @,
(resp., fe€®@;), that g;€ @, (resp., g;€®:) for each 1 < m, and put
r=m-p-q. Then we have he®, (resp., he®:).

Proof. By definition of 2 we have hx = f(g.%, -+, gn._.x) for each
xe"A. Since f, gy ***, gu_, are all monotonic, it follows that

(1) k is monotonic.

Now consider any X&"A and j < n such that z =; y for all
x, ¥y € X; assume X is finite (resp., XX exists in "A). For any 7 < n
we obtain, from our hypothesis on ¢; and 2.4,

(2) 9:(2X) = X{gt: te o, X} .

Now foreacht < mset YV, ={g;t:tco,X},andput Y =Y, x --- x
X,._.. From (2) and the definition of & we have
hEX) = f3Yy -+, 2Y,_,)

3
(3) = f(2Y) by definition of Y .

If we obtain Y+ from Y in the way described in 2.8, we see from
the definition of Y that in fact Y+ = Y. Hence by 2.8 and (3) we obtain
(4) h2EX) =X{fuiueo,Y}.

By the monotonicity of g, -+, 9., and the definition of Y we
see that for each ye€ Y we can find some veo,. X such that y, < gv
for every 1 < m. Hence, by the monotonicity of f and gy -+, gy
we see that for every u€o,Y we can find some w € 0,.,.,X such that

fu = f(gowy ct gm—lw) = hw .

Since » = m-p-q¢ we thus have: For every uweco,Y there is some
weo,X such that fu < hw. Hence from (4) we get

Whenever z = hw for all weo, X,

5
(%) we have z = h(2X).

On the other hand we also have

(6) h(ZEX)= hw for all weo,X
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by (1). Combining (5) and (6) gives
hEX) = Z{hw:weo,X}.

From the way in which X was chosen, this shows that he®, (resp.,
he @), as claimed in 2.10.

In §3 we shall show how each fe @,) can be extended to an
f* ey (A*), the algebra A* being complete and atomistic. In the
following two theorems we find that the class @:(B) has a particularly
simple character for any Boolean algebra B which is complete and
atomistic.

THEOREM 2.11. Let B be a complete, atomistic algebra, and B’
the set consisting of 0 and all the atoms of B. Let f be an n-place
operation on B, and for each xe"B let A = {ac"(B):a Zx}. In
order that fe @:(B) it is necessary and sufficient that for every xe"B
we have

(*) Sfo = 3{fbrbeo,(A")}.

Proof. Let us first assume fc @;(B). To show the necessity of
(*), observe first that for any x€"B we have
(1) x = J(A™)

by the hypothesis that B is atomistic. Next observe that if we form
A®+ from A by the method described in 2.8, we find that in fact

(2) A(ﬂv)+ — A(w) .
By 2.8 we have
FE(AD)) = {fb:beo,(A“)},

which, by (1) and (2), yields (*).

Next let us assume that f satisfies the condition (*), and prove
that this is sufficient to yield fe @;(B).

We first observe that whenever © <y we have A S AW, and
hence 0,(A®) S g,(A"); and we then get fo < fy from (*). This shows
that

(1) f is monotonic .

Next consider any X & ”A. Of course IX exists in "B by our
hypothesis that B is complete, and by (*) we have

(2) fEX) = 3{fb:bea,(A*")}.



EXTENDING BOOLEAN OPERATIONS 733

Let X+ be obtained from X by the method specified in 2.8. If
ac AP then for each j < n we have a; < ; for some & c X; hence
a <y for some ye X*. It follows that for every be o,(A*¥) there is
some t € 0,(X*) for which b < ¢, and hence /b < ft by (1). Thus

2{fb:bea,(A"V)} < I{ft:tea (XN},
from which we get, by (2)
(3) FEX) = 3{ft:teo,(XT)}.

Since for each y€ X we have y < X, we get t < 3X for each
teo,(X*) and hence

(4) Z{ft:teo,(X7)} = f(2X)

by (1). Combining (3) and (4) and using 2.8 we conclude that fe @3(DB),
as desired.

In the next theorem we show that when B is complete and
atomistic, each operation in @:(B) can be obtained by composition from
operations in @¢(B). In formulating this theorem we deal with the
projections h™® associated with B: If n and s are positive integers
such that » > s, then A™® is the m-place operation on B such that
hm®g = g, for each xe"B. Clearly each 2™* ¢ @i(B).

THEOREM 2.12. Let B be any complete, atomistic Boolean algebra,
n and p any positive integers, and q = n-p. There exists a sequence
se0, +++,n — 1} such that every m-place operation fec @;(B) can be
obtained from some q-place operation ge @(B) by the composition

( * ) f = g[h(n’OS)y ] hm’s‘]“l)] .

Proof. Since q¢ = n-p, we see that for each k < g there exist
unique 72 < p and 7 < » such that &k = j-p 4+ 4. Thus we can define
sed0, -+, n — 1} by the rule that

(1) Sjpsi =7 for all j <n and 7 < p.
Let B’ be the set consisting of 0 and all the atoms of B, and set

A® ={ae!(B"):a < x} for each z€‘B,

2
(2) C* ={be™B'):b<w} for each we"B.

