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EXTENDING BOOLEAN OPERATIONS

LEON HENKIN

The Stone representation theory provides a canonical
method whereby each Boolean algebra A can be embedded
isomorphically in a complete, atomistic Boolean algebra A*.
Jonsson and Tarski have shown how each additive operation
(of any number of places) on A can be extended canonically
to a completely additive operation on A*, in such a way that
whenever an equation involving given additive operations holds
identically in A, the corresponding equation involving the
canonical extensions of those operations will hold identically
in A*. In this paper we present a generalization of this
result.

In order to obtain the stated result involving arbitrary equations,
it is necessary to consider the smallest set Φ of operations on A, such
that Φ contains all additive operations on A and is closed under
composition of operations. The fact that the elements of Φ are not
in general additive complicates the proof of the Jonsson-Tarski theorem.
As a by-product of our work we obtain, in the case of a complete
Boolean algebra A, a characterization of Φ in terms of equational
identities which generalize the notion of additivity.

In § 1 we present three results, needed in the sequel, concerning
finite intersections of ultrafilters in an arbitrary Boolean algebra A.
In § 2 we introduce various sets of operations (on an arbitrary Boolean
algebra) with which we shall be concerned, and we discuss the
relations among them. In § 3 we associate with each operation / on
A a canonical extension /* on A*, and prove our basic results about
them. Finally, in § 4, we indicate several ways in which the results
of § 3 can be strengthened.

1. Thoughout this section we consider an arbitrary Boolean algebra

We use the term filter to denote what is sometimes called a dual-
ideal, i.e., a nonempty set I g i which is closed under and is such
that whenever xeX and x ^ y then also y eX. We use the term
ultrafilter to denote maximal proper filters of 2t; these are filters X
such that for every xeAwe have either x e X or — x e X, but not both.

THEOREM 1.1. Let n be a positive integer and suppose that Y,
Xo, . , Xn-, are ultrafilters of 21. // 7 3 f[i<n X, then Y = X, for
some i < n.
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Proof. Assume that Y 3 f\i<n Xt and that for each i < n — 1 we
have Y Φ X{. We shall show that we must have Y = X%_L.

From our second assumption we conclude that for each i < n — 1
there is some y{eY such that — yt e Xt. Putting y = /7ί<w_1τ/ί we
conclude that y e Y and — # e Π«n-i X% From the latter, we see
that for every x e Xn-X we have

(-y + x)eΓii<nXi ,

and hence by our assumption that Γ 3 Π;<% -X* w e have ( — ?/ + aj) e F
for every x e Xw_i. But y e 7 and F is a filter; hence x e Y for each
x 6 X%_!, that is, X%_L £ F. Since F and Xn_t are ultrafilters, this
shows that Y = X%_i, as claimed.

In order to formulate our second result about finite intersections
of ultrafilters, we introduce notation which will be used heavily in the
sequel. If X is any set, we denote the cardinal number of X b y | X | .

DEFINITION 1.2. Suppose m is a positive integer and X g A. We set

σmX = {yeA:y = x0 + + xm^ for some α0, , xm_x 6 X} .

THEOREM 1.3. Let Y be a proper filter of SI and m a positive
integer. In order that there exist ultrafilters Xo, , X m - 1 of St such
that Y = Π;<mXi> it is necessary and sufficient that whenever Z^A,
I Z\ <: m + 1, cmd 2 ^ = 1, we feαve Y Γ) c w ^ ^ 0.

Proof. To prove necessity, assume that Y — Γ\j<m X3 for some
ultrafilters Xo, , Xm_19 and consider any ^ g i such that \Z\ ^ m + 1
and ΣZ = 1. From this last equation we see that for each j < m
there is some ^̂  e Z such that £,• e X5. But then f|i<m -3Γ,- Π omZ is
nonempty as claimed, since it contains the element zQ + + zm^.

To prove sufficiency, recall that every proper filter Y can be
extended to an ultrafilter and is the intersection of all such ultrafilters.
Assume, therefore, that there exist m + 1 distinct ultrafilters Xo, ,
Xm such that Y^f\j<m+1Xj; we shall show that there is some Z g A
such that I Z\ = m + 1, ΣZ = 1, and F n ^ = 0.

Since Xo, , Xm are distinct ultrafilters we can find elements
x0, , xm_lf with α̂  G Xy for each i < m, such that ^̂  g X, , and hence
— a?y e Xiy whenever j Φ i, i = 0, , m. Putting xm = /7 y < m —xά we
infer that $ m e X m while —xmeX5 for each j < m. The elements
%o>φ">%m are distinct (indeed, they are pairwise disjoint, nonzero
elements of A), so that if we put Z — {xQ1 , xm} we have | z \ = m + 1.
Also 2 ^ = 1. To see Y Π omZ — 0 assume, on the contrary, that
there is some y eY f) σmZ. Then by 1.2, there must be elements
%oi •> ^m-i ̂  ^ with ?/ = Zo + + ^m-i We can, therefore, find an
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element xό e Z, j < m + 1, such that y ^ — x5 and hence y $ X3. But
since ye Y, this contradicts our hypothesis that YξΞ=f}j<m+1Xj. This
contradiction, arising from the assumption Y Π omZ Φ 0, completes our
proof.

We conclude this section with another characterization of finite
intersections of ultrafilters.

THEOREM 1.4. Let W be a filter of 21, pa positive integer. Then
the following conditions are equivalent:

( i ) Whenever ZξΞ=A, Z is finite, and ΣZe W, then for some
16 σpZ we have teW.

(ii) There is some set G of ultrafilters of 2ί such that \ G | ^ p
and W = Γl G.

Proof. First assume that (i) holds. In case 0 e W so that W — A,
we can show that (ii) is satisfied by taking G to be empty. If 0 g W,
so that If is a proper filter, we can apply 1.3 to obtain (ii), since
whenever ΣZ = l w e have ΣZeW and hence W Π σpZ Φ 0 by (i).

Conversely, assume that (ii) holds. If G is empty so that W = A,
then (i) holds trivially. In the contrary case, say G — {Xo, , Xp^}
where each X* is an ultrafilter of 21. Now take any finite Z g i such
that ΣZe W. Then by (ii) we have ΣZeXt for each ultrafilter X{ e G.
Hence for each i < p there is some Z{ e z such that Zι e X4 . But then

+ + sP-i e Γiιι<P

Putting t = Σi<pZi we thus have t e σpZ and t e W by (ii). This proves
(i), and completes the proof that (i) and (ii) are equivalent.

2Φ We again consider an arbitrary Boolean algebra

and we now define certain sets of operations on A with which we
shall be concerned in § 3 below. For any positive integer n we denote
by nA the w-fold Cartesian power of A, and for any xenA and each
i < n we let â  be the i th projection of x on A. An w-place operation
on A is simply a function from nA to A. In the following definition
we use the notations x + y and x ^ y where x, y e nA. The operation +
and the relation <̂  are here understood to be those of the Boolean
algebra n2t, so that (x + y)ά = x3- + yd for each j < n, and x ^ y if
and only if (x3- rg yά for every j < n). Also, if i, % are positive integers
such that j < n, and if #, y e M., we use the notation x = 5 y to mean
that Xι = ^ for all i ^ i, i < w.
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DEFINITION 2.1. Let n be a positive integer and / an %-place
operation on A. We say that / is

( i ) monotonic if, whenever x, y e nA and x ^ y, we have fx ^ fy;
(ii) p-additive (where p is any positive integer) if, whenever

I g Λ i , \X\ ^ p + 1, and there is a j < π such that x = 3 y for all
.τ, ί / e l , we have

(iii) completely p-additive if, whenever X s M . , and there is a
j < n such that £ = 5- ?/ for all x, y e X, and 2 X exists in %2ί, then
also Σ{fz: zeσpX} exists and equals f(ΣX).

