ON THE BARYCENTRIC HOMOMORPHISM IN A SINGULAR COMPLEX

PAUL V. REICHELDERFER

INTRODUCTION

0.1. Radó has introduced and studied the following approach to singular homology theory (see [2; 3; 4] for details). With a general topological space X associate a complex R = R(X) in the following manner. For integers $p \ge 0$, let v_0, \dots, v_p be a sequence of p + 1 points in Hilbert space E_{∞} , which are not required to be distinct or linearly independent, and let $|v_0, \dots, v_p|$ denote their convex hull. Suppose that T is a continuous mapping from $|v_0, \dots, v_p|$ into X. Then the sequence v_0, \dots, v_p jointly with T determines a p-cell in R, which is denoted by $(v_0, \dots, v_p, T)^R$. The free Abelian group C_p^R generated by the p-cells in R is termed the group of integral p-chains in R. For integers $p < 0, C_p^R$ is defined to be the group consisting of the zero element alone. The boundary operator $\partial_p^R: C_p^R \to C_{p-1}^R$ is defined, in the usual manner, as the trivial homomorphism if $p \le 0$, and by the relation

$$\partial_p^R (v_0, \cdots, v_p, T)^R = \sum_{i=0}^p (-1)^p (v_0, \cdots, \hat{v}_i, \cdots, v_p, T)^R$$

if p > 0. Since $\partial_{p-1}^R \partial_p^R = 0$, one introduces the subgroup Z_p^R of p-cycles in C_p^R and the subgroup B_p^R of p-boundaries in C_p^R in the customary way, and defines the quotient group of Z_p^R with respect to B_p^R to be the homology group H_p^R .

0.2. The approach to singular homology theory pursued by Radó differs from other approaches in that absolutely no identifications are made. Thus two p-cells $(v'_0, \dots, v'_p, T')^R$ and $(v''_0, \dots, v''_p, T'')^R$ are equal only if they are identical; that is, if $v'_i = v''_i$ for $i = 0, \dots, p$ and $T' \equiv T''$ on $|v'_0, \dots, v'_p|$ $= |v''_0, \dots, v''_p|$. In [3;4], Radó introduces a technique for making identifications in a general Mayer complex and applies his procedure to study identifications in R, particularly those which yield homology groups isomorphic to the H^R_p . It is a primary purpose of the present paper to pursue the matter further in

Received January 24, 1951.

Pacific J. Math. 2 (1952), 73-97

order to establish stronger results than those obtained by Radó.

The identification scheme of Radó for the complex R is briefly described in §0.3 below; the reader should consult [3, §1] or [4, §5] for details.

0.3. Let $\{G_p\}$ be a collection of subgroups G_p of the group C_p^R of integral p-chains in R such that $\partial_p^R G_p \subset G_{p-1}$ for every integer p; such a system is termed an *identifier* for R. Let C_p^m be the quotient group of C_p^R with respect to G_p , and denote that element of C_p^m to which a chain c_p^R in C_p^R belongs by $\{c_p^R\}$. The restriction on the groups G_p clearly implies that the element $\{\partial_p^R c_p^R\}$ in C_{p-1}^m is independent of the choice of the representative c_p^R of the element $\{c_p^R\}$ in C_p^m ; thus one may define homomorphisms $\partial_p^m \colon C_p^m \longrightarrow C_{p-1}^m$ by the formula $\partial_p^m \{c_p^R\} = \{\partial_p^R c_p^R\}$. The resulting system of groups C_p^m together with the operator ∂_p^m constitutes a Mayer complex m with homology groups H_p^m . Define a natural homomorphism $\pi_p: C_p^R \longrightarrow C_p^m$ by the formula $\pi_p \ c_p^R = \{c_p^R\}$. It is readily verified that π_p is a chain mapping; hence it induces homomorphisms $\pi_{*p}: H_p^R \longrightarrow H_p^m$. If for every integer p these homomorphisms are isomorphisms onto, then the identifier $\{G_p\}$ is termed unessential for R. Radó notes that a necessary and sufficient condition in order that an identifier G_p be unessential for R is that every cycle z_p^R in G_p should be the boundary of some chain c_{p+1}^R in G_{p+1} . (See [3, \S 1.3,1.4,1.5] or [4, \S 5].)

0.4. One of the principal results in this paper may now be described. Let $\beta_p^R \colon C_p^R \to C_p^R$ be the barycentric homomorphism in R (see [3, §3.1] or [4, §6]; also §1.3), and denote by $N(\beta_p^R)$ the nucleus of this homomorphism for every integer p.

THEOREM. The system of nuclei $N(\beta_p^R)$ of the barycentric homomorphisms in in R constitutes an unessential identifier for R (see §3.2).

This result is combined with those of Radó in [3] to obtain stronger theorems concerning identifiers than any previously obtained. Since further definitions are necessary before these results can be described, the reader is requested to consult $\S3$ for their statements.

0.5. In the process of proving the theorem above, various results of independent interest have been attained. The reader is referred especially to \$\$1.6, 1.7, 1.10, 2.2 for theorems which show the structural description of the barycentric homomorphism and of the barycentric homotopy operator.

I. FURTHER RELATIONS IN THE AUXILIARY COMPLEX K

1.1. As in Radó [3;4], the auxiliary complex K is the "formal complex", in the sense of [1], for the set E_{∞} of points in Hilbert space. For integers $p \ge 0$, *p*-cells in K are ordered sequences (v_0, \dots, v_p) of p+1 points in E_{∞} , which are not required to be distinct or linearly independent. These *p*-cells are taken as the base for a free Abelian group C_p , which is termed the group of finite integral *p*-chains in K. For p < 0, the group C_p is defined to be the group composed of the zero element alone. (See [3, §2.1] or [4, §6].)

1.2. In K the following known homomorphisms will be used. (See [3, $\S2.2$] or [4, $\S6$].)

(i) For integers j, p such that $0 \le j \le p$, $p \ge 0$, the homomorphism

$$j_p: C_p \longrightarrow C_{p-1}$$

is defined by the relation $j_p(v_0, \dots, v_p) = (-1)^j (v_0, \dots, \hat{v_j}, \dots, v_p)$, where the symbol $^$ is placed over the point v_j to indicate that v_j is to be deleted. For j = p = 0, j_p is defined to be the trivial homomorphism. A homomorphism differing from this one only by the absence of the factor $(-1)^j$ has been used by Radó in [2, §2.6]. The definition given above has been chosen because it permits simplifications in later definitions and formulas.

(ii) For integers p > 0, the boundary operator

$$\partial_p \colon C_p \longrightarrow C_{p-1}$$

is defined by the formula

$$\partial_p (v_0, \cdots, v_p) = \sum_{j=0}^p (-1)^j (v_0, \cdots, \hat{v}_j, \cdots, v_p).$$

For integers $p \leq 0$, ∂_p is defined to be the trivial homomorphism.