Let f be any m-place operation, fe @(B). Then define g to be
the ¢-place operation on B such that, for any x < ‘B,

( 3 ) gr = Z{f(E'Kpaiv Zi<pap+i’ ] Zi<pa(n—1)~p+i): ac A(x)} .
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Let ze‘B, and consider any be A®. Clearly by (2) we have
be A™, and b = a for any a €A™, so that by (3) and the monotonicity
of f we get

gb = f(2i<pbi’ 2i<pbp+i’ M) 2i<pb(n—l)-p+i)
for each be A®. Referring again to (3) we infer that
(4) gz = X{gb: be A®} for each x€‘B.

Applying 2.11 to (4), and using our hypothesis that B is complete and
atomistic, we obtain

(5) g€ 0:(B) .

It remains to show that equation (*) holds. For this purpose
consider any we "B, and let xe’B be such that

(6) T, = AR for all £ < ¢q,
so that
(7) g3 = (LR, =, B .

Now for each ac A® let b® be the element of B such that

(8) b = X plpri for every 7 < m,
so that
(9) gr = 2{fb“:aec A"},

by (3). For each j <= and ¢ < p we have ;.,.; = w; by (1) and (6),
and so by (2), if ac A® we have a;,; < w and @;.,.;€ B’; but then

by (8), we get b/ < w; and b; e 0,(B’). This shows that
(10) b € g,(C™) for every ac A,

by (2). Combining (9) with (10) we get

(11) gr < X{fb:beo,(C™)}.

To obtain the opposite inequality, consider any be o, (C*); say
b=2>59 4+ ... 4 b1 with each b eC™. Let a be the element of

‘B such that
(12) Gjpri = O for every 1 < p and 7 <n.

For 1 < p and j <n we have b’ < w; and b{’ e B’ by (2); hence
Cjpti = Z;.4: € B” by (12), (6), and (1), and so a € A* by (2). Then,

since X, ,a;.,+; = b; for each j7 < n, by (12), we conclude that fb < gx
by (3). Since b is an arbitrary element of ¢,(C*), this shows that
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(13) S{fb:beo,(C™) < g .

Now fe @(B) by hypothesis. Hence we can combine (11) and (13)
with 2.11 to conclude that fw = gx. Hence, by (7), we have fw =
(g[h™50, <+ «, B'™*e-V])w. Since w is an arbitrary element of "B, this
establishes equation (*) of 2.12 and, in view of (5), completes the proof
of the theorem.

REMARK 2.13. For every finite Boolean algebra we have @:() =
@,(A) by 2.1 and 2.4. However, in any infinite 2 we have @) &
@,2). For let X be any nonprincipal ultrafilter of 2 and let f be
the 1-place operation such that foa =1 if xeX and fo =0 if v¢ X
for every x€ A. Obviously fe @,(), and hence fec @,(A) for every p
by 2.5. On the other hand for Y ={—2:2€X} we have XY =1
(since X 1is nonprincipal), so f(£Y) = 1; but fy = 0 for every ye Y.
This shows that f¢e @5(20).

From the fact that in general @; == @,, we see that we cannot
strengthen 2.12 to say that every fe @,(B) can be obtained from some
g € 0:(B) by equation (*). For whenever f is 1-place and g€ @:(B) we
have g[a‘™*?, «.. h™%-V] e @:(B) by 2.10. The question whether every
fe®, can be obtained from some g € @,(B) by (*), involves the Stone
extension algebra B*, and so will be deferred until § 3.

We conclude this section with a lemma about arbitrary fe @,(20),
which will be used to derive the fundamental properties of the extension
f* of f to be defined in § 3.

LEMMA 2.14. |, Let f be an n-place operation on A, fe®@,, and let
Y be an ultrafilter of A. Assume that VE"A such that (a) for
every w, ve 'V we have w-v =t for some teV, and (b) fveY for
every ve V. Then there exists a filter W of " such that (i) V& W,
(i) fwe Y for every we W, and (iii) for every j < m there is a set
G; of ultrafilters of A such that |G;| =< p and N G; = {w;: we W}

Proof. In the algebra " consider the set

B={xec"d4:fxeY}.

By hypothesis (b) we have
(1) VEB.

Also, since f is monotone and Y is a filter, we see that

(2) if teB and ¢ < &/, then 2’ e B.
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Using (1) and (2) with hypothesis (a), we conclude that for the filter V"’
generated by V in "W we have V'S B. Hence, by the maximality
principle of set theory, we can find a filter W of *¥ such that

W is maximal in the class of all those

3
(3) filters U of " for which VS UZB.

Since V=< W and W< B by (3), we see that:
(4) Conditions (i) and (ii) of Lemma 2.14 are satisfied .

Using the maximality property of W given in (3), we shall show now
that (iii) is satisfied as well.

Consider any j < n and set W; = {w;: we W}. Since W is a filter
of "YU, obviously we have

(5) W, is a filter of A .

We now consider two cases.

Case 1. Suppose 0e W,. In this case we can take G; to be the
empty set of ultrafilters of 2. For each xc€ A we have, vacuously,
xe X for every XeG,, so that MG, = A. But by (5) and the hy-
pothesis of Case 1, also W,; = A. Since |G;| < p we see that

(6) Condition (iii) of Lemma 2.14 holds in case 1.
Case 2. Suppose that 0¢ W;. In this case W, is a proper filter
of A, by (5), and we shall establish condition (iii) by an application

of 1.3.
Consider, therefore, any Z< A such that

(7) | Z|<p+1 and XZ =1,
and assume that
(8) (W;no0,2)=Q .