For each positive integer p we let Φp{%) (or simply Φp) be the
set of all p-additive operations on SI, and we set Φω ~ \JP Φpy the union
being taken over all positive integers p. Similarly, we let Φc

β{%) be
the set of all completely p-additive operations on 21, and we set

REMARK 2.2. For any positive integers n and p one can easily
derive from Definitions 2.1 and 1.2 a set of n equational identities in
n + p variables characterizing those π-place operations which are in Φp9

For example, a 3-place operation / on a Boolean algebra 31 will be in
Φ2{%) if and only if the following equations hold identically in 31:
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From such an equationai characterization of Φx one sees that the
1-additive operations are precisely those operations called additive by
Jonsson and Tarski in [2]. Obviously for each positive integer p we
have ΦC

PQΦP and so Φc

ωQΦω. The following theorems give other re-
lations among the sets defined in 2.1, and some basic properties of
these sets which will be useful in the sequel.

THEOREM 2.3. If feΦω then f is monotonic.

Proof. By 2.1 it suffices to show, for each positive integer p,
that every element of Φv is monotonic. Suppose, therefore, that / is
an w-place operation on A with fe Φv1 and consider any x, y e nA such
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that x ^ y. We must show that fx ^ fy.
Choose x{0\ , x{n~l) e nA so that xw = x, and for each i = 0, ,

n — 2 we have x(ί+1) = i + 1 x
(ί) and xf^1] = ί/<+1. Clearly, then, we will

have x(ί) <̂  x{ί+ί) for each i = 0, , n — 2, and x(ίl-1} — y. By transi-
tivity of ^ it suffices for us to show that fx{i) ^ fx{ί+1) for all i < n - 1.

Fixing an arbitrary i < n — 1, take X = {x{i), x{i+1)}. Then, since
feΦp, we can conclude (by 2.1 and 1.2) that

f(x{i) + x{i+ί)) = fx(i) + /x ( ί + 1 ) + f(x{ί) + x ( ί + 1 ))

—the last term on the right being omitted in case p = 1. Since x(i) ^
x{i+ί) we thus get fx{i+l) = fx{i) + fx{i+ί), which gives fx{i) £ fx{i+1) as
desired.

LEMMA 2.4. Lei / 6e an n-place operation on A. In order that
feΦp it is necessary and sufficient that for every finite l £ w i such
that for some j < n we have x = ά y for all x, y e X,

(*) f(ΣX) = Σ{fy:yeσpX}.

Proof. Sufficiency is immediate from 2.1. Necessity is proved by
induction on \X\, as follows.

Assume that feΦp. If | X\ ^ p + 1 we see that equation (*) will
hold directly from 2.1. Consider, therefore, any q ^ p + 1. Let us
make the induction hypothesis that the equation - (*) holds whenever
\X\ <̂  g, and consider an arbitrary set Y — {y{0), -- ,y{q)} containing
q + 1 distinct elements of nA such that for some j < n we have
y{i) = j yik) for all ΐ, k ^ q.

Put α;(ί) = y{i) for i = 0, , g - 2 and £(<?-υ = 7/(9-1} + y(q). Setting
X rr= {χ(0), . . . , x^-v} we obviously have x{i) =3 x{k) for all i, fc < g, and
so we can apply our induction hypothesis to obtain

(1) f(ΣX) = Σ{fz:zeσpX}.

Also, we clearly have

( 2 ) ΣX = ΣY.

Now consider any z e σpX. By 1.2 and definition of X we clearly
have z - ΣZ for some ZQY such that | Z\ ^ p + 1. Hence, since
/eΦ,, we get

/« - Σ{ft: t e σpZ}

^Σ{ft:teσpY} .

Since this holds for each zeσpX, we thus get,
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Σ{fz: z e σpX} ̂  Σ{ft: teσpY}

which, with (1) and (2) gives

( 3 ) f(ΣY)^Σ{ft:teσpY}.

The opposite inequality follows from the monotonicity of /. Hence in
(3) we may replace <£ by = , showing that the equation (*) holds for
Y. This completes our proof by mathematical induction.

COROLLARY 2.5. If p <z q then Φp s Φq-

Proof. Suppose p ^ q and let fe Φp; say / is an n-ary operation
on A. Consider any XgΞM. such that \X\ <Z q + 1, and such that
for some j < n we have x =3 y for all x, y e X. By 2.4 we have

= Σ{fy:yeσpX} .

Since, by 1.2, we have σpXQσqX, this gives

f(ΣX)^Σ{fy:yeσqX}.

The converse inequality follows by 2.3, which gives feΦq by 2.1.
This proves 2.5.

REMARK 2.6. In general we have Φp{%^)Φq{%) when p < q. For
example, let A be the set of all binary relations on ω (the set of all
natural numbers), and consider the Boolean algebra

st = <i4, u, n, - , 0, 2 ω>.

To obtain an operation in Φ2 which is not in Φ19 consider the 1~
place operation f on A such that fx = x; x for every xe A. (Here
x; x is the relative product of the relation x with itself, so that for
any i, j eo) we have </£, jy e fx if and only if there is some keo) such
that (i, kyex and <7b, jy e x.)

To see that f$ Φu consider the relations x = {<Ό, V}} and y — {<(1,2>}.
Clearly fx = fy= 0 , but /(a U 2/) = {<0, 2>}; hence /(x U 2/) Φ fx U /?/.
On the other hand it is easy to see that for any relations z0, z19 z2 e A
we have

f(zQ U ^ U z2) = f(zQ U z,) U f(z0 U z2) U f(z, U s a) ,

so that / G Φ2.
This idea is easily elaborated to obtain a 1-place operation

fP e (Φp+i — Φp) for each p = 1, 2, . Simply take /L to be the oper-
ation / above, and set fp+ιx — (fPx)m

9 % for each xeA.
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THEOREM 2.7. Let g be an (n + l)-place operation on A with
g eΦp (resp., g e Φc

p). Let teA, and let f be the n-place operation on
A such that, for each z e nA, fz = g(zQ, «« , zn_v, t). Then fe Φp (resp.,
feΦ;).

Proof. Obvious.

The following theorem generalizes the distributive law for additive
operations.

THEOREM 2.8. Let f be an n-place operation on A. For each
XξΞ:nA and j < n let X5 — {xά\ x e X}, and set

X+ = Xo x X, x . . . x Xn^ .

In order that fεΦp (resp., feΦc

p) it is necessary and sufficient that
for every finite J S W 4 (resp., every XQnA such that ΣX exists in
n%) we have

(*) f(ΣX) = Σ{ft:teσp(X+)}.

Proof. The sufficiency of (*) is immediate from the fact that
whenever I g nA, and for some j < n we have x = 5 y for all x, y e X,
then X+ — X. Necessity is proved by induction on n. In case n = 1
we see that (*) follows directly from 2.4 (resp., 2.1 (iii)), since X+ = X
for any I g i .

Now make the induction hypothesis that (*) holds for any w-place
operation feΦp (resp., feΦc

p). Consider any (n + l)-place g eΦp (resp.,
geΦc

p), and any XQ{n+1)A such that X is finite (resp., such that ΣX
exists in (%+1)9I).

For each x e {n+l)A let yix) e (%+1)A be such that yf = {ΣX)ό for
each j < n and y{

n

x) = xn. Let Y = {y{x): x e X). Clearly ΣY = ΣX and
y —n z for all y, zeY; hence our hypothesis on g yields

(1) g(ΣX) = Σ{gu:ueσpY}.

By definition of X+ and Y we see that for any t e σp(X+) there
is some ueσpY such that u >̂ t. Hence from (1) and the monotonicity
of g we obtain

(2 ) g(ΣX) ^ Σ{gt: t e σp(X+)} .

Next consider any u e σp Y. By definition of Y we see that

(3) u = y{t) for some teσpX.