(iii) For integers $p \ge 0$ and an arbitrary point v in E_{∞} , the cone homomorphism $h_p^v: C_p \longrightarrow C_{p+1}$ is defined by the relation

$$h_p^v(v_0, \cdots, v_p) = (-1)^{p+1}(v_0, \cdots, v_p, v)$$

For integers p < 0, h_p^v is defined to be the trivial homomorphism.

(iv) For integers j, p such that $0 \le j \le p-1$, the transposition homomorphism $t_{pj}: C_p \longrightarrow C_p$ is defined by the relation

$$t_{pj}(v_0, \dots, v_j, v_{j+1}, \dots, v_p) = (v_0, \dots, v_{j+1}, v_j, \dots, v_p).$$

Observe that $t_{pj}(v_0, \ldots, v_p) = (v_0, \ldots, v_p)$ if and only if $v_j = v_{j+1}$.

(v) The barycentric homomorphism $\beta_p : C_p \longrightarrow C_p$ is defined as follows. For integers p < 0, β_p is the trivial homomorphism; for p = 0, $\beta_0 = 1$; and for p > 0, β_p is defined by the recursion formula

$$\beta_p(v_0, \cdots, v_p) = h_{p-1}^b \beta_{p-1} \beta_p(v_0, \cdots, v_p),$$

where b is the barycenter of the points v_0, \dots, v_p .

(vi) The barycentric homotopy operator ρ_p used by Radó [1; 3, §2.2 (iv); 4, §6] will not be used in this paper. In its stead, a modification ρ_{*p} is presently introduced, which has a simpler form, satisfies all the important identities which hold for the ρ_p , and has useful properties not possessed by ρ_p . The modified barycentric homotopy operator

$$\rho_{*p}: C_p \longrightarrow C_{p+1}$$

is defined as follows. For integers p < 0, ρ_{*p} is the trivial homomorphism; for p = 0, ρ_{*p} is defined by the relation

$$\rho_{*_0}(v_0) = -h_0^{v_0}(v_0) = (v_0, v_0);$$

and for p > 0, ρ_{*p} is defined by the recursion formula

$$\rho_{*p}(v_0, \cdots, v_p) = -h_p^b [1 + \rho_{*p-1} \partial_p](v_0, \cdots, v_p),$$

where b is the barycenter of the points v_0, \dots, v_p .

1.3. Amongst the preceding homomorphisms the following identities hold (see $[2, \S2; 3, \S2.3]$):

$$\partial_p = \sum_{j=0}^p j_p \qquad (p \ge 0);$$

$$\partial_{p+1} h_{p}^{v} + h_{p-1}^{v} \partial_{p} = 1 \qquad (p > 0);$$

$$d_p \quad \beta_p = \beta_{p-1} \quad d_p \qquad (-\infty$$

$$\beta_p t_{pj} = -\beta_p \qquad (0 \le j \le p - 1);$$

 $\partial_{p+1} \rho_{*p} + \rho_{*p-1} \partial_p = \beta_p - 1 \qquad (0 \le p < +\infty).$

Of these identities, only the last is new; it may be established by an inductive reasoning similar to that used to prove the corresponding identity for the conventional barycentric homotopy operator ρ_p .

1.4. For integers k, p such that $0 \le k \le p$, the homomorphism

$$k_{*p}: C_p \longrightarrow C_p$$

is defined by the relation

$$k_{*p}(v_0, \cdots, v_p) = (-1)^{p+k}(v_0, \cdots, \hat{v}_k, \cdots, v_p, v_k),$$

and the homomorphism

$$\gamma_p: \ C_p \longrightarrow C_p$$

is defined by the formula $\gamma_p = \sum_{k=0}^{p} k_{*p}$. Obviously one has the identities

$$k_{*p}(v_0, \dots, v_p) = -k_{p+1} h_p^{o_k}(v_0, \dots, v_p), p \ge 0$$

$$k_{*p}(v_0, \dots, v_p) = h_{p-1}^{v_k} k_p(v_0, \dots, v_p), p > 0.$$

Now the reader will easily verify the relations

$$j_{p} k_{*p} = \begin{cases} (k-1)_{*p-1} j_{p} , & 0 \leq j \leq k \leq p, \\ k_{*p-1}(j+1)_{p} , & 0 \leq k \leq j \leq p, \\ k_{p} , & 0 \leq k \leq j = p; \end{cases}$$

$$k_{*p-1} j_{p} = \begin{cases} (j-1)_{p} k_{*p} , & 0 \leq k \leq j \leq p, \\ j_{p} (k+1)_{*p} , & 0 \leq j \leq k \leq p. \end{cases}$$

From these relations the following identity is readily established:

$$\gamma_{p-1} \partial_p = \partial_p (\gamma_p - 1).$$

Using the identity, the reader will easily prove the following result.

LEMMA. If P (x) be any polynomial having integral coefficients, then

$$P(\gamma_{p-1}) \partial_p = \partial_p P(\gamma_p - 1)$$

Explicitly, if $P(x) = \sum_{i=0}^{m} a_i x^i$, where the a_i are integers, then

$$\sum_{i=0}^{m} a_{i} \gamma_{p-1}^{i} \partial_{p} = \sum_{i=0}^{m} a_{i} \partial_{p} \left[\gamma_{p}^{i} - i \gamma_{p}^{i-1} + \cdots + (-1)^{i} \right].$$

where γ_p^i means that the homomorphism γ_p is to be repeated i times.

1.5. For integers k,p such that $0 \leq k \leq p$, the homomorphism

$$b_{pk}: C_p \longrightarrow C_{p+1}$$

is defined by the relation

$$b_{pk}(v_0, \dots, v_p) = (-1)^k \left[v_0, \dots, v_k, b(v_0, \dots, v_k), \\ b(v_0, \dots, v_k, v_{k+1}), \dots, b(v_0, \dots, v_k, \dots, v_p) \right],$$

where $b(v_0, \dots, v_q)$ is the barycenter of the points v_0, \dots, v_q . Verification of the following simple relations is left to the reader:

$$-h_{p}^{b}(v_{0}, \dots, v_{p})(v_{0}, \dots, v_{p}) = b_{pp}(v_{0}, \dots, v_{p});$$

$$-h_{p}^{b}(v_{0}, \dots, v_{p})b_{p-1k}(v_{0}, \dots, v_{p-1}) = b_{pk}h_{p}^{v_{p}} (v_{0}, \dots, v_{p-1})$$

$$(0 \le k \le p-1);$$

$$-h_{p}^{b}(v_{0}, \dots, v_{p})b_{p-1k}j_{p}(v_{0}, \dots, v_{p}) = b_{pk}j_{*p}(v_{0}, \dots, v_{p})$$

