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ORDER-INDUCED TOPOLOGICAL PROPERTIES

SUSAN J. ANDIMA 1 AND W. J. THRON

Each topology J on a set X may be associated with a
preorder relation R& on X defined by (a, b) G R& iff every open
set containing b contains a. Although the correspondence is
many-to-one, there is always a least topology, ii(R), and a
greatest topology, v(R), having a given preorder R. This leads
to a natural correspondence between order properties and some
topological properties and to the concept of an order-induced
topological property. We show that a number of familiar
topological properties (mostly lower separation axioms) are
order-induced and also consider some new properties suggested
by order properties. Let Tp be an order-induced topological
property with associated order property Kp. We characterize
minimal and maximal Tp as follows: A topological space (X, 5~)
is maximal Tp iff 3~ = v{R^) and R* is minimal Kp. With the
imposition of a further condition on the class Kp (satisfied by
most properties under discussion), (X, 3~) is minimal Tp iff
SF = /X(JR^) and R°r is maximal Kp. We apply these general
theorems to a number of order-induced properties and conclude
with an example to show that, for two particular properties, 3~
may be minimal Tp even though R& is not maximal Kp.

1. Introduction. Correspondences between topologies and
preorders on X similar to that assigning R^ to ST have been described by
several mathematicians. Ore in 1943 [14] associated with each closure
operator on a fixed set X a preorder relation which, for the topological
closure operators, is exactly the same as Rj. Others have restricted
their attention to the "principal" or "discrete" spaces in which arbitrary
intersections of open sets are open. Linfield in his thesis [11] of 1925
studied' principal topologies whose preorders were equivalence relations
[see 7], and in 1935 both Alexandroff [1] and Tucker [20] described a one-
to-one correspondence between To principal topologies and partial
orders. Destouches in 1937 drew on the work of Linfield and Alexan-
droff to study principal spaces in general [6], and Steiner in 1966 showed
that the lattice of principal topologies is anti-isomorphic to the lattice of
preorder relations on X [16]. Alexandroff, Tucker, and Steiner all
assigned the relation R &1 to 5", and Lorrain (1969) used both R ~£ and R<?
to define functors from the category of principal spaces to the category of
preordered sets [13].

1 Formerly Susan J. Zimmerman.
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Our way of associating a preorder with each topology on X is related
to the classical concept of an "ordered topology" in which the smallest
topology associated with a given preorder is the interval topology with
sets of form ~ { y : x ^ y } and ~ { y : y ^ x } as a subbase. In our
scheme, the smallest topology with preorder JR is the jDoint closure
topology, JJL(R), for which sets of form ~{y: x = y} and X form a
subbase. Thus the interval topology is the least upper bound of /JL(R)
and ^(R'1), and /JL(R) can be thought of as a one-sided interval
topology. This relationship makes order-induced properties of some
assistance in studying ordered topologies [see 19].

Most of the topological and order terminology is that of Thron [18]
and Birkhoff [3]. All topological spaces {X,ST) and all preordered
spaces (X,R) will be assumed to have at least two elements. The
definitions of preorder (or quasi-order), totally ordered preorder, partial
order, chain, lattice, and of the inverse (or converse), R~\ of a relation R
are those of Birkhoff. The diagonal relation on a set X, {(x, x): x E X},
is denoted by A. A partial order is complete iff every non-empty subset
bounded above has a least upper bound. For any preorder R on X, the
symbols aRb and a ^ b both mean (a,b)E R. Such terms as least upper
bound, maximal, and cover are used only for partial orders and are
defined in Birkhoff. In a partial order, b is a successor for a iff a < b
and whenever a < x then b ^x. Predecessors are defined
dually. Definitions of upper and lower bounds are the same for preor-
ders as for partial orders.

The set of all preorder relations on a fixed, but arbitrary, set X forms
a lattice on ^ ( X x X ) when ordered by set inclusion. For any two
preorder relations JR and S on X, the greatest lower bound and the least
upper bound are, respectively, R A S = R H S, and R v S = {(x, y): there
is a finite sequence x = x0,- • •,xn = y of elements of X such that
<JC,_I,x^ERUS, i = 1 ,• • •, n}. Furthermore, (R v S)"1 = (R'1) v (5"1).
The set of all topologies on X also forms a lattice under set
inclusion. For any two topologies STi and 3~2 on X, d'x A ST2 = 3~x n 3~2,
and, if $ j and 33 2 are bases for 3'1 and ST2, then {Bt n B2: Bx G <&l and
B2 G SS2} is a base for STX v ST2.

With each topology ST on X, there is associated a relation, desig-
nated Re? or p(^) , on X defined by (a,b)E R? iff every open neighbor-
hood of b contains a. JR̂  is always a preorder relation, and the function
p is order-reversing in that p{STx)D p{^i) whenever STX C 5V That p is
a mapping onto the set of preorders is a consequence of Theorem 1.1.

In a topological space (X, ST), one says that x is separated from y iff
there is an open neighborhood of x which excludes y. If x is separated
from y and y is separated from x, then JC and y are said to be
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separated. It is clear from the definitions that (a, b)E R^ <£> b is not
separated from a. Because of this correspondence, the four sets below,
originally defined by Aull and Thron [2] in terms of separation, may be
re-defined in terms of the relation R^ as follows. Let & be a topology
on X and let a ^ b iff (a,b)E R^. Then, for each x E X, the closure of
x is {JC} = {y: x ^ y}, the derived set of x is {x}' = {y: JC < y}, the kernel
of x is {JC} = {y: y ̂  JC}, and the s/ie// of JC is {JC} = {y: y <x}. Note that
G = U{{JC}: xEG} for any G e J , and {JC} = n {G: JC E G E 5T} for
any JC E X.

For a given preorder R on X, there are, in general, many topologies
3~ for which p(ST) = R, but all of these topologies have exactly the same
point-closures, point-derived sets, kernels, and shells. Therefore, given
a preorder JR, it makes sense to write {JC} or {JC} even though no topology
is specified. When needed for clarity, such notation as {JC}^ or {x}R will
be used. The two topologies defined below are of key importance,
because one is always the least and the other always the greatest topology
in the set of topologies on X with fixed relation R, as is shown in
Theorem 1.1.

DEFINITION. Let R be a preorder on X. /A(R), the point-closure
topology of JR, is the smallest topology on X in which all sets {JC} =
{y: (JC, y) E JR }, JC E X, are closed. v(R), the kernel topology of R, is the
smallest topology on X in which all sets {JC} = {y: (y, JC)E R}, JC EX, are
open.

{~ {x}R: JC E X} U {X} is clearly a subbase for the point-closure
topology (JL(R), and it is easy to show that {{JC}* : JC E X} is a base for the
kernel topology v(R).

THEOREM 1.1. A topology ST on X has preorder R iff /UL (R) C ST C
v(R). In particular, p(fi(R))= p(v(R)) = R.