Choosing and fixing such a t, we consider the w-place operation / such
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that for any zenA we have fz = g(z0, , zn_19 tn). By 2.7, feΦp

(resp., feΦc

p).
Now for each w e {n+1)A let w' e WA be such that w'ά = w, for all

j < n, and for each TFg (ίi+1)A let TF' = {wΊ w e W}. Since ΣX exists
in (W+1)A, clearly Σ(X') exists in M and Σ(X') = (ΣX)'. Also (X')+ -
(X+)\ Hence we can apply our induction hypothesis to the w-place
operation /, obtaining

( 4) Ά(ΣXY) = Σ{fv: v e σp(X+')} .

But by definition of / we have

f((ΣXY) = g((ΣX)0, , (ΣX)n^ tn)

= gu by (3) and definition of y{t).

Hence from (4) we get

(5) gu = Σ{fv:veσp(X+')}.

Finally, for any v e σp(X+') we have fv = gw for some w e σp(X+),
as we see from the definitions of / and X+ by taking w, = vά for each
j < n and wn — tn, and recalling that t e σpX (cf. (3)). Hence (5) yields

( 6 ) gu^ Σ{gw: w e σp(X+)} .

Since u was chosen as an arbitrary element of σpY, we can combine
(1) with (6) to obtain

( 7 ) g(ΣX) ^ Σ{gw: w e σp(X+)} .

Putting (2) and (7) together, we see that the equation (*) of Theorem
2.8 holds for the (n + l)-place operation g, completing our proof by
mathematical induction.

COROLLARY 2.9. Let f be an n-place operation on A with feΦp

(resp., feΦp). Put q = n-p. Then for any X g M . such that X is
finite (resp., such that ΣX exists in n%) we have

f(ΣX) = Σ{fu: u e σqX} .

Proof. Let X+ be obtained from X as in 2.8. It is evident that
for any xeX+ there is some y e σnX such that y ^ x, and hence for
any t e σp(X+) there is some u e σq(X) such that u^t, and hence
fu ^ ft by monotonicity of /. Applying 2.8 we thus obtain

f(ΣX) ^ Σ{fu: u e σqX) .

The opposite inequality is again obtained by monotonicity, and 2.9

follows.
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If / is any m-place operation and g0, , gm_γ are w-plaee operations
on A, we can compose them to obtain the operation f[g0, •• ,#m_i],
i.e., the w-place operation h such that hx — f{gQx, , gm-xx) for every
x G nA. The following theorem shows that the sets Φω and Φc

ω are
each closed under composition of operations.

THEOREM 2.10. Let f be an m-place operation, let goy ' ,gm~i
be n-place operations, and put h — f[gQ, , gm-ι] Assume that feΦp

(resp., feΦe

p), that ^ e Φ g (resp., ^eΦp) for each i < m, and put
r = m p-q. Then we have heΦr (resp., heΦc

r).

Proof. By definition of h we have hx = f(gQx, , gm-ιX) for each
x e nA. Since /, gQ, , gm_γ are all monotonic, it follows that

(1) h is monotonic.

Now consider any X £ M . and j < n such that x —5 y for all
x,yeX; assume X is finite (resp., ΣX exists in n%). For any i < n
we obtain, from our hypothesis on g{ and 2.4,

( 2 ) gi(ΣX) = Σ{git:teσqX}.

Now for each i < m set Y{ = {̂ r̂ : ί € σgX}, and put F = F o x x
Xm_L. From (2) and the definition of h we have

h(ΣX)=f(ΣY0,
( } =f(ΣY) by definition of F .

If we obtain Y+ from Y in the way described in 2.8, we see from
the definition of F t h a t in fact Γ+ = Y. Hence by 2.8 and (3) we obtain

( 4 ) h(ΣX) = Σ{fu: u e σpY} .

By the monotonicity of g0, , gm_t and the definition of F we
see that for each | / e 7 w e can find some v e σm.qX such that yt < ^
for every i < m. Hence, by the monotonicity of / and g0, , gm_ί

we see that for every ueσpY we can find some w e σp.m.qX such that

fu ^ /(flrow, , gm~,w) = hw .

Since r = m-p-q v̂ e thus have: For every ueσpY there is some
w e σrX such that fu ^ /̂ w. Hence from (4) we get

Whenever z ^ hw for all w e σrX ,

we have z ^

On the other hand we also have

( 6 ) h(ΣX) ^ hw for all w e σrX
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by (1). Combining (5) and (6) gives

h(ΣX) = Σ{hw: w e σrX} .

From the way in which X was chosen, this shows that heΦr (resp.,
heΦc

r), as claimed in 2.10.

In § 3 we shall show how each / e Φp{%) can be extended to an
/ * e Φj(9ί*), the algebra 3ί* being complete and atomistic. In the
following two theorems we find that the class Φ£(33) has a particularly
simple character for any Boolean algebra 33 which is complete and
atomistic.

THEOREM 2.11. Let 33 be a complete, atomistic algebra, and B'
the set consisting of 0 and all the atoms of 33. Let f be an n-place
operation on B, and for each xenB let A{x) = {ae n(Br): a ̂  x). In
order that fe Φ£(33) it is necessary and sufficient that for every xenB
we have

(*) fx = Σ{fb:beσp(A{x)))

Proof. Let us first assume /eΦj(93). To show the necessity of
(*), observe first that for any xenB we have

( 1 ) x = Σ(A[X))

by the hypothesis that B is atomistic. Next observe that if we form
A{x)+ from Aix) by the method described in 2.8, we find that in fact

( 2 ) A { x ) + = A { x ) .

By 2.8 we have

)) = Σ{fb:beσp(A(x)+)} ,

which, by (1) and (2), yields (*).
Next let us assume that / satisfies the condition (*), and prove

that this is sufficient to yield feΦc

p(B).
We first observe that whenever x^y we have A{x)SA{y), and

hence σp(A{x)) S σp(A{y)); and we then get fx ^ fy from (*). This shows
that

( 1 ) / i s monotonic .

Next consider any X^nA. Of course ΣX exists in %33 by our
hypothesis that 33 is complete, and by (*) we have

( 2 ) f(ΣX)=Σ{fb:beσp(A^)}.
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Let X+ be obtained from X by the method specified in 2.8. If
a e A{ΣX) then for each j < n we have a5 < xά for some x e X; hence
a ^ y for some y e X+. It follows that for every b e σv(A{ΣX)) there is
some t e crp(X+) for which 6 <̂  t, and hence fb <£ /ί by (1). Thus

Σ{fb: b G σp(A{ΣX))} ^ Σ{ft: t e σp(X+)} ,

from which we get, by (2)

(3 ) f(ΣX) £ Σ{ft: t e σp(X+)} .

Since for each y eX+ we have y <£ ΣX, we get t <g ΣX for each

ί G tfp(X+) and hence

( 4 ) Σ{ft:teσp(X+)}£f(ΣX)

by (1). Combining (3) and (4) and using 2.8 we conclude that fe ΦJ(S3),
as desired.

In the next theorem we show that when 33 is complete and
atomistic, each operation in Φe

ω(f8) can be obtained by composition from
operations in ΦJ(33). In formulating this theorem we deal with the
projections h{n>s) associated with B: If n and s are positive integers
such that n > s, then h{n's) is the %-place operation on B such that
h{n's)x = xs for each x e nB. Clearly each h{n>s) e

THEOREM 2.12. Let 33 be any complete, atomistic Boolean algebra,
n and p any positive integers, and q = n p. There exists a sequence
s e g{0, , n — 1} such that every n-place operation fe Φc

p(^8) can be
obtained from some q-place operation g e ΦJ(SS) by the composition

(*) / = g[h{n>»8), •••, ft**'8*-^] .

Proof. Since q — n p, we see that for each k < q there exist
unique i < p and j < n such that k = j-p + i. Thus we can define
s G β{0, , w — 1} by the rule that

( 1 ) Sj.p+j = i for all j <n and i < p .

Let 2?' be the set consisting of 0 and all the atoms of S3, and set

A{x) = {ae q{Bf): a ̂  x) for each a? e qB ,

C ( w ) - {δ G % (β'): b^w} for each w e nB .