$$(0 \le k \le p-1, 0 \le j \le p);$$

$$-h_{p}^{b}(v_{0}, \dots, v_{p})b_{p-1k}\partial_{p}(v_{0}, \dots, v_{p}) = b_{pk}\gamma_{p}(v_{0}, \dots, v_{p})$$

$$(0 \le k \le p-1);$$

$$-h_{p}^{b}(v_{0}, \dots, v_{p})b_{p-1k}\partial_{p}\gamma_{p}^{i-1}j_{*p}(v_{0}, \dots, v_{p}) = b_{pk}\gamma_{p}^{i}j_{*p}(v_{0}, \dots, v_{p})$$

$$(0 \le k \le p-1, 0 \le j \le p, 1 \le i)$$

$$-h_{p}^{b}(v_{0}, \dots, v_{p})b_{p-1k}\partial_{p}\gamma_{p}^{i}(v_{0}, \dots, v_{p}) = b_{pk}\gamma_{p}^{i+1}(v_{0}, \dots, v_{p})$$

$$(0 \le k \le p-1, 0 \le j \le p, 1 \le i)$$

If P(x) be any polynomial having integral coefficients, then, for $0 \le k \le p-1$, we have

$$-h_p^{b(v_0,\cdots,v_p)}b_{p-1\,k}\partial_p P(\gamma_p)(v_0,\cdots,v_p) = b_{pk}\gamma_p P(\gamma_p)(v_0,\cdots,v_p).$$

78

1.6. For the homomorphisms β_p and ρ_{*p} the following structural descriptions are now obtained.

THEOREM. The following relations hold:

$$\rho_{*0} = b_{00},$$

$$\rho_{*p} = b_{pp} + \sum_{j=1}^{p} b_{pp-j} \gamma_{p} \cdots (\gamma_{p} - j + 1) \qquad (p > 0).$$

Proof. It is sufficient to verify these formulas for a given p-cell (v_0, \dots, v_p) . For p = 0, the formula $\rho_{*0}(v_0) = b_{00}(v_0)$ is obvious from the definitions. So assume that

$$\rho_{*p-1} = b_{p-1 p-1} + \sum_{j=1}^{p-1} b_{p-1 p-1-j} \gamma_{p-1} \cdots (\gamma_{p-1}-j+1) \quad (p \ge 1).$$

Using §1.2, §1.4, §1.5, and this assumption, and letting $b = b(v_0, \dots, v_p)$, one obtains

$$\rho_{*p} (v_0, \dots, v_0)$$

$$= -h_p^b (v_0, \dots, v_p) -h_p^b \rho_{*p-1} \partial_p (v_0, \dots, v_p)$$

$$= b_{pp} (v_0, \dots, v_p) -h_p^b b_{p-1p-1} \partial_p (v_0, \dots, v_p)$$

$$-\sum_{j=1}^{p-1} h_p^b b_{p-1p-1-j} \gamma_{p-1} \dots (\gamma_{p-1}-j+1) \partial_p (v_0, \dots, v_p)$$

$$= b_{pp} (v_0, \dots v_p) + b_{pp-1} \gamma_p (v_0, \dots, v_p)$$

$$-\sum_{j=1}^{p-1} h_p^b b_{p-1p-1-j} \partial_p (\gamma_p-1) \dots (\gamma_p-j) (v_0, \dots, v_p)$$

$$= b_{pp} (v_0, \dots, v_p) + b_{pp-1} \gamma_p (v_0, \dots, v_p)$$

$$+ \sum_{j=2}^{p} b_{pp-j} \gamma_p (\gamma_p-1) \dots (\gamma_p-j+1) (v_0, \dots, v_p)$$

$$= b_{pp} + \sum_{j=1}^{p} b_{pp-j} \gamma_p \dots (\gamma_p-j+1) (v_0, \dots, v_p).$$

So the proof is complete by induction.

1.7. THEOREM. The following relations hold:

$$\beta_0 = 0_1 \ b_{00},$$

$$\beta_p = 0_{p+1} \ b_{p0} \ \gamma_p (\gamma_p - 1) \cdots (\gamma_p - p + 1), \ p > 0.$$

The proof is similar to that for the theorm in the preceding section.

1.8. From these formulas for β_p and ρ_{*p} and the identities in §1.3, many further interesting relations may be obtained. For example, it is easy to establish the following results:

$$\beta_p = [\partial_{p+1} - (p+1)_{p+1}] \rho_{*p} \qquad (p \ge 0);$$

$$\partial_p = -p_p \rho_{*p-1} \partial_p \qquad (p \ge 0);$$

$$\beta_p = (p+1)_{p+1} (p+2)_{p+2} \rho_{*p+1} \rho_{*p} \qquad (p \ge 0).$$

These relations are not needed for the present purposes; they may be studied on a later occasion.

In order to clarify the structural descriptions for β_p and ρ_{*p} given in §§1.6, 1.7, it is convenient to introduce another homomorphism.

1.9. For integers $p \ge 0$, let i_0, \dots, i_p be any rearrangement of the sequence $0, \dots, p$, and put $\epsilon_{i_0} \dots i_p$ equal to +1 or to -1 according as i_0, \dots, i_p is obtained from $0, \dots, p$ by an even or by an odd number of transpositions. With each rearrangement one associates a homomorphism

$$\tau_p: \ C_p \longrightarrow C_p$$

defined by the formula

$$\tau_p(v_0, \cdots, v_p) = \epsilon_{i_0} \cdots i_p (v_{i_0}, \cdots, v_{i_p}).$$

Sometimes, for clarity, the more explicit notation $\tau_p(i_0, \dots, i_p)$ is used for this homomorphism. For integers j such that $0 \leq j \leq p$, denote by T_{pj} the class of all $\tau_p(i_0, \dots, i_p)$ for which $i_0 < \dots < i_j$ — that is, for which i_0, \dots, i_j are in natural order. Obviously T_{pp} consists of just one element, namely $\tau_p(0, \dots, p) = 1$; and T_{p0} consists of the τ_p obtained by all possible rearrangements of $0, \dots, p$. Moreover, $T_{pj-1} \supset T_{pj}$ for $1 \leq j \leq p$. Clearly the number of elements in the class T_{pj} is $(p+1) p \cdots (j+2)$ for $0 \leq j \leq p-1$. For each integer j in $0 \leq j \leq p$, define a homomorphism

$$P_{pj}: \ C_p \longrightarrow C_p$$

by the formula

$$P_{pj} = \sum \tau_p \qquad (\tau_p \in T_{pj}).$$

Observe that $P_{pp} = 1$. The reader will readily verify these identities:

$$k_{*p} P_{pj} = P_{pj}, \ 0 \le j \le k \le p;$$

$$\sum_{k=0}^{j} k_{*p} P_{pj} = P_{pj-1}, \ 0 \le j \le p.$$

From these identities, the following result is established.