Proof Assume that & has relation i?. For each JC EX,{JC}* =
{xY, which is closed in (X, ST). Therefore, since fi(R) is, by definition,
the smallest topology in which the sets {x}R are closed, fi(R)CST. For
any G E F, G= U{{xf: x E G}= U{{x}R: x E G}E p(R). That is,

Conversely, let 9~ be a topology such that /n (R) C ST C v{R). Then
p{LL(R))Dp{Sr)Dp(v{R)). For each x EX,{JCY{R)Q{x}R, because
{jc}* is closed in /X(JR). Therefore, (jc,y)E p(ii(R)) => y E{JcK(R)C
{x}R => <x,y)6jR. That is, R Dp(fi(R)). Let(x,y)ER and let G be
any open neighborhood of y in v(R). Since {{JC}* : x E X} forms a base
for v{R)^bEX such that yE{b}RQG. Then <jc,y>Ei? and
(y,b)ER ^(x,b)ER ^> xE{b}RCG. Therefore, (x,y)E p(v(R)),
and p(v(R))DR. Combining, we have R D P(/JL(R))D
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THEOREM 1.2. Let R be a preorder on X. fi(R) = v(R) iff, for all
x E X, ~ {£} is the union of a finite number of point closures.

Proof Let fi(R) = v(R) and let a EX. If ~ {a} = 0 , then it is
the union of an empty collection of point closures. Assume ~ {a} / 0 .
Then, since ~ {a} is closed in v(R) = fi(R), ~ {a} is the intersection of
finite unions of point closures. That is, ~~ {a} = fl {FQ: a E si} where si
is an index set and, for each aEsi,Fa is a finite union of point
closures. Because a ^ ~ { a } , there is a (3Esi such that
ag: Fp Clearly, ~ {a} C F .̂ Let x E F .̂ Then x E {p} C Fp for some
p E X, and p ^x. If x ^ a, then p ^a, and a E {p} C Fp, which is a
contradiction. Therefore, x^ a and x E ~ {a}. Thus F^ = ~ {a}, and
~ {a} is the union of a finite number of point closures.

Conversely, assume that, for each a EX, ~ {a} is the union of a
finite number of point closures. Then ~{a} is closed in fi(R), and
hence {a} is open. That is, V(R)C/JL(R). But by Theorem 1.1,
/JL(R)C V(R), and the two are equal.

If R is a linear order, then ~ {a} = {a}', and the union of a finite
number of point closures is always a point closure. In this case,
Theorem 1.2 reduces to n(R)= v(R) iff, for all x EX,{x}' is either
empty or a point closure. In order terminology this becomes:

COROLLARY 1.3. Let R be a linear order. fi(R)= v(R) iff every
nonmaximum element has a successor.

The antiatoms or ultratopologies of the lattice of topologies on a set
X, described by Teng-Sun Liu [12] and Frohlich [8], are the topologies of
form $P(~ {a}) U °U where 0>(~ {a}) is the power set of X ~ {a} and % is
an ultrafilter on X not containing {a}. \i °tt is a principal ultrafilter,
°ll (b), where b^ a, then 0>( ~ {a}) U ^ (6) is called a principal ultratopol-
ogy and is denoted 5"(a, b). A topology 5" on X is principal if ^" can be
written as the intersection of principal ultratopologies or if ST is the
discrete topology, 0*(X)= 3~(a,a). Steiner has shown [16] that under
this definition a topology is principal iff arbitrary intersections of open
sets are open, so that the principal spaces are actually the discrete spaces
of Alexandroff.

It is clear from the definition of a principal ultratopology and of the
function p that, for any topology ST on X, (a, b) E p(&) ^> ST C ST(b, a).

THEOREM 1.4. (a) For any preorder R, v(R)= (l{J(y,x):
(x,y)ER}.

(b) A topology ST on X is principal iff ST = v{p{ST)).
(c) v is a lattice anti-isomorphism from the lattice of preorder relations

onto the lattice of principal topologies.



ORDER-INDUCED TOPOLOGICAL PROPERTIES 301

Proof, (a) Since p(v(R)) = R, (a,b)ER iff v(R)C F(b, a).
Therefore, v(R)CST(y,xi V(x,y)ER, and v(R)C n{9~(y,x):
<jc,y>ER}. Let ST = n{5"(y,x): <x,y>E £} . v{R)Q3~ ^> R D
p(£T). If (a,b)ER, then ^ C3~(b,a) ^> (a,b)E p(^). Thus
R=p{SF) and 5" £*/(!?) by Theorem 1.1. Therefore,

(b) Let 5̂  be any principal topology on X. Since arbitrary intersec-
tions of open sets are open, {x}= D{G: x E G} is open in STVx, and
v(p(F))C F. Therefore, by Theorem 1.1, ST = v(p(ST)). Conversely,
if ST = v(p{ST)\ ST is principal by part (a).

(c) Let R C S. Then {x}R C {x}s, Vx E X. For G E ^(S), G =
U{{JC}S: x E G } D U{{JC}R: x E G}D G =» G = U {{JC}R: X E G}E V(R).
Therefore, v(R)D v(S), and v is order-reversing. Finally, since
p(v(R)) = R V preorder i? and v{p{ST)) = ST V principal topology 5̂ , ̂  is
bijective.

fx is also a one-to-one function from the preorders onto the set of
point-closure topologies, but, unlike the function v, /x is not order-
reversing, as the following example illustrates.

EXAMPLE 1.5. Let X = ( - co)U{a, b) where - a> = {0,1, - 2 , - • •}
and a and fe are two points not in — a). Let 5 be the usual order on — to,
let R = 5U{(a,fe)}UA, and let R* = R U{(a, - n): n E CJ}U
{(b, - n): n E o)}. That is, JR leaves a and b unrelated to - OJ, while R *
puts them in as lower bounds. Then {b} is closed in JJL(R) but not
/X(JR*), and {6} U (-co) is closed in JU,(1?*) but not JJL(R). Thus jLt(i?)
and /x(i?*) are unrelated, even though JR C JR*.

2. Order-induced topological properties. The corre-
spondence, p, between topologies and preorders leads to a natural
correspondence between order properties and certain types of topologi-
cal properties. By a topological property we mean a class T of topologi-
cal spaces such that, whenever (X, ST)E T, any homeomorphic image of
(X,ST) is also in T. ("(X,3T) is a T-space" or "3~ is a T-topology"
means (X, ST) E T, and we may also write ST E T.) An order property is a
class K of preordered sets such that, whenever (X, J R ) E X , any order-
isomorphic image of (X,JR) is in K. A topological property T is
order-induced iff there is an order property K such that (X, ST)E T iff

It is not difficult to show that any homeomorphism from (X, Sf) to
(Y, °U) is also an order isomorphism from (X, p{ST)) to
(Y,p(°U)). Furthermore, any order isomorphism from (X, JR) to (Y, S)
preserves the kernels and is therefore a homeomorphism from (X, v(R))
to (Y, P(S)). Consequently, if K is any class of preorder relations and T
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is the class of all topologies such that p(ST)E K, then T is a topological
property if and only if K is an order property. Thus every order
property determines a topological property, and order properties can be
used to suggest new topological properties.

