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SOME THEOREMS ON GENERALIZED
DEDEKIND-RADEMACHER SUMS

L. CARLITZ

Radamacher has defined a generalized Dedekind sum

and proved a reciprocity theorem for this sum that generalizes
the well known result for s(h,k). In the present paper we
define

&. (h, k ;x, y) = £ ( - 1)'-' Q h '-'<fc,r+s-, (h, k; x, y),

where Bn(x) is the Bernoulli function, and show that

(s + l)fc si/fr+i,s (h, k; x, y) - (r + l)h r^s+1>r (k, h; y, x )

= (s + l)fcBr+1(jc)B.(y)- (r + l)ftBr(jc)Bs+1(y) ((ft, fc) = 1).

We also prove the polynomial reciprocity theorem

k-l ft-1

a _ \ V* .. h-[(ha + z)/k]-.a (<\ .. \ V* _, k-[(fcb + z)//i]_, b — . . ^ _ „ *
u^ ^ u v \i u) £j v u — u v

a=0 b=0

as well as some related results.

1. Introduction. For real x put

x — [JC] — | (x/ integer)

0 (JC = integer),
((*)) =

where [x] denotes the greatest integer g JC. The Dedekind sum s(h,k)
is defined by

347
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<»> •<**>- x ((t)) m
The most striking property of s(h,k) is the reciprocity theorem

(1.2) Uhk{s(h,k) + s(k,h)}= h2-3hk + k2+l ((M)=l).

For an excellent introduction and many references to Dedekind
sums see [9].

The Bernoulli function Bn{x) is defined by

Bn(x) = Bn(x-[x]),

where JSn(x) is the Bernoulli polynomial defined by

Note that, for x/ integer, Bl(x) = ((x)).
Apostol [1], [2] defined the generalized sum

(1-4) sn(h,k)= 2 B
r(modk)

and proved the reciprocity theorem

(1.5) (n + l){hknsn(h,k)+ khnsn(k,h)} = (Bk + Bh)n+l + nBn+l

This result is indeed valid for all n^O. For a simple proof see [4, §3].
A further generalization of (1.4) is furnished by

2
a (modfc)

where r, 5 are arbitrary nonnegative integers. Put

(1.7)
r=0

The writer [3], [7] has proved the following reciprocity theorem which
includes (1.5) as a special case.
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(1.8) (s

He has also proved the following polynomial reciprocity:

(1.9) (u - 1) 2 uk-'-It> [wt l-(i; - 1) 2) t>*-r-1M
l l

where u, U are indeterminates.
Rademacher [10] has generalized s(h,k) in the following way:

where x, y are arbitrary real numbers. He proved that

( L 1 1> Uh-

where (h,k)= 1 and

(

1 (x = integer)

0 (x^ integer) .

For a simplified version of the proof see [5].
In the present paper we define

(1.12) <M/i,fc;x,y)= 2 i
a (mod k)

and

(1.13) <Mfc, * ; x , y ) = 2 ( - 1)"' (ph'-><f>hr+s-,(K k; x, y),

corresponding to (1.6) and (1.7), respectively. We prove the reciprocity
theorem
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(s + l)k^r+1,s(h,k ;x,y)-(r + l)hrfc+I,(k,h ;y,x) = (s + l)kBr+1(x)BS(y)

(1.14) -(r + l)hBr(x)Bs+l(y) ((h,k)=l).

It should be observed that there is no loss in generality in assuming
that

(1.15) 0=Sx<l, 0 ^ y < l .

We show also, assuming (1.15), that

(1.16) (1 - v) § ui"W+*mv- - (1 - u) 2 vk-[ikb+'Vh]ub = uh-vk

a=0 6=0

«fc,k)=l),

where z = fcjc 4- foy. For x = y = 0, (1.16) reduces to (1.9) after a little
manipulation. Clearly (1.16) holds for all z such that 0 ^ z < h + k.

For some additional results see §4 below, in particular (4.1), (4.2),
(4.3), (4.4), (4.5), (4.6).

2. Proof of (1.14). We recall that [8, Ch. 2]

(2.1) Bn(hx)=h'-1 2 BJX + J).
b(modh) \ n )

Thus (1.12) becomes

6(mod/i)

We shall write this in the abbreviated form

where

V 7 k ^ h
and the summation on the right of (2.2) is over complete residue systems
(mod/c) and (mod/ i ) , respectively.
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Substituting from (2.2) in (1.13), we get

(2.4) ^s(h,k;x,y) = h'-* ± (-I)-(') % B,(a + P)Br+s-,(<x).
]=0 \J / a,b

Now consider

(2.5) ,£J**

- 2 *$3r t (- ir C) S 2
/ = 0 \] / fl=0 6=0

We assume in what follows that

(2.6) 0=SJC<1 , 0 ^ y < l ,

which implies

(2.7) 0 ^ a < l 5 0 ^ ] 8 < l .

Thus

Br+t^-i(a) = Br+J.i_1(a).

