SOME THEOREMS ON GENERALIZED DEDEKIND-RADEMACHER SUMS

L. Carlitz

Radamacher has defined a generalized Dedekind sum

$$
s(h, k ; x, y)=\sum_{a(\text { mod } k)}\left(\left(h \frac{a+y}{k}+x\right)\right)\left(\left(\frac{a+y}{k}\right)\right)
$$

and proved a reciprocity theorem for this sum that generalizes the well known result for $s(h, k)$. In the present paper we define

$$
\begin{aligned}
& \phi_{r, s}(h, k ; x, y)=\sum_{a(\bmod k)} \bar{B}_{r}\left(h\left(\frac{a+y}{k}\right)+x\right) \bar{B}_{s}\left(\frac{a+y}{k}\right), \\
& \psi_{r, s}(h, k ; x, y)=\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j} h^{r-j} \phi_{l, r+s-j}(h, k ; x, y),
\end{aligned}
$$

where $\bar{B}_{n}(x)$ is the Bernoulli function, and show that

$$
\begin{aligned}
& (s+1) k^{s} \psi_{r+1, s}(h, k ; x, y)-(r+1) h^{r} \psi_{s+1, r}(k, h ; y, x) \\
& \quad=(s+1) k \bar{B}_{r+1}(x) \bar{B}_{s}(y)-(r+1) h \bar{B}_{r}(x) \bar{B}_{s+1}(y) \quad((h, k)=1) .
\end{aligned}
$$

We also prove the polynomial reciprocity theorem

$$
\begin{array}{r}
(1-v) \sum_{a=0}^{k-1} u^{h-[(h a+z) / k]} v^{a}-(1-u) \sum_{b=0}^{h-1} v^{k-[(k b+z) / h]} u^{b}=u^{h}-v^{k} \\
((h, k)=1)
\end{array}
$$

as well as some related results.

1. Introduction. For real x put

$$
((x))= \begin{cases}x-[x]-\frac{1}{2} & (x \neq \text { integer }) \\ 0 & (x=\text { integer })\end{cases}
$$

where $[x]$ denotes the greatest integer $\leqq x$. The Dedekind sum $s(h, k)$ is defined by

$$
\begin{equation*}
s(h, k)=\sum_{a(\bmod k)}\left(\left(\frac{a}{k}\right)\right)\left(\left(\frac{h a}{k}\right)\right) \tag{1.1}
\end{equation*}
$$

The most striking property of $s(h, k)$ is the reciprocity theorem

$$
\begin{equation*}
12 h k\{s(h, k)+s(k, h)\}=h^{2}-3 h k+k^{2}+1 \quad((h, k)=1) \tag{1.2}
\end{equation*}
$$

For an excellent introduction and many references to Dedekind sums see [9].

The Bernoulli function $\bar{B}_{n}(x)$ is defined by

$$
\bar{B}_{n}(x)=B_{n}(x-[x])
$$

where $B_{n}(x)$ is the Bernoulli polynomial defined by

$$
\begin{equation*}
\frac{z e^{x z}}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{z^{n}}{n!} \tag{1.3}
\end{equation*}
$$

Note that, for $x \neq$ integer, $\bar{B}_{1}(x)=((x))$.
Apostol [1], [2] defined the generalized sum

$$
\begin{equation*}
s_{n}(h, k)=\sum_{r(\bmod k)} \bar{B}_{1}\left(\frac{r}{k}\right) \bar{B}_{n}\left(\frac{h r}{k}\right) \tag{1.4}
\end{equation*}
$$

and proved the reciprocity theorem

$$
\begin{equation*}
(n+1)\left\{h k^{n} s_{n}(h, k)+k h^{n} s_{n}(k, h)\right\}=(B k+B h)^{n+1}+n B_{n+1} \tag{1.5}
\end{equation*}
$$

$$
((h, k)=1)
$$

This result is indeed valid for all $n \geqq 0$. For a simple proof see $[4, \S 3]$.
A further generalization of (1.4) is furnished by

$$
\begin{equation*}
\phi_{r, s}(h, k)=\sum_{a(\bmod k)} \bar{B}_{r}\left(\frac{a}{k}\right) \bar{B}_{s}\left(\frac{h a}{k}\right), \tag{1.6}
\end{equation*}
$$

where r, s are arbitrary nonnegative integers. Put

$$
\begin{equation*}
\psi_{r, s}(h, k)=\sum_{i=0}^{r}(-1)^{t^{t}}\binom{r}{t} h^{t} \phi_{r-t, s+t}(h, k) . \tag{1.7}
\end{equation*}
$$