The concept of duality for order properties carries over to the
order-induced topological properties, and extensive use of this is made in
characterizing such properties. This duality does not, however, extend
to maximal and minimal order-induced topological properties, as we shall
see in §3.

Several standard order properties correspond to classical topological
properties as indicated in Theorem 2.1. (We omit the proofs, all of
which are trivial.) Parts (c) and (d) involve Alexandroff's Axiome
Multiplicatif: "Any intersection of point closures which is nonempty is
itself a point closure", and his Axioms of Dimension: "Any decreasing or
increasing sequence of distinct point closures is finite" [1]. Part (b) was
first proved by Ore [14] and part (g) is a combination of the work of Ore
and Davis [5]. Davis defined R0-spaces (also called R-spaces [4]) to be
those in which closed sets are separated from the points they exclude,
which is equivalent to the partition property that {f}n{y} = 0 or
{*} = {y} for all x j G l It is also clear from (g) that (X, J) is JR0 iff
{x} = {x} for all xEX (called "autoreciproque" or self-dual by De-
stouches [6]) and iff {{x}: x E X} is a partition of X.

THEOREM 2.1. Let 3" be a topology on X and let R =
(a) (X, 3~) is a Tr space iff R is the diagonal relation A.
(b) (X, ST) is To iff R is a partial order.
(c) JR is a complete partial order iff (X, ?f) is a T0-space satisfying

Alexandroff's "Axiome Multiplicatif.
(d) i? is a partial order in which every chain is finite iff (X, 3~) is a

To-space satisfying Alexandroff's "Axioms of Dimension". Such spaces
will be labeled TFC-spaces.

(e) ST is nested (GCH or HCG for all G,HEF) iff R is totally
ordered.

(f) ST is a nested T0-topology iff R is a linear order.
(g) JR is an equivalence relation iff (X, Sf) is an R0-space.

DEFINITION. Let R be a preorder relation on X and let x, y E
X. x is connected to y iff there is a finite sequence x = x09- • •, xn = y
such that (x,_i, JC,) E R U R ~\ i = 1 ,• • •, n. The R-components of X are
the equivalence classes with respect to the relation "x « y iff x is
connected to y ". R is a connected relation iff x is connected to y for all
x, y E X , and a topological space (X, ST) is R-connected iff Re? is a
connected relation.

A topological space (X, 3~) is connected iff every open cover satisfies
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the finite chain condition, and also iff every open cover satisfies the
simple chain condition [17]. There are similar characterizations for
topologies with connected relations.

DEFINITION. A family si of subsets of X satisfies the finite chain
condition iff for all A , B E si there is a finite sequence A = Ao,- - -,An =
B of sets in si such that A I _ I n A I / 0 , i = l , - - - ,n . si satisfies the
simple chain condition iff for all a,b E X there is a finite sequence (called
a simple chain from a to b) A 0 , - - - ,A n of sets in si such that
aEAo~AubeAn~An-u and A , f l A ^ 0 iff \i-j\^l, ij =

THEOREM 2.2. A topological space (X,ST) is R-connected iff
{{x}:xEX} satisfies the finite chain condition, or, equivalently, iff
{{x}: x EX} satisfies the simple chain condition. Furthermore, {{x}: x E
X} may be replaced with {{x}: x E X} in either of the two characteriza-
tions.

Proof. That {{*}: x EX} may be replaced by {{*}: x E X} follows
because "R is connected" is a self-dual order property. We will prove
only the second characterization. Let R = p(2T). Let {X,ST) be R-
connected and let a,b EX. If a = b,{{a}} is a simple chain from a to
b. Assume a/ b. Then there is a finite sequence a = x09- • -,xn = b
such that (x,_i, JC,)E R U R~l for all i = 1 ,• • •, n, and the sequence may be
chosen to be of minimal length. All elements of this sequence are dis-
tinct, and (JC.-I, x,) E R <=> (xn xl+x) E R~l, i = 1 ,• • •, n - 1. Otherwise,
the sequence can be shortened. Of the two integers n - 1 and n, let p be
the odd one and let q be the even one. If (xo,Xi) E R, then
{xi},{JC3},• • -,{JCP} is a simple chain from a to b. If (JCO,JCI)E R~\ then
{x o}, {x2} ,• • •, {xq} is a simple chain from a to b. Therefore, {{x}: x EX}
satisfies the simple chain condition.

Conversely, assume that {{£}:* E X } satisfies the simple chain
condition and let a,b E X. Then there is a simple chain of kernels,
{*o},{*i},- • ',{*„}, from a to b. Since { i , - i } n { j c J / 0 for each i =
1 ,• • •, n, there is an a, EX such that al ^ JC,_I and ax S JC,. Then
a,Xo,auxua2,x2,''

m,an,xn,b is a finite sequence connecting a to b in
jR. Therefore, R is connected and (X,ST) is an JR-connected space.

R -connected is stronger than connected, because, if (X,ST) is
R-connected, then X= U { { J C } : X E X } is the union of a family of
connected sets satisfying the finite chain condition and is thus
connected. It follows as a corollary that a principal topological space is
connected iff it is R -connected, as has been shown by Steiner [16].

All but the last of the following Aull and Thron separation axioms
[2] are order-induced.
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DEFINITION. A topological space (X, ST) is a TF-space iff, given a
finite set F and an x & F, either x is separated from F or F is separated
from x. (X, 3~) is a TFF-space iff, given two disjoint finite sets F, and F2,
either Fx is separated from F2 or F2 is separated from Fx. (X, &) is a
T(fi)-space iff for all JC E X {JC}' is degenerate (i.e., {JC}' is a singleton or
empty). (X, SF) is T(e) iff intersections of derived sets of distinct points
are degenerate, and is TY iff intersections of closures of distinct points are
degenerate. (X, ff) is a T{£)-space iff for each x E X {JC}' is the union
of a family of point closures, {{y}: y E Y}, such that any two distinct
elements of Y are separated. (X, ST) is a T(y)-space iff each derived set
is the union of disjoint point closures, and (X, ST) is a T(S)-space iff each
nonempty derived set is a point closure. Finally, (X, ST) is TD iff each
derived set is closed.

T(p'), T(y% T{C) and T(8') are defined as the duals of j8, % f and
5, respectively. For example, ST is a T(S')-topology iff each nonempty
shell is a kernel. T(/3', 0), defined as T(/3') and To, is also equivalent to
the condition TYS that for all x/y in X,{jc}H{y} is 0,{JC}, or {y}
[2]. TF, TFF, T(e), and Ty are all self-dual.

T(8) as defined here differs from the original [2] in which point
derived sets could never be empty. T(£) was not among the original
axioms, but is a natural generalization of T(y), and TY had its origins
with J. W. T. Youngs [21]. TD is included here because of its relation to
maximal nested (Theorem 3.9), but TD is not itself an order-induced
property. To see this, it is easy to show that TD is equivalent to To for
principal topologies, so that the TD and To topologies are associated with
the same class of preorders, and there will be TD and non-TD topologies
with the same relation. The axioms TUD and TDD [2] are also not
order-induced, because, for principal topologies, they are equivalent to
To and Tys, respectively.