Consider any t € 0,Z, and take 2 € "A so that «/ = ¢ while z{¥ =1
for every 1+ j,% <mn. By (8 we have ¢ W. Hence from (3) we
conclude that the filter of "A generated by W U {x*} is not a subset
of B. Thus, by (2), there must be some element w*' ¢ W for which
wh.x® ¢ B, le.,

(9) w?eW and flw?-2¥)eY.

Since 0,7 is finite, we can form the element w = II{w":te0,Z}.
Since W and Y are filters, and f is monotone, we obtain from (9):
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(10) weW and flw-2)¢Y for every teo,Z.

Since Z&o0,Z, we see that a® is defined for each zeZ. Set
S ={w-2”:2¢ Z}. Then from the definition of = we obtain

1) 0,8 = {w-x:tec,Z}.

Also from the definition of ' we can see that for any s,s’eS we
have s =; s’. Since S is finite and fe @, by hypothesis, we can
therefore apply 2.4 to conclude

12) fE8) = X{frirea,S}.

By (7) and the definition of x® we see that ¥,.,2® = 1, and hence
XS = w. Since we B by (10) and (3), it follows that f(ZS)e Y. Since
Y is an ultrafilter by hypothesis, we then infer from (12) that fre Y
for some r € 6,S. Thus, by (11), we get flw-2)e Y for some tc0o,Z,
contradicting (10).

The contradiction arises from our assumption (8). We have thus
shown that for every ZS A such that |Z|<p+ 1 and 3Z =1, we
have (W;No0,Z) + @. Furthermore, by (5) we see that in Case 2,
W, is a proper filter of 2[. Hence we can apply 1.3 to conclude that
there must exist ultrafilters X, --., X,_, such that W, = N, X..
Putting G, = {X,, ---, X,_,} we then have:

(13) Condition (iii) of Lemma 2.14 holds in Case 2.

We see from (4), (6), and (13) that our proof is complete.

3. Throughout this section we consider an arbitrary Boolean
algebra

%I:<A’ +7 *y _10y1>1
and its Stone extension
S*)I*:<A*y U, n;J~y@7J>’

where J is the set of all ultrafilters of %, and A* is the set of all
subsets of J. We let 6 be the canonical isomorphism whereby % is
represented in A*, so that 6z = {X e J: x e X} for each ze A.

Our principal task is to show how each element of @,(4) may be
suitably extended to an operation on A*. Since the operations on A*
with which we deal are n-place operations, we shall be concerned with
various elements G e *(4*). With respect to such elements we shall
have occasion to deal with Boolean operations upon and relations
between them, referring to the Boolean algebra "(*). Notationally,
we shall write G &™ H, for example, to indicate that G; & H; for each
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J < m; or we shall use J{»,G® to denote the element H of *(A*) such
that for every j < n we have H; = U;.;G. Finally, if Ge™(4*),
we shall frequently have occasion to refer to “subsets” G’ & ™ G which
are finite, meaning thereby that for each j < n, G} is a finite subset
of G;; since G is a finite set of ultrafilters on A4, N (G}) is a filter,
and if xe"A, we write xe ™ (N G’) to indicate that ;e (N G}) for
each 7 < n.

DErFINITION 3.1. To each n-place operation f on A we associate
an n-place operation f* on A*, as follows. For any G ¢ "(4*) we set

f*G = {XedJ: For some finite G’ S™ G we
have fy e X for every ye ™ (N G')} .

THEOREM 3.2. For every m-place operation f on A, the operation
JF* 1s monotonic on A*.

Proof. If G, He"(A*) and G &'™ H, then whenever G’ <SG we
have also G’ & H; hence f*G< f*H by 3.2.

THEOREM 3.3. Let f be any n-place operation on A, and G € "(A*).
If G s finite, then
f*G ={XeJ: fye X for every ye™ (N™ G)}.

Proof. Whenever
G=™G and ye" (O™ G),

we have also y€ ™ ('™ G'). Therefore if G is finite, the conclusion
of 3.3 follows directly from 3.1.

THEOREM 3.4. Let f be any n-place operation on A, and G € "(A*).
Then

G =U{f*G: @ =™G and G’ 1s finite} .
Proof. By 3.1 and 3.3.

We wish now to show that for every fe @,20), f* is an extenston
of f with respect to the canonical embedding ¢ of 2 into 2A*. In this
connection, if xe€”A we use the notation 6 (x) to indicate the element
G ¢ *(A*) such that 6(x;) = G, for each j < n. If Ge™(4A*) and Xe"J,
we also use the notation X ¢ ™ G to indicate that X; € G, for every j < n.

THEOREM 3.5. Let f be an n-place operation on A, fe®,. Then
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for every x ™A we have
FHO™) = 6(f2) .

Proof. Take any xe”A. We first show that f*(6x) = 6(fx); for
this part of the work we shall not need the hypothesis fc@,.

Consider, then, any Y e f*(@™x). By 3.1 there exists a finite
G’ e *(A*) such that (a) G &™d™zx, and (b) fze Y forallze™ N™G.
Using the definition of #, we infer from (a) that xze ™ X for each
Xe™ G, ie., that xe ™ N ™ G'. Hence by (b) we obtain fxe Y. But
then Y ed(fx), by definition of 4. This proves that f*(6™x) S 0(fx) as
claimed.