LEMMA. The following relations hold:

$$P_{pp} = 1$$
,
 $P_{pp-j} = \gamma_p (\gamma_p - 1) \cdots (\gamma_p - j + 1), \ 1 \le j \le p$.

Proof. That $P_{pp} = 1$ was noted above. From the second relation above it follows that

$$P_{p p - 1} = \sum_{k=0}^{p} k *_{p} P_{pp} = \gamma_{p} P_{pp} = \gamma_{p},$$

so the general formula is established for j = 1. Now suppose that

$$P_{p\,p\,-j\,+\,1} = \gamma_p \,(\gamma_p - 1) \,\cdots \,(\gamma_p - j + 2) \qquad (2 \le j \le p) \,.$$

Using the preceding identities, one finds

$$\gamma_{p} P_{p p - j + 1} = \sum_{k=0}^{p} k_{*p} P_{p p - j + 1}$$

$$= \sum_{k=0}^{p-j+1} k_{*p} P_{p p - j + 1} + \sum_{k=p-j+2}^{p} k_{*p} P_{p p - j + 1}$$

$$= P_{p p - j} + (j - 1) P_{p p - j + 1};$$

$$P_{p p - j} = (\gamma_{p} - j + 1) P_{p p - j + 1} = \gamma_{p} (\gamma_{p} - 1) \cdots (\gamma_{p} - j + 1)$$

Thus the lemma is established.

1.10. Combining the results of the preceding lemma with those in the theoems in §§1.6, 1.7, one obtains the following description for the homomorphisms β_p and ρ_{*p} .

THEOREM. The following relations hold:

$$\beta_p = 0_{p+1} b_{p0} P_{p0} = \sum_{\tau_p \in T_{p0}} 0_{p+1} b_{p0} \tau_p \qquad (p \ge 0);$$

$$\rho_{*p} = \sum_{k=0}^{p} b_{pk} P_{pk} = \sum_{k=0}^{p} \sum_{\tau_p \in T_{pk}} b_{pk} \tau_p \qquad (p \ge 0).$$

1.11. Let v_0, \dots, v_p $(p \ge 0)$ be any sequence of p + 1 points in E_{∞} . In $\S\S1.2$, 1.4, 1.5, 1.9, homomorphisms $j_p, t_{pj}, k_{*p}, b_{pk}, \tau_p$, have been introduced which, when applied in any appropriate combination h_p to the special chain (v_0, \dots, v_p) , yield a special chain either of the form $+(y_0, \dots, y_q)$ or of the form $-(y_0, \dots, y_q)$. In the sequel, $[h_p(v_0, \dots, v_p)]$ is defined to be the p-cell (y_0, \dots, y_q) , and $|h_p(v_0, \dots, v_p)|$ denotes its convex hull $|y_0, \dots, y_q|$. For example,

$$[0_{p+1} \ b_{p0} \ \tau_p(i_0, \cdots, i_p) \ (v_0, \cdots, v_p)]$$

= $(b(v_{i_0}), \ b(v_{i_0}, v_{i_1}), \cdots, b(v_{i_0}, v_{i_1}, \cdots, v_{i_p})).$

If for two sequences of points u_0, \dots, u_p and v_0, \dots, v_p it is true that

$$(b(u_0), b(u_0, u_1), \dots, b(u_0, u_1, \dots, u_p))$$

= $(b(v_0), b(v_0, v_1), \dots, b(v_0, v_1, \dots, v_p))$

then clearly $u_j = v_j$ for $0 \le j \le p$. From the remarks in §1.9 and the preceding theorem, one thus obtains the following result.

LEMMA. If the points v_0, \dots, v_p $(p \ge 0)$ are distinct, then the chain $\beta_p(v_0, \dots, v_p)$ contains (p+1)! terms; that is, for distinct elements τ_p and τ_p' in T_{p0} , we have

$$[0_{p+1} \ b_{p0} \ \tau'_p(v_0, \ldots, v_p)] \neq [0_{p+1} \ b_{p0} \ \tau''_p(v_0, \ldots, v_p)].$$

1.12. LEMMA. Let v_0, \dots, v_p $(p \ge 0)$ be any set of p + 1 points in E_{∞} ,

not necessarily distinct or linearly independent. A necessary and sufficient condition that a point v belong to the convex hull of the points

(i)
$$b(v_0)$$
, $b(v_0, v_1)$, ..., $b(v_0, v_1, \dots, v_p)$

is that it possess a representation of the form

(ii)
$$v = \sum_{j=0}^{p} \mu_j v_j$$
 $\left(\sum_{j=0}^{p} \mu_j = 1, \mu_0 \ge \mu_1 \ge \cdots \ge \mu_p \ge 0\right).$

Proof. If v belongs to the convex hull of the points (i), then it has a representation of the form

(iii)
$$v = \sum_{i=0}^{p} \lambda_i \ b(v_0, \cdots, v_i)$$
 $\left(\sum_{i=0}^{p} \lambda_i = 1, \ 0 \leq \lambda_i, \ 0 \leq i \leq p\right).$

Thus

$$v = \sum_{i=0}^{p} \lambda_{i} \sum_{j=0}^{i} \frac{v_{j}}{i+1} = \sum_{j=0}^{p} \sum_{i=j}^{p} \frac{\lambda_{i}}{i+1} v_{j}$$

which gives a representation of form (ii) for v. Conversely, if v has a representation of form (ii), put $\lambda_i = (i + 1) (\mu_i - \mu_{i+1})$ for $0 \le i \le p - 1$, $\lambda_p = (p + 1) \mu_p$. It follows at once that v has a representation of form (iii), and hence belongs to the convex hull of the set of points (i).

1.13. For integers $p \ge 0$, if u_0, \dots, u_p is any sequence of p+1 points in E_{∞} , then $|u_0, \dots, u_p|$ will denote its convex hull. Let k be any integer such that $0 \le k \le p$, and consider the sequence of p+2 points

(i)
$$u_0, \dots, u_k, b(u_0, \dots, u_k), \dots, b(u_0, \dots, u_k, \dots, u_p),$$

that is (see §1.5), the sequence of points occurring in $b_{pk}(u_0, \dots, u_p)$). Let

(ii)
$$w_0, \dots, w_{p+1}$$

be any rearrangement of the sequence of points (i). Designate by $x_0 = w_{h_0} = u_{i_0}$ the first u_i $(0 \le i \le k)$ occurring in the sequence (ii). In general, let $x_l = w_{h_l}$ $= u_{i_l}$ $(0 \le l \le k)$ be the (l+1)st u_i $(0 \le i \le k)$ occurring in the sequence (ii), and put $x_l = u_l$ for $k+1 \le l \le p$ in case $k \le p$. Now clearly x_0, \dots, x_p is a rearrangement of the sequence u_0, \dots, u_p in which the last p - k elements are unaltered; the sequence (i) is a rearrangement of the sequence

(iii)
$$x_0, \ldots, x_k, b(x_0, \ldots, x_k), \ldots, b(x_0, \ldots, x_k, \ldots, x_p)$$

in which the last p + 1 - k elements are unaltered; and the sequence (ii) is a rearrangement of the sequence (iii) in which the points x_0, \dots, x_k appear in the same order as in (iii); that is, $x_l = w_{h_l}$ for $0 \le l \le k$, where $0 \le h_0 \le h_1$ $\le \dots \le h_k \le p$. Now let q be any integer such that $0 \le q \le p + 1$. It will be shown that

(iv)
$$b(w_0, \dots, w_q) \in |b(x_0), b(x_0, x_1), \dots, b(x_0, x_1, \dots, x_p)|$$

(0 $\leq q \leq p+1$).