Aull and Thron have shown [2] that, in terms of derived sets and
shells, a space is TF iff for all x E X,{x}' consists of points y such that
{y}' = 0 (property T(a)), and also that a space is TFF iff {JC}' = 0 for all
but at most one x or {i} = 0 for all but at most one JC. It is these
characterizations which are used to derive parts (a) and (d) of
Theorem 2.3.

A few additional order properties are used in Theorems 2.3 and
2.4. Let R be a preorder on X. A totally ordered set with n elements
has length n - 1, and the length of (X, R) is the least upper bound of the
lengths of all totally ordered subsets of (X, R). (X, JR) is a pre-semiroot
iff, for each x E X, {y: JC ̂  y} is totally ordered by R. If, in addition, JR
is a partial order, (X,R) is a semiroot. A root is a semiroot with a
greatest element. (X, R) is upward directed iff each pair of elements of
X has an upper bound. A partial order in which each pair of elements
has a least upper bound is an upper semilattice. The terms pre-semitree,
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semitree, tree, downward directed, and lower semilattice are defined
dually.

The proofs of the characterizations in Theorems 2.3 and 2.4 are all
straightforward and are therefore omitted.

THEOREM 2.3. Let 3~ be a topology on X and let R = p(9~).
(a) (X, ST) is a TF~space iffR is a partial order of length at most 1.
(b) (X, ST) is a T(j8)-space iff for each x E X <x, y > E R for at most

one y ̂  x, or, alternatively, iff R is a pre-semiroot of length at most 1.
(c) (X, 2T) is T(/3,0) (T(j6) and To) iff R is a semiroot of length at

most 1.
(d) (X, ST) is TFF iffX has at most one nonsingleton R -component and

that component is a tree or root of length 1.
(e) (X, 3~) is T(e) iff R is such that any two distinct points have at

most one upper bound in X ~ { J C , y}, or, equivalently, such that any two
distinct points have at most one lower bound in X ~ {x, y}. This in turn
implies that the length of R is at most 2.

(f) (X, 3~) is TY iff R is such that any two distinct elements have at
most one upper bound, or, equivalently, iff R is such that any two distinct
elements have at most one lower bound. This implies that R is a partial
order with length at most 1.

(g) (X, ST) is a T{£)-space iff R is a partial order such that whenever
a < b there is a cover c of a such that c ^b.

(h) (X, ST) is T(y) iff R is a partial order such that two unrelated
elements cannot have both an upper and a lower bound, and whenever
a <b there is a cover c of a such that c ^b.

(i) (X, 3~) is a T(8)-space iff R is a partial order such that every
nonmaximal element has a successor.

The characterizations of T(/3'), T(j3',0) or TYS, T(£'), T(y% and
T(S') are the duals of the appropriate statements in Theorem 2.3. For
example, (X, ST) is a T(£')-space iff p (^ ) is a partial order such that,
whenever a <b,b covers an element c E X such that a ^ c.

T H E O R E M 2 . 4 . Let J be a topology on X and let R = p ( )
( a ) R is a pre-semiroot iff, for all a,b E X, {a} PI {6} is 0, {a}, or {b}.
(b) R is a semiroot iff (X, ST) is TQ and for all a, b E X, {a} H {6} is 0 ,

{a}, or {b}.
(c) R is upward directed (i) iff the intersection of any two point

closures is nonempty, (ii) iff the intersection of any two nonempty closed sets
is nonempty, and (iii) iff X cannot be written as the union of two open
proper subsets.

(d) JR is an upper semilattice iff ST is To and the intersection of any two
point closures is a point closure.
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As the properties in Theorem 2.4 have no generally accepted
topological names, we shall call them by their order types. Topological
properties corresponding to pre-semitree, semitree, downward directed,
and lower semilattice are the duals of the appropriate statements in
Theorem 2.4. For example, a topology ST is downward directed iff the
intersection of any two kernels is nonempty. However, statements (ii)
and (iii) of part (c) are not expressed in order terminology and cannot be
dualized. In fact, no corresponding statements hold for a downward
directed topology.

Pre-semitree, semitree, and their duals, which are satisfied by
Ti-spaces, resemble separation axioms, while upward directed and
downward directed are more like connectedness in that they restrict the
number of open sets. In fact, the third characterization of an upward
directed topology is Levine's definition of "strongly connected" [10],
which is even stronger than R -connected in that all upward directed sets
(and all downward directed sets) are R -connected. Upper and lower
semilattices restrict the number of open sets, but are also always To, so
that they represent an intermediate band of topologies between To

and 7V
Finally we note that if Tp is an order-induced topological property

with corresponding order property Kp, then Tp is hereditary iff Kp is
hereditary, and Tp is productive iff Kp is productive. Furthermore, Kp is
hereditary (productive) iff the dual of Kp is hereditary
(productive). Using this and some appropriate examples [see 22, p.
65-68] it is not difficult to see that properties Tu To, nested,
JR0, TF, T(j3), T(/3,0), Tm T(e), TY, TFC, and semiroot, as well as their
duals, are all hereditary, while T0-axiome multiplicatif, JR-connected,
T(y), T(£), T(8), upward directed, and lower semilattice are
not. Similarly, Tu To, T0-axiome multiplicatif, Ro, T(£), upward di-
rected, upper semilattice, and their duals are productive, while the other
properties are not.

3. Maximal and minimal topologies. In Theorems 3.1
through 3.6 we develop a general method for characterizing maximal
and minimal Tp when Tp is order-induced, and, in Theorems 3.7 and 3.8,
we describe maximal Tp or minimal Tp for most of the specific properties
discussed in part 2. The conditions in Theorem 3.1 for maximal Tp

apply to all order-induced properties, while the corresponding conditions
for minimal Tp in Theorem 3.6 hold for most properties under discussion,
but not all. In fact, Example 3.11 illustrates that for T(8') and for the
class of semitree topologies, the conclusion of Theorem 3.6 does not
hold.

THEOREM 3.1. Let Tp be an order-induced topological property and
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let Kp be the corresponding order property. Let 3" be a topology on X with
preorder R = p(2T). ST is a maximal Tp-topology iff R is a minimal
Kp-relation and ST is the kernel topology v{R).

Proof. Assume that 2T = v{R) and that R is a minimal Kp-
relation. Let ST*ETP such that STQST*. Then R = p(F)D
p{ST*)EKp =£> JR = p{ST*), since R is minimal Kp. Therefore, by
Theorem 1.1, V* C v{R) = ST =̂> 3~* = SF, and ST is maximal Tp.

Conversely, assume 3~ is a maximal Tp-topology. Then ST C
v(R) E Tp => ST = v(R). Let R * G Kp such that RDR*. Then, since
v reverses order, ST = v(R)Cv(R*)ETp 4> v(R)= v(R*), because ST
is maximal. Therefore, R = i?*, and i? is a minimal Kp-relation.

The following can be proved in a similar manner.