Let / be any w-place operation, /eΦj(SS). Then define # to be
the g-place operation on B such that, for any x e qB,

( 3 ) gx = Σ{f(Σi<paiy Σi<pap+i, , Σi<pa{n^hp+i): a e A(x)} .
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Let xeqB, and consider any beA{x). Clearly by (2) we have
b e Aih\ and b ̂  a for any a e A{b\ so that by (3) and the monotonicity
of / we get

pθiy Σi<pbp+i, , 2ti<pb(n_ί).p+i)

for each beA(x). Referring again to (3) we infer that

( 4 ) gx = Σ{gb: b e A{x)) for each x e qB .

Applying 2.11 to (4), and using our hypothesis that 33 is complete and
atomistic, we obtain

( 5 ) g e Φί(»)

It remains to show that equation (*) holds. For this purpose
consider any w e nB, and let x e qB be such that

( 6) xk = h{n>s*]w for all k < q ,

so that

( 7 ) gx = (g[¥n>s»\ , h{n^-^])w .

Now for each a e A{x) let b{a) be the element of nB such that

( 8 ) bf] = Σi<pa,:p+i for every j < n ,

so that

( 9 ) gx = Σ{fbίa):aeAw} ,

by (3). For each j <£ n and i < p we have a ̂ .p+i = wό by (1) and (6),
and so by (2), if aeA{x) we have α i > p + i ^ w and ad.p+ieB'; but then
by (8), we get bf] <; w,. and 6, e σp{B'). This shows that

(10) b{a) e σp(C{w)) for every a e A{x) ,

by (2). Combining (9) with (10) we get

(11) gx ^ Σ{fb: b e σv(C™)} .

To obtain the opposite inequality, consider any beσp(C{w))\ say
b = 6(0) + . . . + b{p~ι\ with each b{i)eCiw). Let a be the element of
qB such that

(12) a>j.p+ί = bf' for every i < p and j < n .

For i < p and i < n we have 6^ ^ wά and 6^] e S ' by (2); hence
aj.p+i^x3:p+ieBf by (12), (6), and (1), and so aeA{x) by (2). Then,
since Σi<pa5.p+i = δ̂  for each j" < n, by (12), we conclude that fb ^ ̂ rx
by (3). Since b is an arbitrary element of σp(Cιw))f this shows that



EXTENDING BOOLEAN OPERATIONS 735

(13) Σ{fb: b e ap(Ow))} ^ gx .

Now fe Φc

p(^8) by hypothesis. Hence we can combine (11) and (13)
with 2.11 to conclude that fw = gx. Hence, by (7), we have fw =
(g[h{n's°\ , h1"'**-1*])™. Since w is an arbitrary element of nB, this
establishes equation (*) of 2.12 and, in view of (5), completes the proof
of the theorem.

REMARK 2.13. For every finite Boolean algebra we have Φc

p{%) =
ΦP(A) by 2.1 and 2.4. However, in any infinite 2ί we have Φc

p{%) £
ΦP(2I). For let X be any nonprincipal ultrafilter of 51 and let / be
the 1-place operation such that fx — 1 if x e X and fx = 0 if x g X
for every xeA. Obviously /eΦ^SI), and hence feΦp(Wi) for every p
by 2.5. On the other hand for Y = {-x:xeX} we have ΣY = 1
(since X is nonprincipal), so f(ΣY) = 1; but fy = 0 for every yeY.
This shows that f(£Φc

p(Ά).

From the fact that in general Φ% Φ Φp, we see that we cannot
strengthen 2.12 to say that every fe Φp(^&) can be obtained from some
g e Φt(^8) by equation (*). For whenever / is 1-place and g e ΦJ(33) we
have g[hin's°\ , ft(n'8α-i>] e Φ;(S3) by 2.10. The question whether every
feΦp can be obtained from some geΦ^) by (*), involves the Stone
extension algebra S3*, and so will be deferred until § 3.

We conclude this section with a lemma about arbitrary/G ^(Sί),
which will be used to derive the fundamental properties of the extension
/ * of / to be defined in § 3.

LEMMA 2.14. .Let f be an n-place operation on A, feΦp, and let
Y be an ultrafilter of §ϊ. Assume that F ϋ M . such that (a) for
every u, v e V we have u v ^ t for some teV, and (b) fveY for
every v e V. Then there exists a filter W of n% such that (i) F g l f ,
(ii) fw 6 Y for every w 6 W, and (iii) for every j < n there is a set
Gά of ultrafilters of SX such that \ G3 \ ̂  p and Π G3 = {WJ: w e W}.

Proof. In the algebra n% consider the set

B = {x e nA: fxeY} .

By hypothesis (b) we have

(1) F g 5 ,

Also, since / is monotone and 7 is a filter, we see that

(2) if x € B and x ^ x', then x' e B .
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Using (1) and (2) with hypothesis (a), we conclude that for the filter V
generated by V in WSI we have F ' g j ? . Hence, by the maximality
principle of set theory, we can find a filter W of wSί such that

W is maximal in the class of all those

filters U of n% for which F g U^B .

Since F g W and WQB by (3), we see that:

( 4 ) Conditions (i) and (ii) of Lemma 2.14 are satisfied .

Using the maximality property of W given in (3), we shall show now
that (iii) is satisfied as well.

Consider any j <n and set Wά = {wβ: w e W). Since W is a filter
of WSI, obviously we have

( 5 ) Wj is a filter of 21 .

We now consider two cases.

Case 1. Suppose 0 e Wj. In this case we can take G5 to be the
empty set of ultrafilters of St. For each xeA we have, vacuously,
xeX for every XeGj, so that Γ\G3 — A. But by (5) and the hy-
pothesis of Case 1, also Wό = A. Since | Gj | ^ p we see that

( 6 ) Condition (iii) of Lemma 2.14 holds in case 1 .

Case 2. Suppose that 0 g Wj. In this case Wj is a proper filter
of SI, by (5), and we shall establish condition (iii) by an application
of 1.3.

Consider, therefore, any Z g i such that

( 7 ) \Z\^p + l and ΣZ = 1 ,

and assume that

( 8 ) (WsΠσPZ) = 0 .

Consider any t e σpZ, and take x{t) e nA so that xψ — t while xιv = 1
for every i Φ j , i < n. By (8) we have x{t) g W. Hence from (3) we
conclude that the filter of nA generated by W U {x{t)} is not a subset
of B. Thus, by (2), there must be some element w{t) e W for which
w[t)-x{t)£B, i.e.,

( 9 ) w{t)eW and f(w{t) x{t)) ίY .

Since σpZ is finite, we can form the element w — Π{w{t): teσpZ}.
Since W and Y are filters, and / is monotone, we obtain from (9):
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(10) weW and f{w>x{t)) $ Y for every t e σpZ .

Since Zξ^σpZ, we see that x{z) is defined for each zeZ. Set
S = {w-x{z): zeZ). Then from the definition of x{t) we obtain

(11) σpS = {wx{t):teσpZ} .

Also from the definition of x{t) we can see that for any s, s ' e S we
have s=d s\ Since S is finite and feΦp by hypothesis, we can
therefore apply 2.4 to conclude

(12) f(ΣS) = Σ{fr:reσpS}.

By (7) and the definition of x{t) we see that Σzezx
{z) = 1, and hence

ΣS = w. Since weBhy (10) and (3), it follows that f(ΣS) e Y. Since
Y is an ultrafilter by hypothesis, we then infer from (12) that freY
for some r e σpS. Thus, by (11), we get f(w-x{t)) e Y for some t e σpZ,
contradicting (10).

The contradiction arises from our assumption (8). We have thus
shown that for every Z^A such that | Z\ ̂  p + 1 and ΣZ = 1, we
have (Wj Π opZ) Φ 0 . Furthermore, by (5) we see that in Case 2,
Wj is a proper filter of St. Hence we can apply 1.3 to conclude that
there must exist ultrafilters Xo, •• ,X2)_1 such that Wά = f\i<pXi.
Putting Gj = {Xo, , Xp_x) we then have:

(13) Condition (iii) of Lemma 2.14 holds in Case 2.