Case q = 0. Then $b(w_0) = w_0$. If w_0 is one of the $u_i (0 \le i \le k)$, it follows by the choice above that $h_0 = 0$ and $w_0 = x_0 = b(x_0)$. If w_0 is not one of the $u_i (0 \le i \le k)$, there must be a $l \ge k$ such that $w_0 = b(u_0, \dots, u_k, \dots, u_l)$ $= b(x_0, \dots, x_k, \dots, x_l)$. Thus relation (iv) is established when q = 0.

General case. By a rearrangement, the points w_0, \cdots, w_q may be ordered into two sets

$$w_{h_{0}} = x_{0}, \dots, w_{h_{l}} = x_{l} \qquad (0 \le l \le k, \ 0 \le h_{0} < \dots < h_{l} \le p),$$

$$w_{h_{l+1}} = b(u_{0}, \dots, u_{k}, \dots, u_{i_{l+1}}) = b(x_{0}, \dots, x_{i_{l+1}})$$

$$w_{h_{l+2}} = b(u_{0}, \dots, u_{k}, \dots, u_{i_{l+2}}) = b(x_{0}, \dots, x_{i_{l+2}})$$

$$\dots$$

$$w_{h_{q}} = b(u_{0}, \dots, u_{k}, \dots, u_{i_{q}}) = b(x_{0}, \dots, x_{i_{q}})$$

$$(k \le i_{l+1} < i_{l+2} < \dots < i_{q} \le p).$$

The special cases which arise when one of these sets is missing are left to the reader. Now clearly

$$b(w_0, \dots, w_q) = b(w_{h_0}, \dots, w_{h_q})$$

$$= \sum_{j=0}^{l} \frac{1}{q+1} \left[1 + \sum_{h=l+1}^{q} \frac{1}{i_h+1} \right] x_j + \sum_{j=l+1}^{i_{l+1}} \frac{1}{q+1} \sum_{h=l+1}^{q} \frac{1}{i_h+1} x_j$$

$$+ \sum_{j=i_{l+1}+1}^{i_{l+2}} \frac{1}{q+1} \sum_{h=l+2}^{q} \frac{1}{i_h+1} x_j + \dots + \sum_{j=i_{q-1}+1}^{i_{q}} \frac{1}{q+1} \frac{1}{i_q+1} x_j$$

84

In view of this equation and of the lemma in \$1.12, the relation (iv) now follows.

1.14. From the facts presented above, the following result is presently established.

LEMMA. Let v_0, \dots, v_p $(p \leq 0)$ be any sequence of p+1 points in E_{∞} . Fix $\tau_{p+1} \in T_{p+1,0}$ $(0 \leq k \leq p)$, $\tau_p \in T_{pk}$ (see §1.9). Then there exists a $\tau'_p \in T_{p0}$ such that (see §1.11).

$$|0_{p+2} b_{p+10} \tau_{p+1} b_{pk} \tau_p(v_0, \cdots, v_p)| \in |0_{p+1} b_{p0} \tau_p(v_0, \cdots, v_p)|.$$

Proof. Evidently $[\tau_p(v_0, \dots, v_p)] = (v_{i_0}, \dots, v_{i_p})$, where i_0, \dots, i_p is a rearrangement of $0, \dots, p$ such that $i_0 < \dots < i_k$. Put $u_j = v_{i_j}$ for $0 \le j \le p$, so that $[\tau_p(v_0, \dots, v_p)] = (u_0, \dots, u_p)$. Then

$$\begin{bmatrix} b_{pk} \ \tau_p(v_0, \cdots, v_p) \end{bmatrix}$$

= $(u_0, \cdots, u_k, b(u_0, \cdots, u_k), \cdots, b(u_0, \cdots, u_k, \cdots, u_p)),$

and $[\tau_{p+1} \ b_{pk} \ \tau_p (v_0, \cdots, v_p)] = (w_0, \cdots, w_{p+1})$, where $w_0, \cdots, w_p^{\circ} + 1$ is a rearrangement of

$$u_0, \ldots, u_k, b(u_0, \ldots, u_k), \ldots, b(u_0, \ldots, u_k, \ldots, u_p).$$

Finally,

$$[0_{p+2} \ b_{p+1} \ 0 \ \tau_{p+1} \ b_{pk} \ \tau_{p} (v_{0}, \cdots, v_{p})]$$

= $[b(w_{0}), \ b(w_{0}, w_{1}), \cdots, b(w_{0}, w_{1}, \cdots, w_{p+1})].$

The reasoning of §1.13 shows that there is a rearrangement x_0, \dots, x_p of u_0, \dots, u_p , and hence of v_0, \dots, v_p , such that

$$| 0_{p+2} b_{p+10} \tau_{p+1} b_{pk} \tau_p (v_0, \cdots, v_p) |$$

$$\subset | b(x_0), b(x_0, x_1), \cdots, b(x_0, x_1, \cdots, x_p) |.$$

Let τ'_p be that element of T_{p0} such that $[\tau'_p(v_0, \dots, v_p)] = (x_0, \dots, x_p)$. Since

$$[0_{p+1} \ b_{p0} \ \tau_p'(v_0, \cdots, v_p)] = (b(x_0), \ b(x_0, x_1), \cdots, \ b(x_1, x_1, \cdots, x_p)),$$

the lemma is established.