THEOREM 3.2. Let TP,KP,X,ST, and R be as in Theorem 3.1.
(a) 1/JR is a maximal Kp-relation and ST is the point-closure topology

/x(JR), then ?F is a minimal Tp-topology on X.
(b) If 3~ is a minimal Tp-topology on X, then 2T =

Unfortunately, it is not necessary that R^ be maximal Kp in order
for ST to be minimal Tp, as Example 3.11 illustrates. The difficulty is that
JJL, unlike the function v, is not order-reversing, as was shown in Example
1.5. One additional restriction on the class Kp which does make it
necessary for R<? to be maximal is to assume that, whenever R is a
non-maximal Kp-relation, there is a "right finite" relation 5 such that
R 5R v S G Kp. Before proving the Theorem, however, we derive three
lemmas which develop a technique for creating coarser topologies by
intersecting a given topology with a finite number of principal
ultratopologies. The importance of these lemmas is that, in general, if
ST = &'lC\3~2, we can conclude only that p{ST)D p{STx)y p{ST2). But,
whenever Sf2 is the intersection of a finite number of principal ul-
tratopologies (that is, ST2= v{S) where S is right-finite), then

LEMMA 3.3. Let R be any preorder on X, let A CX and b EX, let
S = {<*, b): x G A} U A, and letAb ={x:(b,x)& R}. Then S is a partial
order and

JR v S = JR U{(jc,y>: xRa and bRy for some a EA}.

If A = Ab, then R v S = R U {<*, y): xEAb and bRy}. Furthermore, if
A C Ab and R is a partial order, then R v S is a partial order. {The dual
of this lemma is also valid.)
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Proof. It is clear that S is a partial order and that JR v S D
R U{(x,y): xRa and bRy for some a&A}. Let (x, y)Ei? vS such
that (JC, y)£! R. Then there is a finite sequence x = x0,- • -,xn = y such
that (jc,_i, x,) E JR U S, i = 1 ,• • •, n, and this sequence can be chosen to be
of minimal length. All elements of this sequence are then distinct and it
is clear that S can occur only once and R cannot occur twice in a row,
because, otherwise, the sequence could be shortened. Thus there are
only four possibilities: x = aSb = y, xRaSb = y, x = aSbRy, and
xRaSbRy, where a is some element of A. In each case, (x, y) is such
that xRa and bRy for some a & A. Therefore, R v S =
R U{(x,y): xRa and bRy for some aGA}.

Now assume that A = Ab. Let (JC, y) be such that xRa and bRy for
some a E Ab. Since (b, x)ER ^ (fc, a)EJR, which is impossible for
a E Afe, we have (6, x) gi JR, and thus JC E Afo. That is,

{(JC, y): xjRa and bRy for some a E A6}C{(x, y): x E Ab and W?y}.

Since containment in the other direction is immediate, the two sets are
equal, and thus i? v 5 = JR U {(x, y): x EE Ab and bRy}.

Finally, for A C Afc, if (x, y) E R v S, and (y, x) E JR v 5, then (x, y)
and (y, x) are both in R. Otherwise, if at least one is not in JR, it is easy
to verify that (b,a)ER for some a E Ab, which is a
contradiction. Therefore, if R is antisymmetric, so also is JR v S.

LEMMA 3.4. Let b E X, A C X, S = {(x, fe): x E A} U A, and J"2 =
J / J = J , n j 2 w/zere 5", is any topology on X, tfien ^

Let R = p(STl). ST C ̂  => p ( ^ ) 2 p(^i) = #, and ST C
5"2 z> p (ST) D p (^2) = S. Therefore, p (^j D 1? v S. It remains to
show that p ( J ) C J ? v S .

Let p,q£X such that (p,q)f£Rv S. To show (p,q)gp(3'), it
suffices to find a neighborhood JV of q in 5" = 5"i n ST2 such that
/?£ N. By Lemma 3.3, RvS = R U{(x,y): xRa and bRy for some
a E A}. Therefore, (p,q)£ R and there is no a E A such that pi?a and
bRq. Since (p,q)£ R, there is an open neighborhood JVi of q in 5"! with
pf£Nt. By Theorem 1.4, ST2= v{S)= n{^(y,x): (x,y)E S} =

(b,q)f£ R. There is an open neighborhood N2 of q in ̂  with
N2. Then N = N{ n N2 is an open neighborhood of g in 5"i contain-

ing neither p nor fe. fe^ N => N E ^ ( ~ {6})C 5r(6,x)Vx E A
^ N E ST2 =̂> N E 5"! fl ST2 = ST. Therefore, N is an open neighbor-
hood of q in ST excluding p, and (p,q)f£ p{3~).

Case (6, q) E JR. Then for each x E A, (p, x) gi JR, and there is an
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open neighborhood Nx of x in STi excluding p. Let N =
Ni U (U {Nx: x E A}), which is open in STX and still excludes p. For each
xEA, xEN =̂  NE°U(x)C &(b,x). Therefore, J V e f l {J(b, x):
x E A}= 3~2 ̂  NEST. Since qENEST and pgN, (p,q)£p{2T).

In both cases, (p,q)£p(ST), and thus p ( ^ ) C i ? v S. Therefore,

DEFINITION. A relation R on X is right-finite iff {y: (x,y)E R ~ A
for some JC E X} is finite. R is /mite iff JR ~~ A is a finite set.

LEMMA 3.5. Let S be a right-finite preorder relation on X and let
ST2 = v(S). IfZr = 3~lnZT2 where STX is any topology on X, then p(ST) =

P(sr2).
Proof. Let B = {y: (JC, y)E S for some JC E X}, which is finite by

hypothesis. For each b E B, let Sb = {(x, b): (x,b)E S}U A. Then S =
U{Sb: bEB}= v{Sb: bEB}. Since each Sb is of the form of the
relation S in Lemma 3.4, the proof follows by induction on the
cardinality of B, using Lemma 3.4 and the associativity of n for
topologies and of v for relations.

THEOREM 3.6. Let Tp be an order-induced topological property and
let Kp be the corresponding order property. Assume that, whenever R E Kp

and R is not a maximal Kp-relation, there is a right-finite preorder S such
that R^R v S E Kp. Let ST be a topology on X. Then 3~ is a minimal
Tp-topology iff R*r is a maximal Kp-relation and ST is the point-closure
topology (JL(R<?).

Proof. That this condition is sufficient was proved in Theorem
3.2. To show necessity, let ST be a minimal Tp-topology and let
R=Rj. Then, by Theorem 3.2, ST = fi(R). Suppose R is not a
maximal Kp-relation. Then there is a right-finite relation S on X such
that R$R vSEKp. Let ZT* = STPiv{S). By Lemma 3.5, p{ST*) =
p{ST)v p(v(S)) = R ySEKp, and thus 5r*ETp. If 3~* = ST, then
p{ST*) = p{ST) 4> R v S = R, which is a contradiction. Therefore,
ST*$2r and J* E Tp, which violates the Tp-minimality of 5". Thus R is a
maximal Kp-relation.