We see from (4), (6), and (13) that our proof is complete.

3. Throughout this section we consider an arbitrary Boolean
algebra

and its Stone extension

§i* = <A*, u , n , , ~ , 0 , J>,

where J is the set of all ultrafilters of 2t, and A* is the set of all
subsets of J. We let θ be the canonical isomorphism whereby St is
represented in SI*, so that θx = {Xe J: xeX} for each xeA.

Our principal task is to show how each element of Φω(A) may be
suitably extended to an operation on A*. Since the operations on A*
with which we deal are w-place operations, we shall be concerned with
various elements Gen(A*). With respect to such elements we shall
have occasion to deal with Boolean operations upon and relations
between them, referring to the Boolean algebra %(St*). Notationally,
we shall write GQin)H, for example, to indicate that Gό £H ά for each
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j < n; or we shall use \JiViG(ί) to denote the element H of n(A*) such
that for every j < n we have H3 = \JieiGι/K Finally, if Ge B ( i*) ,
we shall frequently have occasion to refer to "subsets" Gf ξΞ={n)G which
are finite, meaning thereby that for each j < n, G) is a finite subset
of Gj', since G) is a finite set of ultrafilters on A, Π (GJ) is a filter,
and if x e nA, we write x e {n) (f|(%) G') to indicate that xά e (fl (?ί) for
each j < w.

DEFINITION 3.1. To each w-place operation f on A we associate
an n-place operation /* on A*, as follows. For any Gen(A*) we set

f*G = {Xe J: For some finite G'^in)G we

have fyeX for every y e (n) (f|(TO) G')} .

THEOREM 3.2. For every n-place operation f on A, the operation
/ * is monotonic on A*.

Proof. If G, Hen(A*) and Gsin)H, then whenever G'^{n)G we
have also G'^{n)H; hence f*G<^f*H by 3.2.

THEOREM 3.3. Lei / δe cwz# n-place operation on A, and G e n(A*).
If G is finite, then

f*G = {XeJifyeX for every y e {n) (Γiin) G)} .

Proof. Whenever

G ' £ W G and y e {n) (f|(%) G) ,

we have also i/e (w) (Π ( Λ ) &')• Therefore if G is finite, the conclusion
of 3.3 follows directly from 3.1.

THEOREM 3.4. Let f be any n-place operation on A, and G e n(A*).
Then

f*G = U {/*<?': G'C ί n )G and G' ΐs

Proof. By 3.1 and 3.3.

We wish now to show that for every fe Φω(9ί),/* is an extension
of / with respect to the canonical embedding 0 of 31 into SI*. In this
connection, if xenA we use the notation θ(n)(x) to indicate the element
<? G *(A*) such that β(xά) = Gό for each i < n. If G e W(A*) and Xe V,

also use the notation Xein) G to indicate that Xs e Gy for every j < w.

THEOREM 3.5. Letf bean n-place operation on A, feΦω. Then
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for every x e nA we have

f*(θ™x) = θ{fx) .

Proof. Take any x e nA. We first show that f*{θ{n)x) g θ(fx); for
this part of the work we shall not need the hypothesis feΦω.

Consider, then, any Yef*(θ{n)x). By 3.1 there exists a finite
G' e n(Aη such that (a) G' s { n ) θ{n)x, and (b) fzeY for all z e {n) n (n) G\
Using the definition of θ, we infer from (a) that x e {n) X for each
Xe {n) G', i.e., that x e in) f) w G'. Hence by (b) we obtain fx e Y. But
then Yeθ(fx), by definition of θ. This proves that f*(θln)x) g θ(fx) as
claimed.

It remains to show that θ(fx)ξΞ:f*(θ{n)x). For this we make use
of our hypothesis that feΦω($ί); say feΦp, where p is a positive
integer.

Now consider any Yeθ(fx). By definition of θ, this means that
fx e Y. Taking V to be {x}, we see that we can apply Lemma 2.14
to obtain a filter W of nA such that (i) x e W, (ii) /w e Γ for w G TΓ,
and (iii) for every j < n there is some finite set GJ G A* such that
{wy: w e T }̂ = f | G ; .

Now let G' be the element of %(A*) determined by the sets Gί, ,
G«_lβ Clearly we have

( a) G' is finite.
Furthermore,

( b ) G'S ( Λ )(0 ( w )α).
For if X e (%) G', then xe {n) X by (i) and (iii) above. By definition of
θ, this shows that Xe {n) {θκn)x), justifying (b). Finally,

( c ) fw e Y for every w e {n) (f\{n) G')
by (ii) and (iii).

Combining (a)-(c) we infer, by 3.1, that Yef*{θ{n)x). This shows
that θ(fx)<^f*{θ{n)x), and completes our proof.

We next wish to compute the extensions / * for certain special
operations / on A, each of which is in fact an element of Φγ.

THEOREM 3.6. Let f and g be the 2-place operations on A such
that fx — xQ + Xι and gx — xQ xt for each xe2A. Where n is any
positive integer and j < n, let h{n>j) be the n-place operation of pro-
jection on A, such that h{n>j)x = x5 for each x e nA. Then we have
f*G = Go U Gx and g*G = Go Π GL for every Ge2(A*), and we have
h{n>j)*G - Gj for every Gen(A*).

Proof. We shall give details only for the operation /, the proofs
for the operations g smd'h{nJ) being similar.
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Consider, then, any element G of 2(A*). By 3.1 and the definition
of / we have, for every XeJ:

Xef*G if and only if there is some finite G'S ( 2 ) G

such that (y0 + yj e X for every y e (2) (f|(2) <?') -

Now suppose, first, that XeGQ{jG1—without loss of generality
we may suppose XeGQ. Then take G; to be the element of 2(A*) such
that G'o = {X} and G[ = 0 . Obviously Gr is finite and G' £ ( 2 ) G. Further-
more, for every y e (2) (Π ( 2 ) G') we have y0 e X, and hence (y0 + yt) e X
(since X is a filter). Thus we conclude by (1) that Xef*G. This
shows that (GQ U G,) S / * G .

Conversely, consider any Xef*G. By (1), there exists some finite
G'Q{2)G such that for every y e (2) (ΓΓ2) G') we have (y0 + ^ ) e X We
are going to show that

(2) ((ΠQn(ΠG;))sx.

Indeed, since G' e 2(A*) we see that Π Go and f\ Gί are filters of
A. Given any z e (f\ GO Π f\ G[), let y be the element of 2A such that
yQ = y, = z; then y0 e Π Gί, V^Π G^ a n d h e n c e 2/ e (2) (Π ; 2 ) G'). It
follows from our choice of Gr above that (y0 + Vι) e X, and hence ze X.
This shows that (2) holds, as claimed.

Now G[ and G[ are finite sets of ultrafilters of A. Hence we can
apply Theorem 1.1 to (2) above, to conclude that XeGΌ or XeG[.
Since G'Q(2)G, this implies that Xe(G0{J GL). We have thus shown
that /*GgΞ(G0 U Gx), completing our proof of the part of 3oβ dealing
with the function /.

As indicated above, the proofs for g and h{nJ) are similar, and
we omit details.

THEOREM 3.7. Let f he an m-place operation, feΦp(ίί), and let
Oo9 * "f ffm-i be %-place operations on A. Assume that gt is monotonic
for each i < m. Put h = f[g0, , gm^]. Then h* = f*[gf, , gl-,\.

Proof. Let G be any element of %A*). We shall first show that
Λ*GS/*(flro*G, •• , ^ _ 1 G ) .

Consider, then, any Xeh*G. By 3.1 we can find some finite
G'Qin)G such that:

( 1 ) hyeXΐor every y e {n) (Γ\{n) Gr) .

Now let

( 2 ) F = {v e mA: v = < ^ , . . . , ^ ^ i / ) for some y e w (f){n) &)} .