The writer [3], [7] has proved the following reciprocity theorem which includes (1.5) as a special case.

$$
\begin{align*}
&(s+1) k^{s} \psi_{r+1, s}(h, k)-(s+1) k B_{r+1} B_{s}=(r+1) h^{\prime} \psi_{s+1, r}(k, h) \tag{1.8}\\
&-(r+1) h B_{s+1} B_{r} \quad((h, k)=1)
\end{align*}
$$

He has also proved the following polynomial reciprocity:

$$
\begin{gather*}
(u-1) \sum_{r=1}^{k-1} u^{k-r-1} v^{[h r / k]}-(v-1) \sum_{r=1}^{h-1} v^{h-r-1} u^{[k r / h]} \tag{1.9}\\
=u^{k-1}-v^{h-1} \quad((h, k)=1)
\end{gather*}
$$

where u, v are indeterminates.
Rademacher [10] has generalized $s(h, k)$ in the following way:

$$
\begin{equation*}
s(h, k ; x, y)=\sum_{a(\bmod k)}\left(\left(h \frac{a+y}{k}+x\right)\right)\left(\left(\frac{a+y}{k}\right)\right) \tag{1.10}
\end{equation*}
$$

where x, y are arbitrary real numbers. He proved that

$$
\begin{align*}
s(h, k ; x, y)+ & s(k, h ; y, x) \\
= & -\frac{1}{4} \delta(x) \delta(y)+((x))((y)) \\
& +\frac{1}{2}\left\{\frac{h}{k} \bar{B}_{2}(y)+\frac{1}{h k} \bar{B}_{2}(h y+k x)+\frac{k}{h} \bar{B}_{2}(x)\right\}, \tag{1.11}
\end{align*}
$$

where $(h, k)=1$ and

$$
\delta(x)= \begin{cases}1 & (x=\text { integer }) \\ 0 & (x \neq \text { integer })\end{cases}
$$

For a simplified version of the proof see [5].
In the present paper we define

$$
\begin{equation*}
\phi_{r, s}(h, k ; x, y)=\sum_{a(\bmod k)} \bar{B}_{r}\left(h \frac{a+y}{k}+x\right) \bar{B}_{s}\left(\frac{a+y}{k}\right) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{r, s}(h, k ; x, y)=\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j} h^{r-\jmath} \phi_{,, r+s-j}(h, k ; x, y) \tag{1.13}
\end{equation*}
$$

corresponding to (1.6) and (1.7), respectively. We prove the reciprocity theorem
$(s+1) k^{s} \psi_{r+1, s}(h, k ; x, y)-(r+1) h^{\prime} \psi_{s+1, r}(k, h ; y, x)=(s+1) k \bar{B}_{r+1}(x) \bar{B}_{s}(y)$

$$
\begin{equation*}
-(r+1) h \bar{B}_{r}(x) \bar{B}_{s+1}(y) \quad((h, k)=1) . \tag{1.14}
\end{equation*}
$$

It should be observed that there is no loss in generality in assuming that

$$
\begin{equation*}
0 \leqq x<1, \quad 0 \leqq y<1 \tag{1.15}
\end{equation*}
$$

We show also, assuming (1.15), that

$$
\begin{align*}
(1-v) \sum_{a=0}^{k-1} u^{h-[(h a+z) / k]} v^{a}-(1-u) \sum_{b=0}^{h-1} v^{k-[(k b+z) / h]} u^{b}= & u^{h}-v^{k} \tag{1.16}\\
& ((h, k)=1)
\end{align*}
$$

where $z=k x+h y$. For $x=y=0$, (1.16) reduces to (1.9) after a little manipulation. Clearly (1.16) holds for all z such that $0 \leqq z<h+k$.