We now apply Theorems 3.1 and 3.6 to characterize maximal Tp or
minimal Tp for most of the properties discussed in part 2. Properties
such as nested, upward directed, upper-semilattice, and R -connected
tend to restrict the number of open sets and to have nontrivial maximal
spaces. Most of the other properties, however, by restricting the
elements in the relation and increasing the number of open sets, are more
like separation axioms and have nontrivial minimal spaces.
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Determinimg maximal Tp or minimal Tp is, in most cases, primarily a
matter of characterizing minimal Kp or maximal Kp. These character-
izations are usually intuitively obvious from consideration of appropriate
Hasse diagrams, even though formal verification may be tedious or even
complicated. For this reason, a few portions of proofs will be included
as illustrations, and the rest will be omitted.

THEOREM 3.7. Let 3~ be a topology on X and let R =
(a) ST is maximal nested iff R is linear and ST is the kernel topology,

v(R).
(b) 2T is a maximal upward directed {strongly connected) topology iff

R is a root of length 1 and ST = v(R).
(c) ST is a maximal upper semilattice topology iffR is a root of length 1

and ST = v(R).
(d) (X, ST) is a maximal R -connected space iff ST = v(R), and, for all

jc^y EX, there is a unique finite sequence x = x0,— -,xn = y of distinct
points connecting x to y in R.

Proof By Theorem 3.1, it suffices to characterize minimal Kp-
relations for each of the four properties. For example in (a) it suffices to
show that R is a minimal totally ordered preorder iff R is linear. In
each case, it is easy to verify the sufficiency of the condition for R to be
minimal Kp, and we restrict our attention to an outline of the proof of
necessity.

(a) Let R be a totally ordered preorder and suppose JR is not
linear. Then 3a/b with (a,b)E.R and (b,a)ER. Let R* =
R ~{(JC, b): aRxRb and x/b}. It can be verified that J?* is also a
totally ordered preorder and, since (a,b)f£R*,R*$EJR. Therefore, R is
not minimal.

(b) Let R be a minimal upward directed relation. If R is not a
partial order, then 3a/ b with (a,b)E R and (b,a)E R. As in part (a),
R * = R ~ {(x, b): aRxRb and x/ b} is a preorder such that R *£!?, and
it is easy to show that R * is also upward directed. This is a contradic-
tion, and R is therefore a partial order. If JR has a chain, a < b < c, of
length 2, then, as before, R* = R ~{(x,b): aRxRb and x/b} is an
upward directed preorder such that R *§:JR. Therefore, JR has length at
most 1. Finally, since | X | ^ 2 and JR is upward directed, there is an
(a, b) E JR ~ A. If x is any other element of X, then x and b have an
upper bound u; and, since a < b ^u and JR has length 1, u = b. That
is, x ^ b for all x E X and b is a greatest element. Therefore, R is a
root of length 1.

(c) Let JR be a minimal upper semilattice. If R has a chain,
a <b < c, of length 2, then it can be verified that JR * =
R ~ {(*, y)G R. x/ y and (c, y)0 R} is an upper semilattice and that
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Therefore, R is a partial order of length 1. That JR has a
greatest element then follows as in part (b), and R is a root of length 1.

(d) Let JR be a minimal connected relation. Let c,dEX and let
c = a0,- - •, an = d be a sequence of shortest length connecting c to
d. Then (a,) is a sequence of distinct points. Suppose c = b0,• • •, bm =
d is any other sequence of distinct points connecting c to d. Then
n^km. Let p be the first i such that at^ bt9 let fc be the first i > p such
that k = a} for some /, and let q be that integer such that bk = aq. Then
0<p<k,p^q, and (ap-ubp) = (bp.ubp)E R U R'1. If (ap-b6p)GJ?5

let a = ap_! and b = fcp. If (fcp, ap-i)E i?, let a = bp and 6 = ap_i. In
either case, as in part (a), R* = R ~{(JC, b): aRxRb and x/b} is a
preorder such that R^^R, and it can be verified that 1?* is
connected. Therefore, there is no such other sequence b0,- - •, bm, and
the original sequence ao,

m • •, an is unique.
Since ?F = v{p(ST)) iff ^ is principal, it is possible to rephrase the

characterizations in Theorem 3.7 in more topological terms by using the
correspondences in part 2, as follows. ST is maximal nested iff ST is a
principal To nested topology. ST is maximal upward directed (or a
maximal upper semilattice topology) iff Sf is a principal connected
T(j8,0)-topology. (X, ST) is a maximal R -connected space iff (X, 9~) is a
principal TY-space and for all JC, y E X there is a unique simple chain of
kernels from x to y.

This latter characterization of maximal R -connected requires some
explanation. Proof of necessity is straightforward although rather
lengthy. One way to show sufficiency is to note that this condition is
equivalent to one given by Thomas [17] to characterize maximal con-
nected for principal topological spaces. Then, since it is easy to show
that principal maximal connected =̂  maximal principal connected =̂
maximal JR-connected, sufficiency follows. Consequently, the maximal
R -connected spaces are precisely the principal maximal connected
spaces.

If Kp and Kp> are dual order properties, then minimal Kp. is the dual
of minimal Kp and maximal Kp is the dual of maximal Kp. Therefore,
using Theorem 3.1, the characterization of maximal Tp> follows easily
from that of maximal Tp. In particular, 3~ is a maximal downward
directed topology iff JR is a tree of length 1 and 3~ = v{R), and the same
for maximal lower semilattice topologies. (The other two properties in
Theorem 3.7 are self-dual.)

Note, however, that, even though Tp and Tp are dual order-induced
properties, maximal Tp and maximal Tp> are usually not dual properties,
and neither are minimal Tp and minimal Tp. In fact, maximal Tp cannot
even be order-induced unless all minimal Kp -relations R are such that
fi(R)= v(R). Similarly, minimal Tp is order-induced iff fi(R)= v(R)
for all maximal Kp -relations. Of the minimal and maximal properties
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characterized in this paper, only minimal T(£) and minimal T(8) are
order-induced.

To characterize minimal Tp-topologies by Theorem 3.6 one must
do two things: (1) characterize maximal Kp and (2) show that when-
ever R is a nonmaximal Kp -relation there is a right-finite preorder S
such that R^R v S EKP. In Theorem 3.8, the inherent characteriza-
tions of maximal Kp are intuitively obvious in each case, and in parts
(b)-(g) the actual verifications of (1) and (2) are completely
straightforward, ((a) is a trivial application of Theorem 1.1.) Proofs of
the last three parts are slightly more involved, and (i) and (h) will be
considered as examples. It is possible in most cases to choose the
relation S of the form {(a, b)} U A which is actually finite, but for K(8),
semiroots, and semilattices, however, 5 is of the form {(JC, b): x E Ab}U
A, which is right-finite, but not necessarily finite.

THEOREM 3.8. Let 2T be a topology on X and let R = p(3~).
(a) The minimum Trtopology on X is /x(A).
(b) ST is a minimal T0-topology iff R is linear and 3~ is the point-

closure topology, M(JR).

(c) ST is a minimal TF-topology iff Sf = fi(R) and R is a partial order
of length 1 such that every maximal element is greater than every minimal
element.

(d) ?f is a minimal T((3)-topology iff 3~ = fi(R) and R is a pre-
semiroot of length 1 such that, ifR has a singleton R -component, then R is
an equivalence relation and every other component has exactly two
elements.