We have hy = /(flro2/, > ^»-i2/) f o r every y e nA, by definition of h;
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hence by (1) and (2) we get

( 3 ) fveX tor every v e V .

We claim also that:

For every u, ve V we have

u v ^ t for some teV.

For given any u,veV, we have u = ζgoy, , gm-γy) and v = <fjros, ,
^m_^> for some y,ze (n) (Γ\{n) G'), by (2). Since (Πin) (?'); is a filter of
A for each i < n, we conclude that (y «) e {n) (f\{n) G'). Hence, setting
t = ζgo(y z), ",gm-ι(y z)>, we have t e F, by (2). Furthermore, % i; :>
t since each ^̂  is monotonic by hypothesis. Thus (4) is justified.

Using (2) and (3), we can apply Lemma 2.14 to find a filter W of
mA such that

( i ) VQ W,
(ii) fweX for every w e W, and
(iii) for every i < m there is some finite set HI e A* such that

{Wii weW} - Π -H7-
Now let f P be the element of m(A*) determined by the sets

Hό, , fl"i-i Clearly we have

(5 ) H'e m(A*) and fP is finite .

Next, let i ϊe m (A*) be such that

( 6 ) Hi — g*G for every i < m .

Obviously we get

( 7 ) f*H=(f*[gf, ...,flr*-J)G.

Now we claim that

( 8) J ϊ ' ε ( m ) i ί .

For consider any Ye{m)H'. Then by (iii) we have we(m)Y for every
weW, and hence by (i) we get ve{m)Y for every v e 7 . This means,
by (2), that for any i < m we have &# € Γi for every y e {n) (f|(%) G'),
which shows, by 3.1, that Y.egfG^H, by (6). Thus Γ e ( w ) i ί ,
justifying (8).

Finally, we have

( 9 ) fweX for every w e (m) ( Π ( w ) -ff') ,

as we see by (ii) and (iii).
Combining (5), (8) and (9) we infer, by 3.1, that Xef*H. Thus

-3Γ€(/*[#*, - ••, gZ-ι])G, by (7), concluding our demonstration that
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(10) h*GSf*(9ΪG, •• ,flr*-1G).

To complete our proof of 3.7 we shall now establish the opposite
inclusion to that of (10).

Let H, as in (6), be the element of m(A*) such that H, = gfG for
every i < m, so that (7) holds. Consider any Xef*H. By 3.1 this
means there is some finite H'Q{m)H such that

(11) fzeX for all z e (m) (Π ( m ) Hr) .

Since H{^m)Hi = gfG for each i < m, we see from 3.1 that for
each Ze{m)H' we can find some finite G{z)^{n)G such that

(12) g& e Z, whenever i < m and ye {n) (Π{n) G{z)) .

Setting G' = U {G(Z)' Ze {m)H'}, and recalling that H', as well as each
G{Z\ is finite, we see that G' is finite; and evidently we have G' S{n)G.
Furthermore, for any y e {n) (f\{n) G') we have gty e (Π ( m ) -H"')* for every
i < m, by (12), so that f(gQy, , gmy) e X by (11), and hence hyeX
by our hypothesis on h. Applying 3.1, we conclude that Xeh*G.
This proves that f*HQh*G, and hence by (7) that

(13) /*(<7o*G, •• ,flfϊ-1ί?)SΛ*G.

Since G is an arbitrary element of W(A*), (10) and (13) together complete
the proof of 3.4.

We now come to the principal theorem which relates the operations
/ of Φω(9ί) to the corresponding operations /* on A*.

THEOREM 3.8. Let fQ, •,/*_! e Φω(A). Suppose that

is an equation which holds for all values x0, , %n_x e A. Then the
corresponding equation

τ(/0*, , fSLΰ Go, , Gn_x) = σ(/0*, , //_,; Go, . . . , G J

AoZώs /or αϊi values Go, , G%_! e i * .

Proof. Corresponding to each of the two sides τ and σ of the
original equation there are w-place operations h and g on A, each
obtained from /0, •• ,/fc_1 (and from the projections Λ(w>i) of 3.6) by
an indicated series of compositions. The hypothesis that the equation
τ — σ holds identically in A, implies that in fact h = g.

In the algebra A*, the two sides τ and σ of the equation determine
w-place operations, obtained from /0*, •• ,Λ*_1 by performing the same
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indicated series of compositions as were used in obtaining h and g;
the resulting operations are, in fact, h* and g*, as we see by repeated
application of 3.7 (and by 3.6). Since we have h = g, of course we
infer that h* = g*. But this implies that the equation τ — σ holds
identically in A*, as claimed in the theorem.

THEOREM 3.9. If fe <Pp(3t), then f* e Φ;(»*).

Proof. Let / be any w-place operation on A, feΦp(%). As re-
marked in 2.2, the set of those w-place operations which are in Φp

can be characterized by means of n certain equational identities. Hence
by 3.8 we see that

(1) / * e Φ,(3ί*) .

Now consider any G e n(A*), and let

( 2 ) A*[G) = {£' G "(A*): G'<^(n)G and | Gs | ^ 1 for every i < n} .

Take any X G / * G . By 3.4 we can find some G'e%A*) such that

(3) X G / * G ' and G' is finite .

From the latter we get a positive integer q such that

( 4 ) G' = Uί<« G(ί) for some G(0), , Gίff-1} € A*(G) .

Now using (1), let us apply 2.4 to the operation / * on the algebra
A*; then by (4) we get

f*G' - U {f*H: Heσp{Gw, , G(«-1}}} ,

whence by (3) and (4),

( 5 ) Xef*H for some He σp(A*{0)) .

Since X is an arbitrary element of /*(?, this shows that

( 6 ) f G g | J {/*#: Heσ9(A*{β))} .

The opposite inclusion also holds by 3.2, since for each Heσp(A*ιβ))
we have H^{n)G by (2). Thus

(7) f*G = \J{f*H:Heσp(A*(G])}.

By applying 2.11 we infer from (7) and (2) that / * e Φ;(2t*), as desired.

REMARK 3.10. We can summarize the combined substance of 3.5,
3.8 and 3.9 by saying that each ^-additive operation f on A can be
extended to a completely p-additive operation / * on A*, in such a
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way that whenever an equation in given operations /0, ., / m - 1 holds
identically in 2ί, the corresponding equation in the operations/0*, •••,
/«-i holds identically in 21*. If we restrict this result to the case
p = 1, we get a result of Jonsson-Tarski [2]. (Cf. remark preceding
Theorem 2.11 of that paper.)

Following Jonsson and Tar ski further, we may generalize their
notion of a Boolean algebra with operators. Let us call a system

a Boolean algebra with partial operators if ζB, + , , —, 0, 1)> is a
Boolean algebra and /0, , / m ^ e Φω(S5). Such a system B will be
called atomistic if its Boolean part is atomistic; B will be called
complete if its Boolean part is complete and /0, •• , / m _ 1 e C

Suppose that we define a class ,SP of structures by means of a
system of axioms each having the form of an equational identity.
Then by 3.5, 3.8 and 3.9 we can conclude:

If every structure of £f is a Boolean algebra with partial oper-
ators, then each S3 e Sf can be extended to a complete, atomistic

If we start with a Boolean algebra 21 which is complete, the
extension Theorem 3.5 provides us with a simple method of constructing
all operations of Φω(2l). The method of construction is described in
the following definition.

DEFINITION 3.11. For any positive integers n and p, let

Γn,p = the set of all functions mapping A* into A* .

Now assume that 21 is complete. Then for each a e Γn>p define fa to
be the w-place operation on A such that, for any x e nA we have:

( * ) faX = n Π U {aG' G 6 n{A$) and x e w (Γί{n) G)} .

In case 2X is not complete, we define /„ only for those a e Γn>v such
that, for every xenA, the product indicated on the right side of
equation (*) exists in 21.

THEOREM 3.12. Let n, p be positive integers and a e Γn>p. If fa

is defined on 21 (in particular, if 2t is complete), then fa e ΦP{U).