Taking m = r + s — / — 1, (2.5) becomes

=0 ;=0 ] - m=0

- r + lS (-1)'"' 7—^r^—T^T (*«)'"' (kv)"-r+

(2.8) ='i'i'Z2,2;V' ^
a=0 b=0 ;=0 / • m=0

(huy(-hu + kv)m
s—M *-i -l v

j,m=o ]\m\

Since
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the inner sum

2t, [
a,b

^ a)- 2 (B,(a +p)-B,{a +p-l))Bm(a)
a,b

2 , a)-j 2 (a + p - ly1 Bm(a).
a,b a,b

Thus (2.8) becomes

( 2 . 9 ) ® ( h , k ; x , y ; u , v ) = ® l ( h , k ; x , y ; u , v ) - $ 2 ( h , k ; x , y ; u , v ) ,

where

Q>1(h9k;x9y,u,v)=h lv 2, *—/v •• t ^
0 J .M .;,m =0

• • t

J .M .

2
a,b

- / L f v , _, v (huy(-hu
<i>2(h,k;x,y;u,v)=h lv 2, *—M •• ,

m 0 J • » ' * •

kv)m

*-],m =0 J • » ' * •

Clearly, by (1.3) and (2.3),

/L f \ L-I hu — hu + kv
1(h,k;x,y;u,v)=h v ghu_1

. V gMa+p)g(-fcu+<c«)a

(2.10) **
= wo - h u + k v xu+yv e h u - l e k v - l

e h u - l e - h u + k v - l ' e e " - l e v - l

uv ekv-l hu-kv hu+xu+yv

eu-l e'-l ehu-ekv



(2.11)
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k-Y vij n\— iin ~~hu + KV y hufa+p-i)p(-hu+kv)a
" A a,b

a,6

It follows from (2.10) that

4>! (fc, fe; x, y ; a, u) - <I>! (fe, / i ; y, x; u, M )

(2.12) = ̂  ^ ^5^e-^{e*-(e to-l)-eb(e t a- 1)}.

xu veyv, , , . x uexu ve
= (-hu + kv) ^rz

while

(2.13) *2(fc, fe; x, y; M, u) - $2(fc, fc; y, x; v, u) = 0.

Therefore, by (2.9), (2.12) and (2.13),

U€ xu V€ yv

® ( h , k ; x , y \ u , v ) - $>{k,h ;y,x ; v , u ) = (- hu
(2.14)

By (2.5), the left hand side of (2.14) is equal to

J { > , ( ^ ; ) y ) ^ , ( , ;
r,s =0

By (1.3), the right hand side of (2.14) is equal to

(-hu + kv) 5 Br(x)B,(y)^-

r,s=0 r . A .

Hence, equating coefficients of u'v'/rlsl, we get



354 L. CARLITZ

Finally, dropping the restriction (2.6), we have

(2.15) sks-l^s-l{h,k-,x,y)-rh'-^s,t-l{k,h-,y,x)=

for all nonnegative r, s and all real x, y.

3 . Proof of (1.16). We again assume that

(3.1) 0 ^ x < l , O=Sy<l.

By (1.12) and (1.13) we have

Then, as in the previous proof,

= 2 sk "' ^M-I (h, k; x, y)
r s

u -hu + kv Q \(ho±z [ha + z[L

where

(3.2)

It

uv
. - i

follows

hu-

C"~

that

kv

z = kx + hy.
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k,x,y;u,v)-Q>(k,h;y,x;v,u)

,3.3) - I ^ £ ^ ' ~

Comparing (3.3) with (2.14) and simplifying, we get

Replacing e\ ev by u, v, respectively, this becomes

fc~l w~l
/ i ___ _. \ ^^ _. h—[(fia+z)/k] *. a __ / I ___ • . \ ^w »« fc~~[(fc&+z)/fi] «« 6 — «« h __ - . fc

(3.5) *=° 6=0

((/i, fe) = 1).

Clearly (3.5) is a polynomial identity in the indeterminates w, v. It
is not evident how the restriction (3.1) can be removed.

To show that (3.5) includes (1.9), take x = y = z = 0 and replace a
by k - a, b by k - b. Thus the left hand side of (3.5) becomes

(l-v)uh-{l-u)vk

a = l

- v) § M[*-/k]+1«*- - (1 - U) § t>itt/*]+1u
a=l 6=1

since

[m - x] = m - 1 - [x] (m = integer, x/ integer).

Thus we get
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2(1 - v) *t u{halk] v"--1 - (1 - «) 2 vlkblh]

a = l b=l

which is (1.9) in a slightly different notation.

4. Additional results. We have

s s- s
0

s s ( [ £ ] ) > s
a=0 r=0 \ L ^ J / ' ' s=0

Thus the left hand side of (3.4) is equal to

Since the right hand side of (3.4) is equal to

r=o

we get

(4.1) = -/i'5s,0+fcs5r,o,

for all nonnegative r, 5 and all z such that

0 ̂  z < h + k.

Hence, in particular,

(4.2)
v ' ( r > 0 , s > 0 ; O^
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For example, for r = s = 2,

For s = 1 we get

(r>0, 0 ^

Recall [8, Ch. 2] that

1=0

where Bn = Bn(0) is the nth Bernoulli number. Thus if in (4.1) we
replace r, s by i, j , respectively, multiply both sides by

(0 CO*- '* -
and sum over (, /, we get

= Bs(k)B,-B,(h)Bs

A more general result is

( 4 - 5 )

where ^ and TJ are arbitrary. In particular, for £ = 1 - h, -q = 1 - k, (4.5)
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reduces to

= Br(l-h)Bs(l)-Br(l)Bs(l- k).

Since

Bn(l-x)=(-iyBn(x),

we get

, ,6)

BrJ3s(fc) (0 £ z < h + fc).
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