(e) ZT is a minimal T(p,0)-topology iff ST = fi(R) and all R-
components are roots of length 1 (or, equivalently, iffST = /JL(R) and R is a
semiroot of length 1 with no singleton components).

(f) 3~ is a minimal TFF-topology iff ST = fi(R) and (X,R) is a root or
tree of length 1.

(g) IfX is an infinite set, there are no minimal TFC~topologies on X.
(h) ?F is a minimal T(£)-topology iffR is a linear order such that every

nonmaximum element has a successor.
(i) ST is a minimal T(8)-topology iff R is a linear order such that every

nonmaximum element has a successor.
(j) ST is a minimal semiroot-topology iff ST = fi(R) and R is a linear

order. Minimal semi-lattice topologies and minimal T0-upward directed
topologies have the same characterization.

Proof of (i). We first show that, whenever R is a nonlinear
X(5)-relation, there is a right-finite preorder S such that R v 5 is a
K(5)-relation and R$R v S. Let R be a nonlinear K(8)-
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relation. Then 3 a, b E X such that (a,b)£R and (6, a) & R. Let
Ab = {x: (b, x) & R} and let S = f(x, b): x E Ab) U A. Then S is a right-
finite preorder, and, by Lemma 3.3, l?*==JRvSisa partial order such
that R^R*. Furthermore, R vS = R U{<*,y): x E Ab and
WRy}. Let p be a nonmaximal element of (X, R *). If p is maximal in
(X,R), then p^fc, and fe is a successor for p in i?*. Assume p is
nonmaximal in (X, R ). Then p has a successor, q, in R. If p £ Ab, then
q is still a successor for p in 1? *. If p E A6, then q* = minR*{g, b) is a
successor for p in 1? *. Thus, in all cases, p has a successor in R *, and
R*EK(8). Therefore, there is a right-finite relation S such that

The preceding construction also shows that a nonlinear K(8)-
relation cannot be maximal K(8). Conversely, a linear JK(S)-relation is
clearly maximal K(8), because any relation properly containing R is not
a partial order and thus not K(8). Therefore, R is a maximal K(8)-
relation iff R is a linear order such that every nonmaximum element has
a successor. Furthermore, if R is a nonmaximal K(5)-relation, then 1?
is nonlinear, and there is a right-finite relation S such that JR^R V S G
K(8). Therefore, by Theorem 3.6, SF is minimal T{8) iff & = /JL(R) and
R is a linear order such that every nonmaximum element has a
successor. But by Theorem 1.3, under these conditions on R, JJL(R) =

v(R), and /x (i?) is the only topology with relation R, so that (i) follows.

Proof of (h). We show only that, whenever R is a nonlinear
J£(£)-relation, there is a finite preorder S such that R^R v S E
i£(£). The remainder of the proof then follows as for minimal T(8)-
topologies in (i), with the observation that, for a linear order, a cover is
the same as a successor.

Let R be a nonlinear !C(£)-relation. Then 3a, feEX such that
(a,b)£R and (b,a)f£R. Let S = {(a,fc)}UA and let R* =
R v S. Then S is a finite preorder, and, by Lemma 3.3, JR* =
R U{(x,y): xRa and bRy) is a partial order such that R^R*. It is
routine to verify that b covers a in R * and also that, if c covers s in 1?
and (s, a)f£R or (b,c)f£R, then c covers 5 in i?*.

Let s, t E X such that 5 < f in R *. It suffices to show the existence
of a cover c of 5 in R* such that (c, t)E R*. In the case that (s, f)£ 1?,
then sRaSbRt. If s = a, then 6 covers a and (b,t)ER*. Ifs/a, then
5 has a cover c in R and c ^ a in i?. (c, a )E i ? and (b,a)f£R 4>
(fe, c ) ^ i?. Therefore, c covers s in i?* and (c, t)E. R*. Now assume
(s, f} E 1?. Then 5 has a cover c in i? with (c, f) E JR. If (s, a) £ R or
(b,c)£R, then c covers s in i?*. Suppose sRa and W?c. If s = a,
then fe covers a and (6, t)E R*. If s/ a, then 5 has a cover Ci such that
cxRa. Then (cb r) E i? *, and, since (b, cx) £ R, cx is still a cover of 5 in
R*. Thus, in all cases, s has a cover c in JR* such that (c, f)E
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R *. That is, JR * is a JK(£)-relation, and S is a finite preorder such that

Characterizations of minimum Tx and minimal To are, of course,
already well-known. The statement in (b) is close to the theorem of
Larson [9] and Pahk [15] that a T0-topological space (X, ST) is minimal TQ

iff {— {£}: x E X} U {X} is a base for 3 and finite unions of point closures
are point closures.

Larson [9] has also proved that a TD-topological space is minimal TD

iff the topology is nested. Using the fact that when R& is linear the
kernels are complements of derived sets, it is not difficult to prove as a
corollary that a topological space (X, 3) is minimal TD iff R*r is linear and
3' is the kernel topology of R?. Theorem 3.9 then follows immediately
from Theorem 3.7.

THEOREM 3.9. A topological space (X, 3~) is minimal TD iff it is
maximal nested.

It is clear that a minimal TD -topology with relation R is also minimal
To precisely when fi(R)= v(R), that is, whenever R is a linear order
such that every nonmaximum element has a successor. This is also the
condition for minimal T(£) and minimal T(8).

Characterization of minimal Tp> does not follow as readily from
minimal Tp as did maximal Tp from maximal Tp. The problem is in
finding an appropriate right-finite relation S in order to apply Theorem
3.6. In the case of T(j3), T(/3,0), T(£), and upward directed TQ-
topologies, if i? is nonmaximal Kp, there is a finite preorder S =
{(a, 6)}UA such that R$R v S E Kp. Then, by duality, Kp, also satisfies
the hypothesis of Theorem 3.6, and Theorem 3.10 follows. (To, TF, TFF,
and TFc are self-dual.)

THEOREM 3.10. Let & be a topology on X and let R = p{3~).
(a) ST is minimal T(/3') iff ST = fi(R) and R is a presemiroot of length

1 such that, if R has a singleton R-component, then R is an equivalence
relation and every other component has exactly two elements.

(b) STis minimal TYS (that is, minimal T(pf, 0)) iffST = fi(R) and all
R-components are trees of length 1.

(c) & is a minimal T(£r)-topology iff 3" = /JL(R) and R is a linear
order such that every nonminimum element has a predecessor.

(d) ST is a minimal downward directed TQ-topology iff ZT = /JL(R) and
R is linear.

For T(8), semiroot, and upper semilattice topologies, the crucial
preorder in the proof of Theorem 3.8 is of the form S =
{(JC, b): x E Ab} U A, which need not be finite. In the dual situation, the
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corresponding preorder is left-finite, but not necessarily right-finite, so
that Theorem 3.6 does not apply, but only the rather unsatisfactory
Theorem 3.2 giving sufficient conditions. That is, let ST be a topology on
X and let R = p {ST). If Sf = fi (R) and R is linear, then 5" is a minimal
semitree topology and a minimal lower semilattice topology. If, in
addition, R is such that every nonminimum element has a predecessor,
then 3~ is minimal T{8'). For minimal T{8') and minimal semitree
topologies, however, R need not be maximal Kp, as is shown by Example
3.11, below. (The question for minimal lower semilattice topologies has
not been settled.)