Proof. Consider any finite I g nA, and let X+ = XQ x x Xn-i-
For any Gen(A$) we obtain, by 1.4:



EXTENDING BOOLEAN OPERATIONS 745

(ΣX) e {%) (f\w G) if and only if
( 1 ) y e {n) (Γ\{n) G) for some y e σp(X+) .

Hence, if we set

(2 ) H = U {oG: G e n(A%) and ΣXe <•> (Π(n)

and, for each yeσp(X+),

(3) K™ = \J{aG:Ge*(A*) and j / e ^ ί Π

we obtain from (1) that

(4) H=\Jyeσp{x+)K^ .

Since H and each K{y) are sets of ultraίilters, we derive from (4) that

then, since σP(X*) is finite and Π H, as well as each f\ K{y\ is a
filter, we get

{ί/)(6) ΠΠH=ΣyQσp{x+)ΠnK

Combining (6) with (2) and (3), and comparing the result with 3.11
(*), we find that

fa(ΣX) = Σyeσp(x+)(fay) ,

which shows that fa e Φp{%) by 2.8.

THEOREM 3.13. For every n-place /eΦ^SI) there exists some
a e ΓntP such that fa is defined on A and fa = /.

Proof. Let / be an %-place operation, feΦp, and take aeΓ%fP

so that aG — f*G for every GeAp. For any xe*A, set

( l ) H^ = U ί/*G: G e n(A%) and x e {n) (Π{n) G)} .

Clearly H{x) e A*, and hence f\ H[x) is a filter of Si. In order to show,
for our chosen a, that fa is defined on SI and that fa = /, we see from
3.11 that for every xenA we must show:

Consider, therefore, any xe*A. Since every GeA* is finite, by
3.11, we then see from (1) and 3.3 that for every XeJ we have

XeH(x) if and only if there exists some

(2 ) Ge n(A%) such that x e {n) ( f | w G) and

for every y e (%) (fl(%) G) we have fyeX.
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From this we obviously have

( 3 ) fxefi Hix) .

Now consider any ze A such that

( 4 ) (fx)--zΦθ,

and find an ultrafilter Y of §1 such that

( 5 ) ((fx)--z)eY.

Putting V = {x} we see, from (5), that fveY for each v e V. Since
feΦpy by hypothesis, we can apply 2.14 to obtain a filter W of n%
such that (i) x e W, (ii) fw e W for every w e W, and (iii) there is
some Gen(A*) such that (Γ)(w) G), = {w, : we W} for each j < w. We
can, therefore, conclude from (2) that

( 6 ) YeHix).

Since Y is an ultrafilter, we see from (5) that z&Y and hence, by
(6), z $ Π H{x)- B u t by (4), s is any element of A such that (fx) .—zφ§.
Thus we have shown that

( 7 ) For every z e f\ H{x) we have fx^z.

Combing (7) with (3) we obtain fx = Π Π ^ ( a ? ) > the equation (*), which
completes our proof.

REMARK 3.14. Theorems 3.12 and 3.13 together show that if 21
is a complete Boolean algebra, then the set Φp(2ί) coincides with the
set of all operations fa obtained from functions a e \Jn Γn,p, the union
being taken over all positive integers n.

Of course it may well happen that we have a, β e Γn,v and a Φ β,
even though fa = fβ. It is not hard to see, from 3.11, that we will
have fa — fβ if and only if for every G e n(A%) we have:

Σ{aH: H£™G] = Σ{βH: HS™G] .

From this it easily follows that for every a e Γn,p there is one and
only one β e Γn,p such that fa = fβ and β is monotonic (i.e., βH ^ βG
whenever Gen(A%) and HQ{n)G). Thus the set of w-plaee operations
in Φp(%) is in one-to-one correspondence with the set of monotonic
functions in Γn,p.

The representation of operations in ΦP(W), which is provided by
3.13, allows us to obtain an analogue to 2.12 for these operations—
but only in the case where 31 is complete.
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THEOREM 3.15. Let % be a complete Boolean algebra, let n, p be
positive integers, and set q = n p. There is a sequence h{n's°\ •••,
/̂ »,*α-i> of projections of nA onto A, such that every n-place operation
fzΦp{%) can be obtained from some q-place operation geΦ^W) by the
composition

Proof. As in 2.12, take seq{0, ••, n — 1} so that

( 1 ) Sj.p+i = j for every j < n and i < p .

Now consider any feΦp(%) and take aeΓqΛ so that, for every

Ge ? ( i f) ,

( 2 ) <X(τ = f*(\Ji<p Giy \Ji<p Gp+iy , \Ji<p G^^D.p+i) .

Then by (1), (2), and 3.11, we see that for every y e qA we have

( } G G q{A'f) and 2/ e (9) (Π (

Now for any xenA let τ/(ίC) be the element of qA such that

( 4 ) y{

k

x) = h{n>s^x for fc = 0, , q - 1 .

Thus

( 5 ) {ga[h[n>SQ\ , h[n^-^])x = ^α?/(a;) for a? e nA .

Now consider any x e nA and any G e g(A*) such that yw e (g) (f|(9) G)y

and let i ϊ e %(A*) be such that Hό = [Ji<p Gj.p+i for each j < n. Then
clearly Hen(A*) by 3.11, and x e{n) (f\{n) H) since, by (1) and (4),
yf^+i = Xj for any i < n and i < p. This, together with (3), shows
that, for any x e nA,

( 6 ) gay^^ΠΓi\J{f*H:HeΛ(A*) and a?e w ( n

On the other hand, given xenA and any H en(Ap) such that
x e w (f\{n) H), we can, by 3.11, find ultrafilters Xlj) for each j < n
and i < p such that Hd = {X0

U), •• ,X^ί)

1}, and we can then form
G e q(A*) so that Gd.p+i - {X/ }̂ for each j < n, i < p. Clearly we will
have G e g(A*) by 3.11, and y{x) e {q) (Π{q) G) since y£p+i = ̂  by (4) and
(1). This shows that

(7) ΠΓl\J{f*H:Hen(Aϊ) and a;e w (Π

by (3), since clearly H3 = (Ji<2> ̂ i p+ΐ for each i < 7̂ .
Now by 3.9, 3.11, and 2.1 we have

{x)
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U {/*#: He n{At) and x e (n) (Γϊ{n) H)}

= / * ( U W {Ken(A*): x e <•> ( Π w K)}

= f*{θ{n)x) by definition of θ{n) .

Hence by (6) and (7) we get

gay
{x) = πnrφ^x)

= Γiς\θ{fx) by 3.5.

But by definition of θ, Π θ(fx) is the principal filter of A which is
generated by fx, hence (8) gives

( 9 ) gay
w = fx .

Since (9) holds for arbitrary x e nA, we can combine it with (5) to
obtain the equation (*) of 3.15.

PROBLEM 3.16. The question whether 3.15 can be strengthened to
cover arbitrary Boolean algebras, instead of only complete ones, is open.

REMARK 3.17. In [2], Jonsson and Tarski achieve their extension
theorem (cf. 3.10) by associating with each w-place operation / on 21
an %-place operation3 / + on 21* which in general is different from/*.
Let us call an element G G A * closed if and only if for every XeJ
such that f\GξΞ:X, we have XeG; and call Gen(A*) closed if and
only if Gό is closed for each j < n. Then for each %-place operation
/, the definition of / + is given by

f+G = {XeJ: For some closed G'S{n)G we

have fyeX for every y e {n) (Π(%) <?')}

for every Ge*(A*).
Clearly from (1) we obtain, for each G e W(A*),

f*G = {XeJ: For some filter Γ i w ( f | ( l ι | G )

we have fy eX for every y e {n) Y) .

If we consider, therefore, the 1-place operation f on A such that / I =
1 and fx = 0 for all x e A such that x Φ 1, we get f+j = J (by taking
Y = {1} in (2)). But if A is infinite, we get /* J = 0 by 3.1.