1.15. If c_p is a p-chain in K, and A is a convex subset in E_{∞} , then the in-

clusion $c_p \in A$ will mean that either $c_p = 0 \in C_p$ or else

$$c_p = \sum_{j=1}^{n} m_j (v_{0j}, \cdots, v_{pj}),$$

where the m_j are nonzero integers and $|v_{0j}, \dots, v_{pj}| \in A$ for $1 \leq j \leq n$. One readily verifies the following inclusions (see [3, §2.4]):

 $j_p(v_0, \cdots, v_p) \in |v_0, \cdots, v_p|$ $(0 \leq j \leq p)$, $\partial_p (v_0, \cdots, v_p) \in |v_0, \cdots, v_p|$ $(p \geq 0)$, $\beta_p(v_0, \cdots, v_p) \in |v_0, \cdots, v_p|$ $(p \geq 0)$, $\rho_{*_D}(v_0, \ldots, v_p) \in |v_0, \ldots, v_p|$ (p > 0), $t_{Di}(v_0, \cdots, v_D) \in |v_0, \cdots, v_p|$ (0 < j < p - 1), $k_{*\nu}(v_0, \cdots, v_p) \subset |v_0, \cdots, v_p|$ $(0 \leq k \leq p)$, $\gamma_p(v_0, \ldots, v_p) \in |v_0, \ldots, v_p|$ (p > 0), $b_{pk}(v_0, \cdots, v_p) \in |v_0, \cdots, v_p|$ (0 < k < p), $\tau_p(v_0, \cdots, v_p) \in |v_0, \cdots, v_p|$ $(\tau_n \in T_{n0})$, (0 < j < p). $P_{pi}(v_0, \ldots, v_p) \in |v_0, \ldots, v_p|$

II. RELATIONS IN THE COMPLEX R = R(X).

2.1. If A is a convex subset of E_{∞} , then for integers $p \ge 0$, C_p^A denotes that subgroup of C_p generated by those p-cells (v_0, \dots, v_p) for which $|v_0, \dots, v_p| \subset A$; for p < 0, we have $C_p^A = 0 \in C_p$ (see §1.1). Suppose $T: A \longrightarrow X$ is a continuous mapping (see §0.1). For integers $p \ge 0$ define a homomorphism

$$T_p: C_p^A \longrightarrow C_p^R$$

by the relation $T_p(v_0, \dots, v_p) = (v_0, \dots, v_p, T)^R$ for $(v_0, \dots, v_p) \in C_p^A$. For p < 0, let T_p be the trivial homomorphism. For chains c_p in C_p^A the notation $T_p c_p = (c_p, T)^R$ is used. In terms of this notation one finds the relation (see §0.1): $\partial_p^R(c_p, T)^R = (\partial_p c_p, T)^R$.

Now suppose that, for certain integers p,

$$h_p: C_p \longrightarrow C_q$$

is a homomorphism from the group C_p of p-chains into the group C_q of q-chains

in K with the property that for all p-cells (v_0, \dots, v_p) in K one has

$$h_p(v_0, \cdots, v_p) \in |v_0, \cdots, v_p|.$$

Then clearly one may define for these integers p a homomorphism

$$h_p^R \colon \ C_p^R \longrightarrow C_q^R$$

by the formula $h_p^R(v_0, \dots, v_p, T)^R = (h_p(v_0, \dots, v_p), T)^R$ in case $p \ge 0$, and one may make h_p^R the trivial homomorphism if p < 0. In view of the inclusions in §1.15, one observes that this definition creates the following homomorphisms in R (see [3, §3.1]):

$$\begin{split} j_p^R : \ C_p^R &\longrightarrow C_{p-1}^R \ (0 \leq j \leq p); \\ \beta_p^R : \ C_p^R &\longrightarrow C_p^R \ (-\infty \leq p \leq +\infty); \qquad \gamma_p^R : \ C_p^R &\longrightarrow C_p^R \ (p \geq 0); \\ \rho_{*p}^R : \ C_p^R &\longrightarrow C_{p+1}^R \ (-\infty \leq p \leq +\infty); \qquad b_{pk}^R : \ C_p^R &\longrightarrow C_{p+1}^R \ (0 \leq k \leq p); \\ t_{pj}^R : \ C_p^R &\longrightarrow C_{p-1}^R \ (0 \leq j \leq p-1); \qquad \tau_p^R : \ C_p^R &\longrightarrow C_p^R \ (\tau_p \in T_{p_0}); \\ P_{pj}^R : \ C_p^R &\longrightarrow C_p^R \ (0 \leq j \leq p). \end{split}$$

2.2. From the relations in \$1.3, one derives the following (see [3, \$3.1]):

$$\begin{split} \partial_p^R \ \beta_p^R &= \ \beta_{p-1}^R \ \partial_p^R \\ \beta_p^R \ t_{pj}^R &= \ -\beta_p^R \\ \partial_p^R \ t_{pj}^R &= \ -\beta_p^R \\ \partial_p^R \ +_1 \ \rho_{*p}^R &+ \ \rho_{*p-1}^R \ \partial_p^R &= \ \beta_p^R - 1 \quad (0 \le p \le +\infty) \,. \end{split}$$

The theorems in §§1.6, 1,7 give rise to these formulas for β_p^R and ρ_{*p}^R :

$$\begin{split} \rho_{*0}^{R} &= b_{00}^{R}, \\ \rho_{*p}^{R} &= b_{pp}^{R} + \sum_{j=1}^{p} b_{pp-j}^{R} \gamma_{p}^{R}, \cdots, (\gamma_{p}^{R} - j + 1) \quad (p > 0); \\ \beta_{0}^{R} &= 0_{p}^{R} \quad b_{00}^{R}; \\ \beta_{p}^{R} &= 0_{p+1}^{R} \quad b_{p0}^{R} \quad \gamma_{p}^{R} (\gamma_{p}^{R} - 1), \cdots, (\gamma_{p}^{R} - p + 1) \quad (p > 0). \end{split}$$

From the theorem in §1.10, one obtains the following description for β_p^R and ρ_{*p}^R .

THEOREM. The following relations hold:

$$\begin{split} \beta_{p}^{R} &= 0_{p+1}^{R} \ b_{p0}^{R} \ P_{p0}^{R} = \sum_{\tau_{p} \in T_{p0}}^{N} 0_{p+1}^{R} \ b_{p0}^{R} \ \tau_{p}^{R} \ (p \geq 0); \\ \rho_{*p}^{R} &= \sum_{k=0}^{p} \ b_{pk}^{R} \ P_{pk}^{R} = \sum_{k=0}^{p} \ \sum_{\tau_{p} \in T_{pk}}^{N} \ b_{pk}^{R} \ \tau_{p}^{R} \ (p \geq 0). \end{split}$$

2.3. The writer is indebted to T. Radó for suggestions which led to the results presently presented in §§2.3-2.7, 2.9, 2.10, 2,12. The new facts contributed by this paper are contained in §§2.8, 2.11, 2.13. For integers $p \ge 1$, any chain of the form $(1 + t_{pj}^R) (v_0, \dots, v_p, T)^R (0 \le j \le p - 1)$ is termed an elementary t-chain in R (see [3, §3.2] or [4, §7]), and the subgroup of C_p^R generated by these elementary t-chains is denoted by T_p^R . For p < 1, T_p^R is defined to be the subgroup of C_p^R composed of the zero element alone.