It remains to show that 6(fz) = f*(@™x). For this we make use
of our hypothesis that fe@,(); say fe®, where p is a positive
integer.

Now consider any Y €d(fx). By definition of 0, this means that
fxeY. Taking V to be {x}, we see that we can apply Lemma 2.14
to obtain a filter W of "A such that (i) xe W, (ii) fwe Y for we W,
and (iii) for every j < n there is some finite set G} e A* such that
{fwirwe W} =NG,.

Now let G’ be the element of "(A*) determined by the sets Gj, - - -,
G’,_,. Clearly we have

(a) G is finite.

Furthermore,

(b) G<E™(@™x).

For if Xe™ @, then x€™ X by (i) and (iii) above. By definition of
0, this shows that X e ™ (§'™x), justifying (b). Finally,

(c) fweY for every we™ (N G)
by @i) and (iii).

Combining (a)-(c) we infer, by 3.1, that Y e f*(6'x). This shows
that 0(fx) < f*(0™x), and completes our proof.

We next wish to compute the extensions f* for certain special
operations f on A, each of which is in fact an element of @,.

THEOREM 3.6. Let f and g be the 2-place operations on A such
that fx = x, + x, and gx = x,-x, for each x<c*A. Where n 1is any
positive integer and j < n, let h'™? be the n-place operation of pro-
jection on A, such that h'™9x = x; for each xze€™A. Then we have
G =G, UG, and g*G = G,N G, for every Ge*A*), and we have
%G = G; for every G e™(A*).

Proof. We shall give details only for the operation f, the proofs
for the operations ¢ and A'™? being similar.
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Consider, then, any element G of *(A*). By 3.1 and the definition
of f we have, for every XeJ:

Xef*G if and only if there is some finite G’ S®' G

1
(1) such that (y, + v,) € X for every ye® (N? &) .

Now suppose, first, that X e G, U G,—without loss of generality
we may suppose X cG,. Then take G’ to be the element of %(4*) such
that G; = {X}and G| = @. Obviously G’ is finite and G' & G. Further-
more, for every ye® (N® G’) we have y,€ X, and hence (y, + ) e X
(since X is a filter). Thus we conclude by (1) that Xef*G. This
shows that (G, U G) S f*G.

Conversely, consider any X e f*G. By (1), there exists some finite
G' =2@G such that for every y ¢ ® (N*® G') we have (y, + y,)e X. We
are going to show that

(2) (NeynnNeHsx.

Indeed, since G’ e?*A*) we see that ) G) and [ G| are filters of
A. Givenany ze (G, NN G), let ¥ be the element of *A such that
Yo =1, = #; then 2,e¢NG,y.cMNG, and hence ye®(N?G). It
follows from cur choice of G’ above that (y, + %) € X, and hence z¢ X.
This shows that (2) holds, as claimed.

Now G and G| are finite sets of ultrafilters of A. Hence we can
apply Theorem 1.1 to (2) above, to conclude that XeG, or XeG,.
Since =@, this implies that X e (G, U G,). We have thus shown
that f*G = (G, U G,), completing our proof of the part of 3.6 dealing
with the function f.

As indicated above, the proofs for g and L™? are similar, and
we omit details.

THEOREM 3.7. Let f be an m-place operation, fe @A), and let
Jes ***y Um be n-place operations on A. Assume that g; is monotonic
for each © < m. Put h = flgo *+*5 Gul. Then b* = f*[gs, -+, g5_1l-

Proof. Let G be any element of "(A*). We shall first show that
WG = 95 G, -y g0 G)-

Consider, then, any Xel*G. By 3.1 we can find some finite
G'S™ G such that:

(1) hye X for every ye™ (N G).
Now let
(2) V={wemA:v =<9y, +++, gnyy for some ye ™ (N G)}.

We have hy = fl9.y, -+, gn_y) for every ye"A, by definition of h;
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hence by (1) and (2) we get
(3) foeX for every veV.
We claim also that:

For every u,veV we have
u-v =t for some teV.

(4)

For given any u, ve V, we have u = {gy, ***, gn_¥y and v = (g, « -,
On_i?)y for some y, ze ™ (N™ G’), by (2). Since (N™ G’); is a filter of
A for each j < n, we conclude that (y-2)e ™ (™ G'). Hence, setting
t =<9(Y+%), ***, 9us(y-2)), we have t € V, by (2). Furthermore, u-v=>
t since each g; is monotonic by hypothesis. Thus (4) is justified.

Using (2) and (3), we can apply Lemma 2.14 to find a filter W of
»4 such that

(i) vew,

(ii) fwe X for every we W, and

(iii) for every ¢ < m there is some finite set H/e A* such that
{w:we W} =NH,|.

Now let H’ be the element of ™(A*) determined by the sets
H!, -.-, H, .. Clearly we have

(5) H' e ™(A*) and H’ is finite .
Next, let He™(A*) be such that

(6) H;, = gfG for every 1< m.

Obviocusly we get

(7) fH = (f*l93, -+, gn]G .
Now we claim that

(8) H<S™H.

For consider any Y e ™H’. Then by (iii) we have we ™Y for every
w e W, and hence by (i) we get ve ‘™Y for every ve V. This means,
by (2), that for any ¢ < m we have g;y € Y; for every yc ™ (O™ @),
which shows, by 3.1, that Y,eg;G = H; by (6). Thus Ye‘™H,
justifying (8).