For some additional results see $\S 4$ below, in particular (4.1), (4.2), (4.3), (4.4), (4.5), (4.6).
2. Proof of (1.14). We recall that [8, Ch. 2]

$$
\begin{equation*}
\bar{B}_{n}(h x)=h^{n-1} \sum_{b(\bmod h)} \bar{B}_{n}\left(x+\frac{b}{h}\right) . \tag{2.1}
\end{equation*}
$$

Thus (1.12) becomes

$$
\phi_{r, s}(h, k ; x, y)=h^{r-1} \sum_{\substack{a(\bmod k) \\ b(\bmod h)}} \bar{B}_{r}\left(\frac{a+y}{k}+\frac{b+x}{h}\right) \bar{B}_{s}\left(\frac{a+y}{h}\right) .
$$

We shall write this in the abbreviated form

$$
\begin{equation*}
\phi_{r, s}(h, k ; x, y)=h^{r-1} \sum_{a, b} \bar{B}_{r}(\alpha+\beta) \bar{B}_{s}(\alpha) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{a+y}{k}, \quad \beta=\frac{b+x}{h} \tag{2.3}
\end{equation*}
$$

and the summation on the right of (2.2) is over complete residue systems $(\bmod k)$ and $(\bmod h)$, respectively.

Substituting from (2.2) in (1.13), we get

$$
\begin{equation*}
\psi_{r, s}(h, k ; x, y)=h^{r-1} \sum_{j=0}^{r}(-1)^{r-1}\binom{r}{j} \sum_{\alpha, b} \bar{B}_{J}(\alpha+\beta) \bar{B}_{r+s-l}(\alpha) . \tag{2.4}
\end{equation*}
$$

Now consider

$$
\begin{aligned}
& \Phi(h, k ; x, y ; u, v) \\
& \quad=\sum_{r, s=0}^{\infty} s k^{s-1} \psi_{t, s-1}(h, k ; x, y) \frac{u^{r} v^{s}}{r!s!} \\
& \quad=\sum_{r, s} \frac{h^{r-1} k^{s-1} u^{\prime} v^{s}}{r!(s-1)!} \sum_{l=0}^{r}(-1)^{r-1}\binom{r}{j} \sum_{a=0}^{\{-1} \sum_{b=0}^{n-1} \bar{B}_{l}(\alpha+\beta) \bar{B}_{r+s-\jmath-1}(\alpha) .
\end{aligned}
$$

We assume in what follows that

$$
\begin{equation*}
0 \leqq x<1, \quad 0 \leqq y<1, \tag{2.6}
\end{equation*}
$$

which implies

$$
\begin{equation*}
0 \leqq \alpha<1, \quad 0 \leqq \beta<1 . \tag{2.7}
\end{equation*}
$$

Thus

$$
\bar{B}_{r+s^{-j-1}}(\alpha)=B_{r+s-\jmath-1}(\alpha)
$$

Taking $m=r+s-j-1,(2.5)$ becomes

$$
\begin{aligned}
& \Phi(h, k ; x, y ; u, v) \\
& \quad=h^{-1} v \sum_{a=0}^{m-1} \sum_{b=0}^{n-1} \sum_{j=0}^{\infty} \frac{(h u)^{\prime}}{j!} \overline{B_{l}}(\alpha+\beta) \sum_{m=0}^{\infty} \frac{1}{m!} B_{m}(\alpha) \\
& \quad \sum_{r=j}^{m+1}(-1)^{r-1} \frac{m!}{(r-j)!(m-r+j)!}(h u)^{r-1}(k v)^{m-r+j} \\
& =h^{-1} v \sum_{a=0}^{n} \sum_{b=0}^{n-1} \sum_{j=0}^{\infty} \frac{(h u)^{\prime}}{j!} \overline{B_{l}}(\alpha+\beta) \sum_{m=0}^{\infty} \frac{(-h u+k v)^{m}}{m!} B_{m}(\alpha) \\
& \quad=h^{-1} v \sum_{1, m=0}^{\infty} \frac{(h u)^{y}(-h u+k v)^{m}}{j!m!} \sum_{a, b} \bar{B}_{l}(\alpha+\beta) B_{m}(\alpha) .
\end{aligned}
$$