While this example shows that we can have / + =£/*, whenever

3 Actually [2] deals not with the particular Stone extension which we have called
5ί*, but with an arbitrary extension S3, of a kind called "perfect extension" by Jonsson
and Tarski. In fact, as they point out, every perfect extension of 3ί is isomorphic
to 5Ϊ*. In 3.17 we have adapted the description of /+ as given in [2], so as to make
it applicable to the particular extension 2ί*.
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fe Φω we get / + = /*. This can be obtained by applying 2.14 to (2)
to get f+GQf*G. The opposite inclusion holds for arbitrary /, since
each finite G e n(A*) is closed, by 1.1.

4* There are two ways in which we may try to strengthen the
results of the preceding section. First, we may seek a set of oper-
ations, containing Φω as a proper subset, to which we can extend such
Theorems as 3.5, 3.8, and—in some fashion—3.9. Second, we may try
to enlarge the scope of 3.8 to include other sentences, besides the
equational identities described there, which are preserved in passing
from SI to SI*. Actually, both of these ways are possible.

Let us consider, first, the problem of enlarging Φω. An exami-
nation of the proofs of 3.5, 3.8, and 3.9 shows that they all rest on
Lemma 2.14. This lemma, in turn, is based on the following property
possessed by each w-place operation feΦp: There exists a positive
integer, p, such that whenever Y is an ultrafilter of 21, X is a finite
subset of nA, and f(ΣX) e Y, then we have fteY for some t e σpX.

The fact that the integer p is uniform for all ultrafilters Y is not
essential for deriving the lemma, except for that part of the conclusion
which specifies that the sets Gd satisfy the condition \GS\ ^ p. If
we are willing to weaken this part of the conclusion to assert simply
that each G3 is finite, we can weaken the hypothesis by letting p
depend on Y. This observation motivates the following definition in
which 21, as in earlier sections, is assumed to be an arbitrary Boolean
algebra.

DEFINITION 4.1. We define ^ (51) to be the set of all those oper-
ations / on A, of any number n of places, such that for every ultrafilter
Y of SI there exists a positive integer p with the following property:
Whenever X is a finite subset of nA such that f{ΣX) e Y, then fteY
for some t e σpX.

Obviously Φω(2I) S -f(SI). That this inclusion is proper can be seen
from the following example.

EXAMPLE 4.2. Let P be the set of all positive integers and 35
the Boolean set algebra of all subsets of P. Let / be the 1-place
operation on B such that, for any # g P ,

fx = {2ί:iex}\J{&:j ^\x\],

it being understood t h a t if x is infinite then all positive powers of 3

are in fx.

Now f&Φω. For given any positive integer q, let X = {{1}, •••,
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{q + 1}}. Obviously 3*+1 e / ( U X), but Sq+ί £ U {ft: t e σqX}; hence

However, feΨ. For consider any ultrafilter Y of S3. Two cases
must be distinguished.

Case 1. Suppose 7 is a principal filter, generated by an atom
{k} of 33. (i) In case k is neither a power of 2 nor a power of 3, then
fx $ Y for all x e B; in this case we put p = 1. (ii) In case & = 2%
then we have fx e Γ if and only if iex; in this case we again put
p = 1; (iii) In case k = 3y, then we have /# e F if and only if \x\ ^ j ;
in this case we put p = j . It is now readily seen that under any of
(i), (ii), or (iii), whenever we have I g 5 and f(\JX)eY, then we
must have also ft e Y for some t e σpX.

Case 2. Suppose Y is a nonprincipal ultrafilter. In this case we
have fx £ Y whenever x is finite. Thus we can be assured that if X
is a finite subset of B such that f(\J X) e F, then fx e Y for some
x e X. We can, therefore, take p — 1, and the condition for / to be
in Ψ will be satisfied.

Having seen that Ψ is a proper extension of Φω, it is now a simple
matter to prove a modified form of Lemma 2.14 as indicated immediately
preceding 4.1. Based upon this, we can then obtain the following
theorem generalizing 3.5, 3,8, and 3.9.

THEOREM 4.3. ( i ) For every n-place feΨ we have

f*(θ™x) = θ{fx) .

(ii) If f0, ", fk-ί ^ Ψ, and if an equation

holds for all values xQ, , xm__λ e A, then the equation

o?Λ αiί values GQ, , (?TO_i e A*.
(iii) i^or βαcfe αίom H of SI*, ί/^ere is α positive integer p with

the following property: Whenever Γ £ i * α^d Jϊe/*(U^ Ϊ)>
Hef* G for some GeσpΓ.

Proof. Using the modified form of Lemma 2.14 instead of the
original, it is a simple matter to alter the proofs of 3.5, 3.8, and 3.9,
so as to derive 4.3. We omit details.

We turn now to the question of improving 3.8, or its generalization
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4.3 (ii), by enlarging the set of equations τ — σ which are shown to
be preserved in passage from A to A*. Among the operations which
may be used in forming the two sides τ and σ of such an equation
are, of course, the Boolean operations + and , since these are obviously
in Φω—and as shown in 3.6, their extensions to 31* are the Boolean
operations U and Π of this algebra. However, the Boolean operation
—is not in Φω, nor in ψ, and so may not appear in the equations
covered by 3.8 or 4.3 (ii). As Jonsson and Tarski have shown, there
are equations involving the Boolean operation — and an additive oper-
ation /, which may hold identically in some Boolean algebra but not
in its Stone extension—or in any complete Boolean algebra. However,
we shall indicate below a class of equations in which — may appear
together with operations of Ψ, to which 4.3 (ii) can be extended.

In order to obtain this result we first take up and elaborate the
observation of Jonsson and Tarski that their results can be extended
to cover functions from one Boolean algebra to another. In fact, still
more generally, we can consider %-place mappings into a Boolean algebra,
93, in which each of the n arguments ranges over a distinct Boolean
algebra, 21.,. The generalization of the basic definitions and theorems
of § 2 and § 3 to cover such mappings presents no difficulty. In place
of the sets Φω(A) we will have sets Φω(2ί0, •••, SCΛ_i; 33), and similarly
for Ψ. When dealing with the composition of mappings in order to
generalize 3.7, we consider an π-place function / mapping BQ x x
Bn_γ into C, and n m-place functions g0, , gn_1 such that gi maps
AQ x x Am^ into B{ for each i < n — 1, and we form the composed
m-place function f[g0, , gn_j] mapping AQ x x Am__λ into C. Simi-
larly, in the equations to be dealt with when generalizing 3.8 or 4.3
(ii), each variable may range over the elements of a different Boolean
algebra, the two sides of the equation will take on values in one
Boolean algebra (which may, however, differ from the ranges of the
several variables), and the various operations occurring in the equation
may involve intermediate algebras.

These multi-algebra mappings are relevant to equations over a
single algebra, 2ΐ = (A, + , , —, 0, 1>, because although the operation
— is not in Φω(2I) it is an additive mapping of 21 into the dual algebra
%d = <A, , + , - , 1, 0>, and hence - e Φχ(2ί; lld). We can thus con-
struct equations in which all variables and terms take their values
in the set A, with operations including —, from any or all of the
sets Ψ(%1), Ψ(%), Ψ(%; 21,), and Ψ(Άd; 2ΐ), and still other sets involving
functions of more than one argument, such as Ψ(%, %d\ %d). If these
operations are composed properly, we can obtain equations falling
within the scope of Theorem 4.3 (ii) as generalized to the multi-
algebra case.

Of course in applying these results to dual algebras it should be
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kept in mind that an ultraίilter of 3ίd is a maximal proper ideal of 31,
so that while the algebras SI and Std have the same set of elements,
31* and 3IJ do not. The mapping - * of 31* into 31* is such that for
any G e i * and any / g i we have

Ie(-*G) if and only if

I={xeA:—xeX} for some XeG.

Theorem 3.5, for the operation —, takes the form:

- *(θx) = θd{ -x) for all x e A ,

where, for any y e A, θdy is the set of all these maximal proper ideals

of 3ί for which y & I.
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