Finally, we have

(9) fweX for every we™ (O™ H'),

as we see by (ii) and (iii).
Combining (5), (8) and (9) we infer, by 3.1, that Xe f*H. Thus
Xe(f*g¥, -+, 951G, by (7), concluding our demonstration that
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(10) PGS 9G, -+ 9naG) -

To complete our proof of 3.7 we shall now establish the opposite
inclusion to that of (10).

Let H, as in (6), be the element of ™(4*) such that H; = ¢g}G for
every © < m, so that (7) holds. Consider any Xef*H. By 3.1 this
means there is some finite H' &‘™ H such that

11) fzeX for all ze™ (O™ H').

Since H; =™ H, = g#G for each i < m, we see from 3.1 that for
each Ze ™ H' we can find some finite G® =™ G such that

12) gy <€ Z, whenever 1 <m and ye™ (™ G?).

Setting ¢ = U {G: Ze "™ H'}, and recalling that H’, as well as each
G, is finite, we see that G’ is finite; and evidently we have G' &™@G.
Furthermore, for any y €™ (™ G') we have g,y € ('™ H’); for every
1 < m, by (12), so that f(g¥, -+, 9.¥) € X by (11), and hence hye X
by our hypothesis on k. Applying 3.1, we conclude that X e h*G.
This proves that f*H S h*G, and hence by (7) that

13) @G, -+, g5G) S h*G .
Since G is an arbitrary element of "(4*), (10) and (13) together complete
the proof of 3.4.

We now come to the principal theorem which relates the operations
f of @,A) to the corresponding operations f* on A*.

THEOREM 3.8. Let f,, +++, fii € P, (A). Suppose that

T(for ==y Srmrs Toy * o0y Tus) = O(Soy 2oy frmss Ty =00y Xpy)

is an equation which holds for all values xy, -+-,x,_,€ A. Then the
corresponding equation

T(fo*y M) fk*—-L; Gor ) Gn-—l) = O.(f:ﬂ*) Tty fk*—-l; Gm cccy Gn—l)
holds for all values G, «--, G,_, € A*.

Proof. Corresponding to each of the two sides ¢ and ¢ of the
original equation there are n-place operations % and g on A, each
obtained from f,, ---, fi_, (and from the projections A" of 3.6) by
an indicated series of compositions. The hypothesis that the equation
T = 0 holds identically in A, implies that in fact h = g¢.

In the algebra A*, the two sides = and o of the equation determine
n-place operations, obtained from f, ---, fi*, by performing the same
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indicated series of compositions as were used in obtaining % and g;
the resulting operations are, in fact, 2* and g*, as we see by repeated
application of 3.7 (and by 3.6). Since we have & = g, of course we
infer that »* = g*. But this implies that the equation 7 = ¢ holds
identically in A*, as claimed in the theorem.

THEOREM 3.9. If fe @,A), then f*e @5 (A*).

Proof. Let f be any m-place operation on A, f€@,2). As re-
marked in 2.2, the set of those w-place operations which are in @,
can be characterized by means of n certain equational identities. Hence
by 3.8 we see that

(1) fred,Ur) .

Now consider any G e"(4*), and let
(2) A* ={G@e"(4*): G <=™@G and |G,| =1 for every j < m}.
Take any X e f*G. By 3.4 we can find some G’ € "*(A*) such that
(3) Xef*G¢ and G’ is finite .
From the latter we get a positive integer ¢ such that
(4) G = U, G? for some GO, ..., GV e 4*9

Now using (1), let us apply 2.4 to the operation f* on the algebra
A*; then by (4) we get

F*G = U{f*H: Heo,{GY, -+, G},
whence by (3) and (4),

(5) Xef*H for some Heo,(A*7).
Since X is an arbitrary element of f*G, this shows that
(6) [*GSU{f*H: Heo,(A*)} .

The opposite inclusion also holds by 3.2, since for each Heo,(4*'")
we have HZ™G by (2). Thus

(7) f*G =U{f*H: Heo,(A*")}.
By applying 2.11 we infer from (7) and (2) that f* € @5(*), as desired.

REMARK 3.10. We can summarize the combined substance of 3.5,
3.8 and 3.9 by saying that each p-additive operation f on A can be
extended to a completely p-additive operation f* on A*, in such a
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way that whenever an equation in given operations f,, - -, f,_, holds
identically in 2, the corresponding equation in the operations Sofy een,
Sm—, holds identically in %A*. If we restrict this result to the case
» =1, we get a result of Jonsson-Tarski [2]. (Cf. remark preceding
Theorem 2.11 of that paper.)

Following Jonsson and Tarski further, we may generalize their
notion of a Boolean algebra with operators. Let us call a system

58 = <By +s Sy Ty 01 lr.ny "'5.fm—-!>

a Boolean algebra with partial operators if <{B, +,:, —,0,1> is a
Boolean algebra and f,, -, fi_i € ?,(B). Such a system B will be
called atomistic if its Boolean part is atomistic; B will be called
complete if its Boolean part is complete and f, -+, fn_. € D:.

Suppose that we define a class & of structures by means of a
system of axioms each having the form of an equational identity.
Then by 3.5, 3.8 and 3.9 we can conclude:

If every structure of & is a Boolean algebra with partial oper-
ators, then each Be & can be extended to a complete, atomistic
B*e <.

If we start with a Boolean algebra U which is complete, the
extension Theorem 3.5 provides us with a simple method of constructing
all operations of @,(). The method of construction is described in
the following definition.