Since

$$
B_{l}(x+1)-B_{l}(x)=j x^{\prime-1},
$$

the inner sum

$$
\begin{aligned}
& \sum_{a=0}^{k-1} \sum_{b=0}^{h-1} \bar{B}_{l}(\alpha+\beta) B_{m}(\alpha) \\
& \quad=\sum_{a, b} B_{l}(\alpha+\beta-[\alpha+\beta]) B_{m}(\alpha) \\
& \quad=\sum_{a, b} B_{l}(\alpha+\beta) B_{m}(\alpha)-\sum_{\substack{a, b \\
\alpha+\beta \geq 1}}\left(B_{l}(\alpha+\beta)-B_{l}(\alpha+\beta-1)\right) B_{m}(\alpha) \\
& \quad=\sum_{a, b} B_{l}(\alpha+\beta) B_{m}(\alpha)-j \sum_{\substack{a, b \\
\alpha+\beta \geq 1}}(\alpha+\beta-1)^{-1} B_{m}(\alpha)
\end{aligned}
$$

Thus (2.8) becomes
(2.9) $\Phi(h, k ; x, y ; u, v)=\Phi_{1}(h, k ; x, y ; u, v)-\Phi_{2}(h, k ; x, y ; u, v)$, where

$$
\begin{aligned}
\Phi_{1}(h, k ; x, y ; u, v)= & h^{-1} v \sum_{b, m=0}^{\infty} \frac{(h u)^{\prime}(-h u+k v)^{m}}{j!m!} \\
& \cdot \sum_{a, b} B_{l}(\alpha+\beta) B_{m}(\alpha) \\
\Phi_{2}(h, k ; x, y ; u, v)= & h^{-1} v \sum_{j, m=0}^{\infty} \frac{(h u)^{\prime}(-h u+k v)^{m}}{j!m!} \\
& \cdot \sum_{\substack{a, b \\
\alpha+\beta \geq 1}}(\alpha+\beta-1)^{y^{-1} B_{m}(\alpha)}
\end{aligned}
$$

Clearly, by (1.3) and (2.3),

$$
\begin{align*}
\Phi_{1}(h, k ; x, y ; u, v)= & h^{-1} v \frac{h u}{e^{h u}-1} \frac{-h u+k v}{e^{-h u+k v}-1} \\
& \cdot \sum_{a, b} e^{h u(\alpha+\beta)} e^{(-h u+k v) \alpha} \tag{2.10}\\
= & \frac{u v}{e^{h u}-1} \frac{-h u+k v}{e^{-h u+k v}-1} \cdot e^{x u+y v} \frac{e^{h u}-1}{e^{u}-1} \frac{e^{k v}-1}{e^{v}-1} \\
= & \frac{u v}{e^{u}-1} \frac{e^{k v}-1}{e^{v}-1} \frac{h u-k v}{e^{h u}-e^{k v}} e^{h u+x u+y v},
\end{align*}
$$

$$
\begin{align*}
\Phi_{2}(h, k ; x, y ; u, v) & =u v \frac{-h u+k v}{e^{-h u+k v}-1} \cdot \sum_{\substack{a, b \\
\alpha+\beta \geq 1}} e^{h u(t a+\beta-1)} e^{(-h u+k v) \alpha} \tag{2.11}\\
& =u v \frac{h u-k v}{e^{h u}-e^{k v}} e^{x u+y v} \sum_{\substack{a, b \\
\alpha+\beta \geq 1}} e^{a v+b u}
\end{align*}
$$