LEMMA. If $c_p^R \in T_p^R$, then (i) $\partial_p^R c_p^R \in T_{p-1}^R$, (ii) $\beta_p^R c_p^R = 0$, (iii) $\rho_{*p}^R c_p^R \in T_{p+1}^R$.

This lemma differs from that in Radó [3, §3.2], only by the fact that the barycentric homotopy operator ρ_p^R has been replaced by the modified operator ρ_{*p}^R (see §1.2). It may be established by the same reasoning as that employed by Radó.

2.4. For integers $p \ge 1$, any chain of the form

$$(v_0, \ldots, v_j, v_{j+1}, \ldots, v_p, T)^R$$

with $v_j = v_{j+1}$ for some j such that $0 \le j \le p-1$ is called an elementary d-chain in R (see [3, §3.3] or [4, §7]), and the subgroup of C_p^R generated by these elementary d-chains is denoted by D_p^R . For p < 1, D_p^R is defined to be that subgroup of C_p^R composed of the zero element alone.

LEMMA. If $c_p^R \in D_p^R$, then (i) $\partial_p^R c_p^R \in D_{p-1}^R$, (ii) $\beta_p^R c_p^R = 0$,

88

(iii) $\rho_{*p}^R \ c_p^R \in D_{p+1}^R$.

This is the lemma in [3, §3.3], except that the modified barycentric homotopy operator ρ_{*p}^{R} is used in place of ρ_{p}^{R} ; it is proved in the same way.

2.5. LEMMA. Let $(v_0, \dots, v_p, T)^R$ be any p-cell in $R (p \ge 1)$. Suppose that the sequence w_0, \dots, w_p is obtainable from the sequence v_0, \dots, v_p by n transpositions. Then there is an element t_p^R in T_p^R such that

$$(v_0, \cdots, v_p, T)^R = (-1)^n (w_0, \cdots, w_p, T)^R + t_p^R.$$

Proof. By assumption there exist n + 1 sequences v_{0j}, \dots, v_{pj} for $0 \le j \le n$ where $v_{i0} = v_i$ and $v_{in} = w_i$ for $0 \le i \le p$ such that

$$(v_{0j}, \cdots, v_{pj}, T)^R = t_{pi_j}^R (v_{0j-1}, \cdots, v_{pj-1}, T)^R$$

for some integer i_j satisfying $0 \le i_j \le p-1, 1 \le j \le n$. Clearly

$$(v_0, \cdots, v_p, T)^R = (-1)^n (w_0, \cdots, w_p, T)^R + \sum_{j=1}^n (-1)^{j-1} (1 + t_{pi_j}^R) (v_0_{j-1}, \cdots, v_{p_j-1}, T)^R,$$

and the lemma is established.

2.6. LEMMA. Let $(v_0, \dots, v_p, T)^R$ be any p-cell in R $(p \ge 1)$, for which $v_i = v_k$ for some *i*, *k* such that $0 \le i \le k \le p$. Then there are elements t_p^R in T_p^R and d_p^R in D_p^R such that

$$(v_0, \cdots, v_p, T)^R = t_p^R + d_p^R.$$

Moreover, $2(v_0, \dots, v_p, T)^R$ is in T_p^R .

Proof. Since the sequence $v_0, \dots, v_{i-1}, v_k, v_i, \dots, v_{k-1}, v_{k+1}, \dots, v_p$ is obtained from $v_0, \dots, v_i, \dots, v_k, \dots, v_p$ by k-i transpositions, and $v_i = v_k$ by assumption, if follows that

$$(-1)^{k-i} (v_0, \cdots, v_{i-1}, v_k, v_i, \cdots, v_{k-1}, v_{k+1}, \cdots, v_p)^R$$

is an element d_p^R of D_p^R . Moreover, from the lemma in §2.5 it follows that there is an element t_p^R in T_p^R such that $(v_0, \dots, v_p, T)^R = d_p^R + t_p^R$, and the first part of the lemma is proven. Now the sequence $v_0, \dots, v_k, \dots, v_i, \dots, v_p$ is obtained from $v_0, \dots, v_i, \dots, v_k, \dots, v_p$ by 2(k-i)-1 transpositions. Again, from the lemma in §2.5 it follows that there is an element t_p^R in T_p^R such that

$$(v_0, \cdots, v_i, \cdots, v_k, \cdots, v_p, T)^R = -(v_0, \cdots, v_k, \cdots, v_i, \cdots, v_p, T)^R + t_p^R.$$

Since $v_i = v_k$, one obtains $2(v_0, \dots, v_p, T)^R = t_p^R$; and the second part of the lemma is demonstrated.

2.7. For integers $p \ge 0$, a chain c_p^R is termed an elementary *n*-chain in R if it has the form

$$c_p^R = \sum_{r=1}^n m_r (v_0, \cdots, v_p, T_r)^R$$
,

where

(i) for $1 \leq r \leq n$, the m_r are nonzero integers;

(ii) for $1 \le r_1 \le r_2 \le n$, the transformations T_{r_1} and T_{r_2} are not identical on $|v_0, \dots, v_p|$;

(iii) the points v_0, \dots, v_p are distinct. The p-cell (v_0, \dots, v_p) in K (see §1.11) is called the base for c_p^R , and the notation $c_p^R = c_p^R(v_0, \dots, v_p)$ is used when it is desirable to display the base.

2.8. LEMMA. Suppose that c_p^R is an elementary n-chain in R for which $\beta_p^R c_p^R = 0$. Then $\beta_{p+1}^R \rho_{*p}^R c_p^R = 0$.

Proof. With the notation of $\S2.7$, one finds (see $\S\$2.1$, 2.2).

(i)
$$\beta_p^R c_p^R = \sum_{\tau_p \in T_{p0}} \sum_{r=1}^n m_r (0_{p+1} b_{p0} \tau_p (v_0, \dots, v_p), T_r)^R = 0;$$

(ii)
$$\beta_{p+1}^{R} \rho_{*p}^{R} c_{p}^{R} = \sum_{\tau_{p+1} \in T_{p+10}} \sum_{k=0}^{p} \sum_{\tau_{p} \in T_{pk}} \sum_{r=1}^{n} m_{r} (0_{p+2} b_{p+10}) \tau_{p+1} b_{pk} \tau_{p} (v_{0}, \dots, v_{p}), T_{r})^{R}$$

In view of §2.7 (iii), and §1.11, it follows from (i) that for each $\tau'_p \in T_{p0}$, one has

(iii)
$$\sum_{r=1}^{n} m_r (0_{p+1} \ b_{p0} \ \tau'_p (v_0, \cdots, v_p), \ T_r)^R = 0 \qquad (\tau'_p \in T_{p0}),$$

Fix

$$\tau_{p+1} \in T_{p+10}, \ \tau_p \in T_{pk}$$
 $(0 \le k \le p).$

From the lemma in §1.14 follows the existence of a $\tau'_p \in T_{p0}$ such that

(iv)
$$|0_{p+2} b_{p+10} \tau_{p+1} b_{pk} \tau_p(v_0, \dots, v_p)|$$

 $\subset |0_{p+1} b_{p0} \tau_p'(v_0, \dots, v_p)|.$

From (iii) and (iv) one concludes that for each

$$\tau_{p+1} \in T_{p+10}, \ \tau_p \in T_{pk}$$
 $(0 \le k \le p),$

we have

(v)
$$\sum_{r=1}^{n} m_r (0_{p+2}, b_{p+1,0}, \tau_{p+1}, b_{pk}, \tau_p (v_0, \cdots, v_p), T)^R = 0.$$

In view of (ii) and (v) the lemma is now established.