DeFINITION 3.11. For any positive integers n# and p, let

Ay ={Ge A" |G| =},
r,,, = the set of all functions mapping A; into A*.

Now assume that A is complete. Then for each a e, , define f, to
be the n-place operation on A such that, for any v "4 we have:

(%) fa = AU {aG: Ge™(AF) and ze™ (™ G)} .

In case 2 is not complete, we define f, only for those awerl’,, such
that, for every xc”A, the product indicated on the right side of

equation (*) exists in 2.

THEOREM 3.12. Let n, p be positive integers and acl’, . If f,
is defined on A (in particular, if A is complete), then f, e @,(A).

Proof. Consider any finite X ="A4, and let X+ = X, x «-- X X,_.
For any G e "(A¥) we obtain, by 1.4:
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EX)e™ (N G) if and only if
ye™ (N™ G) for some yeo,(X).

(1)

Hence, if we set
(2) H=U{aG:Ge™(4) and IXe™ (N™ X)}
and, for each ye o, (X),

(3) K = U{aG:Ge"(4}) and ye™ (N™G),
we obtain from (1) that

(4) H = Uyeo,xr) K .

Since H and each K™ are sets of ultrafilters, we derive from (4) that

(5) NH = Nyerpn (NEY)

then, since 0,(X*) is finite and N H, as well as each ) K%, is a
filter, we get

(6) INH=23,,,nINK".

Combining (6) with (2) and (3), and comparing the result with 3.11
(*), we find that

fa(ZX) = Zyeap(X+)(fay) ’
which shows that f, e @,() by 2.8.

THEOREM 3.13. For every m-place fe®@,(A) there ewxists some
ael,, such that f, is defined on A and f, = f.

Proof. Let f be an m-place operation, fe€@,, and take aerl,,,
so that aG = f*G for every Ge A¥. For any xze"A4, set

(1) H® =U{f*G:Ge"(4;) and ze¢ ™ (N G)} .

Clearly H*' € A*, and hence N H*® is a filter of . In order to show,
for our chosen a, that f, is defined on ¥ and that f, = f, we see from
3.11 that for every xc"A we must show:

(*) Je=HINH".

Consider, therefore, any xe™A. Since every G € A} is finite, by
3.11, we then see from (1) and 3.3 that for every XeJ we have

Xe H® if and only if there exists some
(2) G e "(A}) such that ze™ (™ G) and
for every ye ™ (N™ G) we have fye X .
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From this we obviously have

(3) Sre M H" .
Now consider any z¢ A such that

(4) (fe)-—2+0,

and find an ultrafilter Y of 2 such that

(5) (fr)-—2)e Y.

Putting V = {x} we see, from (5), that fve Y for each ve V. Since
fe®,, by hypothesis, we can apply 2.14 to obtain a filter W of "
such that (i) xe W, (ii) fwe W for every we W, and (iii) there is
some G e "(A}) such that (N™ G); = {w,;: we W} for each 7 < n. We
can, therefore, conclude from (2) that

(6) YeH®= .

Since Y is an ultrafilter, we see from (5) that z¢ Y and hence, by
(6), z¢ M H*. But by (4), z is any element of A such that (fx)- —z = 0.
Thus we have shown that

(7) For every ze H® we have fx=<z.

Combing (7) with (3) we obtain fx = [N H"*, the equation (*), which
completes our proof.

REMARK 3.14. Theorems 3.12 and 3.13 together show that if A
is a complete Boolean algebra, then the set @,() coincides with the
set of all operations f, obtained from functions a¢elJ, I",,,, the union
being taken over all positive integers n.

Of course it may well happen that we have o, Bel,,, and a # 3,
even though f, = f;. It is not hard to see, from 3.11, that we will
have f, = f; if and only if for every G e "(4}) we have:

S{aH: HS™G) = 3{BH: HS™G} .

From this it easily follows that for every a e€I", , there is one and
only one B8e I, , such that f, = f, and B is monotonic (i.e., SH < BG
whenever G e"(4}) and HS™G). Thus the set of n-place operations
in @,2) is in one-to-one correspondence with the set of monotonic
functions in 77, ,.

The representation of operations in @,(), which is provided by
3.13, allows us to obtain an analogue to 2.12 for these operations—
but only in the case where U is complete.
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THEOREM 3.15. Let U be a complete Boolean algebra, let n, p be
positive integers, and set ¢ = n-p. There is a sequence h'™*0, ...,
hi™a-1 of projections of "A onto A, such that every n-place operation
fe@,(N) can be obtained from some q-place operation gec @, (N) by the
composition

(*) f = g[h(n,so)’ cee, h(n,sq_l)] .

Proof. As in 2.12, take s€40, .-+, » — 1} so that
(1) Sjp+i =J for every j<m and 1< p.

Now consider any fe @,(%) and take ael",, so that, for every
G e (AY),

( 2 ) aG = f*(U'Kp Gi’ Ui<p G:D+i7 ey Ui<p G(n—l)'p+i) .
Then by (1), (2), and 3.11, we see that for every y€’4 we have

g9 = TAU{F*Uico Gis =+ 5 Uico Gampypra):
GeYAF) and ye @ (N2 G)}.

Now for any xze"A let y** be the element of A4 such that

(3)

(4) Yy = hmewy for k=0,.-0,9—1.
Thus
(5) (9ol ™50y <oy B = gy for we"A.