It follows from (2.10) that

$$
\begin{align*}
& \Phi_{1}(h, k ; x, y ; u, v)-\Phi_{1}(k, h ; y, x ; v, u) \\
& \quad=\frac{u}{e^{u}-1} \frac{v}{e^{v}-1} \frac{h u-k v}{e^{h u}-e^{k v}} e^{x u+y v}\left\{e^{h u}\left(e^{k v}-1\right)-e^{k v}\left(e^{h u}-1\right)\right\} \tag{2.12}\\
& \quad=(-h u+k v) \frac{u e^{x u}}{e^{u}-1} \frac{v e^{y v}}{e^{v}-1}
\end{align*}
$$

while

$$
\begin{equation*}
\Phi_{2}(h, k ; x, y ; u, v)-\Phi_{2}(k, h ; y, x ; v, u)=0 \tag{2.13}
\end{equation*}
$$

Therefore, by (2.9), (2.12) and (2.13),

$$
\begin{equation*}
\Phi(h, k ; x, y ; u, v)-\Phi(k, h ; y, x ; v, u)=(-h u+k v) \frac{u e^{x u}}{e^{u}-1} \frac{v e^{y v}}{e^{v}-1} \tag{2.14}
\end{equation*}
$$

By (2.5), the left hand side of (2.14) is equal to

$$
\sum_{r, s=0}^{\infty}\left\{s k^{s-1} \psi_{r, s-1}(h, k ; x, y)-r h^{r-1} \psi_{s, r-1}(k, h ; y, x)\right\} \frac{u^{r} v^{s}}{r!s!}
$$

By (1.3), the right hand side of (2.14) is equal to

$$
\begin{aligned}
& (-h u+k v) \sum_{r, s=0}^{\infty} B_{r}(x) B_{s}(y) \frac{u^{r} v^{s}}{r!s!} \\
& \quad=\sum_{r, s=0}^{\infty}\left\{s k B_{r}(x) B_{s-1}(y)-r h B_{r-1}(x) B_{s}(y)\right\} \frac{u^{r} v^{s}}{r!s!}
\end{aligned}
$$

Hence, equating coefficients of $u^{r} v^{s} / r!s!$, we get

$$
\begin{aligned}
s k^{s-1} \psi_{r, s-1}(h, k ; x, y)-r h^{r-1} \psi_{s, r-1}(k, h ; y, x)= & s k B_{r}(x) B_{s-1}(y) \\
& -r h B_{r-1}(x) B_{s}(y)
\end{aligned}
$$

Finally, dropping the restriction (2.6), we have

$$
\begin{align*}
s k^{s-1} \psi_{r s s-1}(h, k ; x, y)-r h^{r-1} \psi_{s,-1}(k, h ; y, x)= & s k \bar{B}_{r}(x) \bar{B}_{s-1}(y) \tag{2.15}\\
& -r h \bar{B}_{r-1}(x) \bar{B}_{s}(y),
\end{align*}
$$

for all nonnegative r, s and all real x, y.
3. Proof of (1.16). We again assume that

$$
\begin{equation*}
0 \leqq x<1, \quad 0 \leqq y<1 . \tag{3.1}
\end{equation*}
$$

By (1.12) and (1.13) we have

$$
\psi_{r, s}(h, k ; x, y)=\sum_{j=0}^{r}(-1)^{r-1}\binom{r}{j} h^{r-1} \sum_{a=0}^{k-1} \bar{B}_{l}\left(h \frac{a+y}{k}+x\right) B_{r+s-1}\left(\frac{a+y}{k}\right) .
$$