EXAMPLE 3.11. Let a) be the first infinite ordinal and let o)x be the
first uncountable ordinal. Let Xx be the underlying set for o>u let Xo be
a relabeling of the elements of co so that XonX1 = 0 , and let X =
Xo U Xi. Let Ro and i?i be the inverses of the usual well-orderings of Xo

and Xu and let R = Ro U JRi. (For the rest of the example, symbols such
as ^ and {x} will always refer to the relation R.) With the usual
ordering of the ordinal numbers, every ordinal has a successor, every
subset has a least element, and a E j8 iff a < /3. Therefore, (X, JR) is a
partially ordered set in which every element has a predecessor, every
subset of Xo has a greatest element, every subset of Xx has a greatest
element, and a E (3 iff a > j8.

Let ST = fi(R) and let ^ be the closed sets of ST. 3~ is clearly a
T{8') semitree topology, and, since R is nonlinear, R is neither a
maximal semitree nor a maximal K(5')-relation. We will show that 3~ is
nevertheless a minimal semitree topology and a minimal T(S')-topology.

% consists of 0 , X, and sets of the form {m} = {n: m ^ n}, {x} =
{y: x ^ y}, and {m} U {x}, where m EX0 and x E Xi. Sets of the form
Xo U {x}, {m } U Xl5 and {m } U j3, where x E Xl5 m E Xo, and 0 is a limit
ordinal in (ou are nof closed in (X, ST). (In terms of the inverse ordering
R, a limit ordinal is an ordinal other than 0 with no successor.) It is on
the fact that these sets are not closed that the proof is based.

(a) To show that ST is a minimal semitree topology, suppose there is
a semitree topology ST* on X with closed sets ^* such that ST^ST*, and
let R* = p(ZT*). Then R Ci?*, and, since 5" is the smallest topology
with relation R, R^R*. Therefore, since JR* is a partial order, there
are elements p E Xo and a E Xx such that p and a are related in
R *. Since R * is a semitree, {/?}* and {a}* are both linear, and thus n is
R * related to JC for all n ^ p and x ^ a.

Let n be any element of Xo such that n S p. If (n, x) E JR * for all
x ^ a, then {n} U X! = {n}* E ^* C ^, which is a contradiction, because
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such sets are not closed in (X,fF). Therefore, there is an element
(p(n)^a in Xx such that (n,(p(n))g R*. That is, (cp(n),n)E R*.

For each n ^ p, cp(n) E Xx => | <P{n)| ̂  | o) | = Mo. Therefore,
| U{<p(n): n^p}\^H0. Suppose there is no t EXX such that cp(n)^t
for all n^p. Then, for each x E Xu x > cp(n) and x E <p(n) for some
n^p. Therefore, XiC U{<p(n): n^p} where the latter is a countable
set. This is clearly impossible and thus there is a t E Xx such that
<p(n)g r for all n^p. Then (t,n)ER* for all n E Xo, and X0U{t} =
{t}*E <€*C <#, which is impossible because (X,ST) has no such closed
sets.

Thus there is no semitree topology ST* on X such that ST^ST*, and 5"
is a minimal semitree topology.

(b) To show that ST is minimal T(S'), suppose there is a T(5>
topology 5"* on X such that ST?5"*. Let 9?* be the closed sets of
(X, ST*) and let R * = pC^*). As in part (a), i? $R *. Therefore, there
are elements u0EX0 and UiEXi such that v0 and vx are related in
R *. We will eventually show the existence of p E Xo and a G X j such
that (a,p)E i?* and n is J?* related to JC for all n^p and all x^f l .

We may assume that there exist u0EX0 and i^EXi such that
(v0, Vi)E JR*. To show this, first assume that (ul9 u0)E R* where u0E
Xo and z^EXi. Let r be the greatest element of (X1? JR^ such that
(r,q)&R* for some q E Xo. There is an m E Xo such that (r, m)g- J?*,
because, otherwise, (r,n)ER* for all n E Xo and Xo U{r} = {r}* E ^* C
<£, which is impossible. Therefore, there is a greatest element k of Xo

such that (r, fc) £ R *. Since k <q, k has a successor fe + in (Xo, i?0), and
(r, fc+) E J? *. Then fc and r are related (otherwise, fc+ covers both k and
r and k + has no predecessor), and, since (r,k)f£ R*, (k,r)E R*. Thus
there exist u0EX0 and vxEXx such that (u0, UI)EJR*.

m

Let p be the greatest element of Xo such that (p,s)ER* for some
5 GX,. If (p,x)ER* for all JCEX 1 ? then Xx U{p} = {p}* E %* C «,
which is a contradiction. Therefore, there is a greatest element a in Xi
such that (p,a)£R*. Then (p,x)ER* for all JC > a, and
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aU{p} = {x: a

Therefore, a cannot be a limit ordinal in a)u and, since a / 0, a has a
successor, a+ in R and (p,a+)ER*. By definition of p, there can be no
element of Xo between p and a+ in R*. Therefore, if p and a are
unrelated in i? *, a+ covers both p and a and has no predecessor in R *,
which is a contradiction. Thus, (a,p)Ei?*. Furthermore, since
aR*pR*a+, p is related to every element of Xx.

X(

We next show by induction that each n ^ p is related by 1? * to each
element of Xx. Assume that fc is related to each element of Xu where
fc ̂  p. It suffices to show that k ", the predecessor of k in R, is related to
every element of Xx. By the same argument as for p, it is impossible to
have (k ", JC ) E R * for all x E X b and thus there is a greatest element 6 of
(Xi, JRi) such that (fc~, b)£R*. As before with a, fe/0 and, since
{k "}* = {k"} U b, b cannot be a limit ordinal. Therefore, 6 has a
successor, 6+ in R, and (k~, fe+)Ei?*. Also, (b,k)E. R*, because,
otherwise, by the induction assumption, k~R*kR*b ^ (k~,b)E R*,
which is impossible. Furthermore, by the induction assumption, k is
related to b+.

X(

If (k, b+) E JR * and b is unrelated to k , then k covers both b and fc
and has no predecessor. If (b+, fc)E J?* and fc is unrelated to fc~, then
fc+ has no predecessor. Therefore, b is related to fc" and thus (b, k~)E
R*. Then, since bR*k~R*b+, fc" is related to every element of
Xi. Therefore, by induction, n is related to every element of Xx for all



318 S. J. ANDIMA AND W. J. THRON

In particular, n is related to x for all n g p and x ^ a. Therefore,
by the same argument as in (a), there is a t E Xx such that (n, t)E R* for
all n G Xo, and Xo U {t) = {F}* E <£* C «, which is impossible.

Thus, there is no T(S')-topology ST* on X such that ST?^*, and ST
is a minimal T(8 ')-topology.
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