Now consider any x € "4 and any G € (4}) such that ¥ ¢ @ (N G),
and let H e "(A*) be such that H; = U.., G;.,+; for each j < n. Then
clearly He®(A4}) by 3.11, and ze™ ("™ H) since, by (1) and (4),
Yy = x; for any 7 < n and ¢ < p. This, together with (3), shows
that, for any xe"A,

(6) 9.y < IINU{f*H: He"(A}) and ™ (N H)}.

On the other hand, given xze"4 and any He"(A}) such that
xe™ ("™ H), we can, by 3.11, find ultrafilters X for each j < n
and 7 < p such that H, = {X/, ..., X2}, and we can then form
G € (A*) so that G;.,.; = {X;"} for each j7 < n, 1 < p. Clearly we will
have G € (A7) by 8.11, and ¥ ¢ @ (N G) since y{*).; = =; by (4) and
(1). This shows that

(7) INU{f*H: He"(4;) and xe ™ (N H)} = 9.4

by (8), since clearly H; = U;<, G;.,+; for each j < n.
Now by 3.9, 8.11, and 2.1 we have
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U({f*H: He"(A4}) and ze ™ (N™ H)}
=AU {Ke™(4):ze™ (N™ K)}
= f*O0™x) by definition of ™ .

Hence by (6) and (7) we get

9.y = I f*(0™x)
= IIN0(fx) by 3.5.

But by definition of 4, () 6(fx) is the principal filter of A which is
generated by fz, hence (8) gives

(9) g y® = fx .

Since (9) holds for arbitrary xe€"A, we can combine it with (5) to
obtain the equation (*) of 3.15.

(8)

PrROBLEM 3.16. The question whether 3.15 can be strengthened to
cover arbitrary Boolean algebras, instead of only complete ones, is open.

REMARK 38.17. In [2], Jonsson and Tarski achieve their extension
theorem (cf. 3.10) by associating with each nm-place operation f on A
an n-place operation® f+ on 2* which in general is different from f*.
Let us call an element G € A* closed if and only if for every XeJ
such that M GE X, we have XeG; and call Ge"(A*) closed if and
only if G; is closed for each j < m. Then for each n-place operation
f, the definition of f* is given by

f*G = {XedJ: For some closed G'S™G we

1
(1) have fye X for every ye™ (O™ G")}

for every G e™(A*).
Clearly from (1) we obtain, for each G € "(4%),

f*G ={XedJ: For some filter Y2 (O™ G)

2
(2) we have fye X for every ye™Y}.
If we consider, therefore, the 1-place operation fon A such that f1 =
1 and fx = 0 for all x € A such that x #= 1, we get f*J = J (by taking
Y = {1} in (2)). But if A is infinite, we get f*J = @ by 3.1.
While this example shows that we can have f* = f*, whenever

3 Actually [2] deals not with the particular Stone extension which we have called
A*, but with an arbitrary extension B, of a kind called “perfect extension” by Jonsson
and Tarski. In fact, as they point out, every perfect extension of ¥ is isomorphiec
to U*, In 3.17 we have adapted the description of f*+ as given in [2], so as to make
it applicable to the particular extension U*.
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fe®, we get f+= f*, This can be obtained by applying 2.14 to (2)
to get f*G<S f*G. The opposite inclusion holds for arbitrary f, since
each finite G € "(4*) is closed, by 1.1.

4. There are two ways in which we may try to strengthen the
results of the preceding section. First, we may seek a set of oper-
ations, containing @, as a proper subset, to which we can extend such
Theorems as 3.5, 3.8, and—in some fashion—3.9. Second, we may try
to enlarge the scope of 3.8 to include other sentences, besides the
equational identities described there, which are preserved in passing
from A to A*. Actually, both of these ways are possible.

Let us consider, first, the problem of enlarging @,. An exami-
nation of the proofs of 3.5, 3.8, and 3.9 shows that they all rest on
Lemma 2.14. This lemma, in turn, is based on the following property
possessed by each n-place operation fe®,: There exists a positive
integer, p, such that whenever Y is an ultrafilter of 2, X is a finite
subset of "4, and f(ZX)e Y, then we have fie Y for some tco,X.

The fact that the integer p is uniform for all ultrafilters Y is not
essential for deriving the lemma, except for that part of the conclusion
which specifies that the sets G; satisfy the condition |G;| < p. If
we are willing to weaken this part of the conclusion to assert simply
that each G, is finite, we can weaken the hypothesis by letting p
depend on Y. This observation motivates the following definition in
which %, as in earlier sections, is assumed to be an arbitrary Boolean
algebra.

DEFINITION 4.1. We define 4() to be the set of all those oper-
ations f on A, of any number 7% of places, such that for every ultrafilter
Y of A there exists a positive integer p with the following property:
Whenever X is a finite subset of "4 such that f(XX)e Y, then ftcY
for some teo,X.

Obviously @.,(%) S (). That this inclusion is proper can be seen
from the following example.

ExAMPLE 4.2. Let P be the set of all positive integers and B
the Boolean set algebra of all subsets of P. Let f be the 1-place
operation on B such that, for any xS P,

Sr={2"1ex}U{8:5 < 2]},

it being understood that if x is infinite then all positive powers of 3
are in fx.
Now f¢®,. For given any positive integer ¢, let X = {{1}, ---,
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{g + 1}}. Obviously 3'ef(lJ X), but 3" el {ft:teos,X}; hence
feo,

However, fe¥. For consider any ultrafilter Y of 8. Two cases
must be distinguished.