Then, as in the previous proof,

$$
\begin{aligned}
& \Phi(h, k ; x, y ; u, v) \\
& =\sum_{, s, s=0}^{\infty} s k^{s-1} \psi_{, s-1}(h, k ; x, y) \frac{u^{\prime} v^{s}}{r!s!} \\
& =v \sum_{r, s=0}^{\infty} \frac{u^{r}(k v)^{s}}{r!s!} \sum_{j=0}^{r}(-1)^{r-1}\binom{r}{j} h^{r-1} \sum_{a=0}^{k-1} \bar{B}_{l}\left(h \frac{a+y}{k}+x\right) B_{r+s-1}\left(\frac{a+y}{k}\right) \\
& =v \sum_{b, m=0}^{\infty} \frac{u^{\prime}(-h u+k v)^{m}}{j!m!} \sum_{a=0}^{k-1} B_{l}\left(\frac{h a+z}{k}-\left[\frac{h a+z}{k}\right]\right) B_{m}\left(\frac{a+y}{k}\right) \\
& =v \frac{u}{e^{u}-1} \frac{-h u+k v}{e^{-h u+k v}-1} \sum_{a=0}^{k-1} \exp \left\{\left(\frac{h a+z}{k}-\left[\frac{h a+z}{k}\right]\right) u\right. \\
& \left.\quad+\frac{a+y}{k}(-h u+k v)\right\}
\end{aligned} \quad \begin{aligned}
& =\frac{u v}{e^{u}-1} \frac{h u-k v}{e^{h u}-e^{k v}} e^{x u+y v} \sum_{a=0}^{k-1} \exp \left\{\left(h-\left[\frac{h a+z}{k}\right]\right) u+a v\right\},
\end{aligned}
$$

where

$$
\begin{equation*}
z=k x+h y . \tag{3.2}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
& \Phi(h, k ; x, y ; u, v)-\Phi(k, h ; y, x ; v, u) \\
& \quad=\frac{u v}{e^{u}-1} \frac{h u-k v}{e^{h u}-e^{k v}} e^{x u+y v} \sum_{a=0}^{k-1} \exp \left\{\left(h-\left[\frac{h a+z}{k}\right]\right) u+a v\right\} \\
& \quad-\frac{u v}{e^{v}-1} \frac{h u-k v}{e^{h u}-e^{k v}} e^{x u+y v} \sum_{b=0}^{h-1} \exp \left\{\left(k-\left[\frac{k b+z}{h}\right]\right) v+b u\right\} .
\end{aligned}
$$

Comparing (3.3) with (2.14) and simplifying, we get

$$
\begin{align*}
& \left(e^{v}-1\right) \sum_{a=0}^{k-1} \exp \left\{\left(h-\left[\frac{h a+z}{k}\right]\right) u+a v\right\} \tag{3.4}\\
& \quad-\left(e^{u}-1\right) \sum_{b=0}^{h-1} \exp \left\{\left(k-\left[\frac{k b+z}{h}\right]\right) v+b u\right\}=-e^{h u}+e^{k v} .
\end{align*}
$$

Replacing e^{u}, e^{v} by u, v, respectively, this becomes

$$
\begin{array}{r}
(1-v) \sum_{a=0}^{k-1} u^{h-[(h a+z) / k]} v^{a}-(1-u) \sum_{b=0}^{h-1} v^{k-[(k b+z) / h]} u^{b}=u^{h}-v^{k} \tag{3.5}\\
((h, k)=1) .
\end{array}
$$

Clearly (3.5) is a polynomial identity in the indeterminates u, v. It is not evident how the restriction (3.1) can be removed.

To show that (3.5) includes (1.9), take $x=y=z=0$ and replace a by $k-a, b$ by $k-b$. Thus the left hand side of (3.5) becomes

$$
\begin{aligned}
& (1-v) u^{h}-(1-u) v^{k} \\
& \quad+(1-v) \sum_{a=1}^{k-1} u^{k-[h-(h a / k)]} v^{k-a}-(1-u) \sum_{b=1}^{h-1} v^{k-[k-(k b / h])} u^{h-b} \\
& =\left(u^{h}-v^{k}\right)-u v\left(u^{h-1}-v^{k-1}\right) \\
& \quad+(1-v) \sum_{a=1}^{k-1} u^{[h a / k]+1} v^{k-a}-(1-u) \sum_{b=1}^{h-1} v^{[k b / h]+1} u^{h-b},
\end{aligned}
$$

since

$$
[m-x]=m-1-[x] \quad(m=\text { integer }, x \neq \text { integer }) .
$$

Thus we get

$$
(1-v) \sum_{a=1}^{k-1} u^{[h a / k]} v^{k-a-1}-(1-u) \sum_{b=1}^{h-1} v^{[k b / h]} u^{h-b-1}=u^{h-1}-v^{k-1}
$$

which is (1.9) in a slightly different notation.
4. Additional results. We have

$$
\begin{aligned}
& \left(e^{v}-1\right) \sum_{a=0}^{k-1} \exp \left\{\left(h-\left[\frac{h a+z}{k}\right]\right) u+a v\right\} \\
& \quad=\sum_{a=0}^{k-1} \sum_{r=0}^{\infty}\left(h-\left[\frac{h a+z}{k}\right]\right)^{r} \frac{u^{r}}{r!} \sum_{s=0}^{\infty}\left((a+1)^{s}-a^{s}\right) \frac{v^{s}}{s!}
\end{aligned}
$$

Thus the left hand side of (3.4) is equal to

$$
\begin{aligned}
\sum_{r, s=0}^{\infty} \frac{u^{r} v^{s}}{r!s!} & \left\{\sum_{a=0}^{k-1}\left(h-\left[\frac{h a+z}{k}\right]\right)^{r}\left((a+1)^{s}-a^{s}\right)\right. \\
& \left.-\sum_{b=0}^{h-1}\left(k-\left[\frac{k b+z}{h}\right]\right)^{s}\left((b+1)^{r}-b^{\prime}\right)\right\}
\end{aligned}
$$

Since the right hand side of (3.4) is equal to

$$
-\sum_{r=0}^{\infty} \frac{h^{r} u^{r}}{r!}+\sum_{s=0}^{\infty} \frac{k^{s} v^{s}}{s!}
$$

we get

$$
\begin{align*}
\sum_{a=0}^{k-1}\left(h-\left[\frac{h a+z}{k}\right]\right)^{\prime}\left((a+1)^{s}-a^{s}\right)-\sum_{b=0}^{h-1} & \left(k-\left[\frac{k b+z}{h}\right]\right)^{s}\left((b+1)^{r}-b^{\prime}\right) \\
\text { (4.1) } & =-h^{\prime} \delta_{s, 0}+k^{s} \delta_{r, 0}, \quad((h, k)=1) \tag{4.1}
\end{align*}
$$

for all nonnegative r, s and all z such that

$$
0 \leqq z<h+k
$$

Hence, in particular,

$$
\sum_{a=0}^{k-1}\left(h-\left[\frac{h a+z}{k}\right]\right)^{r}\left((a+1)^{s}-a^{s}\right)=\sum_{b=0}^{h-1}\left(k-\left[\frac{k b+z}{h}\right]\right)^{s}\left((b+1)^{r}-b^{r}\right)
$$

$$
\begin{equation*}
(r>0, s>0 ; \quad 0 \leqq z<h+k) \tag{4.2}
\end{equation*}
$$

For example, for $r=s=2$,

$$
\begin{array}{r}
\sum_{a=0}^{5-1}(2 a+1)\left(h-\left[\frac{h a+z}{k}\right]\right)^{2}=\sum_{b=0}^{h-1}(2 b+1)\left(k-\left[\frac{k b+z}{h}\right]\right)^{2} \\
(0 \leqq z<h+k) .
\end{array}
$$

For $s=1$ we get

$$
\begin{array}{r}
\sum_{a=0}^{5-1}\left(h-\left[\frac{h a+z}{k}\right]\right)^{\prime}=\sum_{b=0}^{h-1}\left(k-\left[\frac{k b+z}{h}\right]\right)\left((b+1)^{r}-b^{r}\right) \tag{4.3}\\
(r>0, \quad 0 \leqq z<h+k) .
\end{array}
$$