Case 1. Suppose Y is a principal filter, generated by an atom
{k} of B. (i) In case k is neither a power of 2 nor a power of 3, then
fxe Y for all ¢ B; in this case we put » = 1. (i) In case k = 27,
then we have fwe Y if and only if 7e2; in this case we again put
p = 1; (iil) In case k = 37, then we have fxc Y if and only if [2| = J;
in this case we put p = j. It is now readily seen that under any of
(i), (ii), or (iii), whenever we have X & B and f(lJ X)e Y, then we
must have also fte Y for some teo,X.

Case 2. Suppose Y is a nonprincipal ultrafilter. In this case we
have fx € Y whenever x is finite. Thus we can be assured that if X
is a finite subset of B such that f(IJX)e Y, then faecY for some
xve X. We can, therefore, take p = 1, and the condition for f to be
in ¥ will be satizsfied.

Having seen that ¥ is a proper extension of @,, it is now a simple
matter to prove a modified form of Lemma 2.14 as indicated immediately
preceding 4.1. Based upon this, we can then obtain the following
theorem generalizing 3.5, 3.8, and 3.9.

THEOREM 4.3. (1) For every n-place f<¥ we have
SrO™Mr) = 0(fx) .
(ii) If fo, +++, [ro €W, and if an equation
T(For = v oy Lot} Ty =+ 0y @) = G(Foy vy Fra) Toy * %y Bons)
holds for all values x,, «--, x,_, € A, then the equation
TS, ooy Jis Gy ovey Gol) = O(FF, v oey [ Goy oo ey Gol)

holds for all values G,, -+, G,_, € A*.

(iii) For each atom H of U*, there is a positive integer v with
the following property: Whenever I' S A* and He f*(UJ 1), then we
have He f* G for some Geo,l.

Proof. Using the modified form of Lemma 2.14 instead of the
original, it is a simple matter to alter the proofs of 3.5, 3.8, and 3.9,
so as to derive 4.3. We omit details.

We turn now to the question of improving 3.8, or its generalization
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4.3 (ii), by enlarging the set of equations 7 = ¢ which are shown to
be preserved in passage from A to 4*. Among the operations which
may be used in forming the two sides = and ¢ of such an equation
are, of course, the Boolean operations + and -, since these are obviously
in ®,—and as shown in 3.6, their extensions to U* are the Boolean
operations U and N of this algebra. However, the Boolean operation
—1is not in @,, nor in +, and so may not appear in the equations
covered by 3.8 or 4.3 (ii). As Jonsson and Tarski have shown, there
are equations involving the Boolean operation — and an additive oper-
ation f, which may hold identically in some Boolean algebra but not
in its Stone extension—or in any complete Boolean algebra. However,
we shall indicate below a class of equations in which — may appear
together with operations of ¥, to which 4.3 (ii) can be extended.

In order to obtain this result we first take up and elaborate the
observation of Jonsson and Tarski that their results can be extended
to cover functions from one Boolean algebra to another. In fact, still
more generally, we can consider n-place mappings into a Boolean algebra,
B, in which each of the n arguments ranges over a distinct Boolean
algebra, 2,. The generalization of the basic definitions and theorems
of §2 and §3 to cover such mappings presents no difficulty. In place
of the sets @,A4) we will have sets @, ---, 2,_;;B), and similarly
for . When dealing with the composition of mappings in order to
generalize 3.7, we consider an #n-place function f mapping B, X --- X
B, , into C, and n m-place functions g, +-+, ¢,_. such that ¢, maps
A, x +++ X A, _, into B; for each 1 < n — 1, and we form the composed
m-place function f[g,, - -+, g,_.] mapping 4, x --- x A,_, into C. Simi-
larly, in the equations to be dealt with when generalizing 3.8 or 4.3
(ii), each variable may range over the elements of a different Boolean
algebra, the two sides of the equation will take on values in one
Boolean algebra (which may, however, differ from the ranges of the
several variables), and the various operations occurring in the equation
may involve intermediate algebras.

These multi-algebra mappings are relevant to equations over a
single algebra, A = {4, +, -, —, 0, 1), because although the operation
— 1is not in @) it is an additive mapping of 2 into the dual algebra
A, =<4, -, +, —,1,0>, and hence — @ ,(2; A,). We can thus con-
struct equations in which all variables and terms take their values
in the set A, with operations including —, from any or all of the
sets YD), T2, QL Ay, and F(A,; A), and still other sets involving
functions of more than one argument, such as ¥(2, ,; A,). If these
operations are composed properly, we can obtain equations falling
within the scope of Theorem 4.3 (ii) as generalized to the multi-
algebra case.

Of course in applying these results to dual algebras it should be
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kept in mind that an ultrafilter of 2, is a maximal proper ideal of ¥,
so that while the algebras 2 and 2, have the same set of elements,
A* and A do not. The mapping —* of A* into A} is such that for
any Ge A* and any IS A we have

Ic(—*G@) if and only if
I={xecA: —xec X} for some XeG.

Theorem 3.5, for the operation —, takes the form:
—*0x) = 0,(—x) for all zeA,

where, for any ye A, 6,y is the set of all these maximal proper ideals
of A for which ye¢ I.
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