Recall [8, Ch. 2] that

$$
\begin{aligned}
n x^{n-1} & =B_{n}(x+1)-B_{n}(x) \\
& =\sum_{j=0}^{n}\binom{n}{j} B_{n-1}\left((x+1)^{\prime}-x^{\prime}\right),
\end{aligned}
$$

where $B_{n}=B_{n}(0)$ is the nth Bernoulli number. Thus if in (4.1) we replace r, s by i, j, respectively, multiply both sides by

$$
\binom{r}{i}\binom{s}{j}_{B_{r-i}} B_{s-1}
$$

and sum over i, j, we get

$$
\begin{gather*}
s \sum_{a=0}^{s-1} a^{s-1} B_{r}\left(h-\left[\frac{h a+z}{k}\right]\right)-r \sum_{b=0}^{h-1} b^{r-1} B_{s}\left(k-\left[\frac{k b+z}{h}\right]\right) \tag{4.4}\\
=B_{s}(k) B_{r}-B_{r}(h) B_{s} \quad(0 \leqq z<h+k) .
\end{gather*}
$$

A more general result is

$$
s \sum_{a=0}^{\xi-1}(a+\eta)^{s-1} B_{r}\left(h+\xi-\left[\frac{h a+z}{k}\right]\right)
$$

$$
\begin{array}{r}
-r \sum_{b=0}^{h-1}(b+\xi)^{r-1} B_{s}\left(k+\eta-\left[\frac{k b+z}{h}\right]\right) \tag{4.5}\\
=B_{r}(\xi) B_{s}(k+\eta)-B_{r}(h+\xi) B_{s}(\eta) \quad(0 \leqq z<h+k),
\end{array}
$$

where ξ and η are arbitrary. In particular, for $\xi=1-h, \eta=1-k$, (4.5)
reduces to

$$
\begin{gathered}
s \sum_{a=0}^{k-1}(a+1-k)^{s-1} B_{r}\left(1-\left[\frac{h a+z}{k}\right]\right)-r \sum_{b=0}^{h-1}(b+1-h)^{r-1} B_{s}\left(1-\left[\frac{k b+z}{h}\right]\right) \\
=B_{r}(1-h) B_{s}(1)-B_{r}(1) B_{s}(1-k) .
\end{gathered}
$$

Since

$$
B_{n}(1-x)=(-1)^{n} B_{n}(x)
$$

we get

$$
\begin{align*}
& s \sum_{a=0}^{k-1}(k-a-1)^{s-1} B_{r}\left(\left[\frac{h a+z}{k}\right]\right)-r \sum_{b=0}^{h-1}(h-b-1)^{r-1} B_{s}\left(\left[\frac{k b+z}{h}\right]\right) \tag{4.6}\\
& \quad=-B_{r}(h) B_{s}+B_{r} B_{s}(k) \quad(0 \leqq z<h+k)
\end{align*}
$$

References

1. T. M. Apostol, Generalized Dedekind sums, Duke Math. J., 17 (1950), 147-157.
2. -_, Theorems on generalized Dedekind sums, Pacific J. Math., 2 (1952) 1-9.
3. L. Carlitz, A reciprocity and four-term relation for geheralized Dedekind sums, Indagationes Mathematicae, 36 (1974), 413-422.
4. -_, The reciprocity theorem for Dedekind sums, Pacific J. Math., 3 (1953), 523-527.
5. -_, The reciprocity theorem for Dedekind-Rademacher sums, Acta Arithmetica, 29 (1975), 309-313.
6. ——, Some polynomials associated with Dedekind sums, Acta Mathematica Scientarium Hungaricae, 26 (1975), 311-319.
7. -_, Some theorems on generalized Dedekind sums, Pacific J. Math., 3 (1953), 513-522.
8. N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
9. H. Rademacher and E. Grosswald, Dedekind Sums, Mathematical Association of America, Washington, D.C., 1972.
10. H. Rademacher, Some remarks on certain generalized Dedekind sums, Acta Arithmetica, 9 (1964), 97-105.

Received September 13, 1976
Duke University
Durham, NC 27706