2.9. For integers $p \ge 0$, the class N_p^R is defined to be that subset of C_p^R composed of the chain $0 \in C_p^R$ and of all c_p^R having a representation of the form

$$c_p^R = \sum_{s=1}^n c_{ps}^R (v_{0s}, \cdots, v_{ps})$$

where

(i) for $1 \leq s \leq n$ the $c_{ps}^{R}(v_{0s}, \dots, v_{ps})$ are elementary *n*-chains (see 2.7);

(ii) for $1 \le s_1 \le s_2 \le n$, the point sets $v_{0s_1}, \dots, v_{ps_1}$ and $v_{0s_2}, \dots, v_{ps_2}$ are distinct. For p < 0, the class N_p^R consists of the chain $0 \in C_p^R$ alone. Each of the elementary *n*-chains $c_{ps}^R(v_{0s}, \dots, v_{ps})$ $(1 \le s \le n)$, is termed a *n*-composant of c_p^R . Observe that the sets N_p^R are not generally subgroups of C_p^R .

2.10. LEMMA. Let

$$c_p^R = \sum_{s=1}^n c_{ps}^R (v_{0s}, \dots, v_{ps})$$

be any nonzero element in N_p^R . A necessary and sufficient condition in order that

 $\beta_p^R c_p^R = 0$ is that $\beta_p^R c_{ps}^R = 0$ for every n-composant $c_{ps}^R (1 \le s \le n)$.

Proof. Trivially the condition suffices. It is presently shown to be necessary. With explicit notations (see \S §2.7, 2.9),

$$\beta_p^R c_p^R = \sum_{s=1}^n \beta_p^R c_{ps}^R = \sum_{s=1}^n \sum_{r=1}^{n_s} m_{rs} (\beta_p (v_{0s}, \dots, v_{ps}) T_{rs})^R$$
$$= \sum_{s=1}^n \sum_{r=1}^{n_s} \sum_{r=1}^n \sum_{\tau_p \in T_{p0}} m_{rs} (0_{p+1} b_{p0} \tau_p (v_{0s}, \dots, v_{ps}), T_{rs})^R = 0.$$

In view of §2.9 (ii) and of the remarks in §1.11, it is clear (see §0.2) that, for $1 \le s \le n$ we have

$$\beta_p^R c_{ps}^R = \sum_{r=1}^{n_s} \sum_{\tau_p \in T_{p0}} m_{rs} (0_{p+1} b_{p0} \tau_p (v_{0s}, \cdots, v_{ps}), T_{rs})^R = 0$$

and hence the assertion in the lemma is verified.

2.11. LEMMA. Let c_p^R be any element in N_p^R for which $\beta_p^R c_p^R = 0$. Then $\beta_{p+1}^R \rho_{*p}^R c_p^R = 0$.

This result is an immediate consequence of the lemmas in \S 2.10.

2.12. LEMMA. Every chain c_p^R has a representation of the form (see §§2.3, 2.4, 2.9)

$$c_{p}^{R} = t_{p}^{R} + d_{p}^{R} + n_{p}^{R} \qquad (t_{p}^{R} \in T_{p}^{R}, d_{p}^{R} \in D_{p}^{R}, n_{p}^{R} \in N_{p}^{R}).$$

Generally this representation is not unique.

Proof. The nonuniqueness of the representation will be evident from the proof of its existence which follows. For chains $c_p^R = 0 \in C_p^R$, the result is trivial, so assume that $c_p^R \neq 0$. Then c_p^R has a unique representation of the form

(i)
$$c_p^R = \sum_{j=1}^n m_j (v_{0j}, \dots, v_{pj}, T_j)^R$$
,

where the m_j are nonzero integers and the p-cells $(v_{0j_1}, \dots, v_{pj_1}, T_{j_1})^R$ and $(v_{0j_2}, \dots, v_{pj_2}, T_{j_2})^R$ are distinct for $1 \leq j_1 \leq j_2 \leq n$. The proof is made by an induction on n. If n = 1, then $c_p^R = m_1(v_{01}, \dots, v_{p1}, T_1)^R$. If, for some inte-

gers *i*, *k* such that $0 \le i \le k \le p$, one finds $v_{i1} = v_{k1}$, then the fact that c_p^R has a representation of the prescribed form follows from the lemma in §2.6. On the other hand, if all the v_{01}, \dots, v_{p1} are distinct, then c_p^R is an elementary *n*-chain (see §2.7). Thus the lemma is established in case n = 1. Suppose that the lemma is true for all chains c_p^R having a representation of the form (i) with at most n = N - 1 terms (N > 1). For chains c_p^R whose representations (i) have N terms it is convenient to consider several cases.

Case 1. Assume there is some term in the representation (i) of c_p^R — without loss of generality one may assume it to be the first — for which there are integers *i*, *k* such that $0 \le i \le k \le p$ and $v_{i1} = v_{k1}$. By the lemma in §2.6 there are elements t_{p1}^R in T_p^R and d_{p1}^R in D_p^R such that

$$m_1(v_{01}, \dots, v_{p1}, T_1)^R = t_{p1}^R + d_{p1}^R$$

By assumption there are elements t_{p2}^R in T_p^R , d_{p2}^R in D_p^R , and n_p^R in N_p^R such that

$$\sum_{j=2}^{N} m_{j} (v_{0j}, \cdots, v_{pj}, T_{j})^{R} = t_{p2}^{R} + d_{p2}^{R} + n_{p}^{R}.$$

Thus

$$c_p^R = (t_{p1}^R + t_{p2}^R) + (d_{p1}^R + d_{p2}^R) + n_p^R,$$

and since T_p^R and D_p^R are subgroups of C_p^R , the existence of a representation of the prescribed form for c_p^R follows in Case 1.

Case 2. Assume that for each j $(1 \le j \le N)$ the v_{0j}, \dots, v_{pj} are distinct. By rearranging terms one may obtain from (i) a representation of the form

(ii)
$$c_p^R = \sum_{s=1}^m \sum_{r=1}^{n_s} m_{rs} (v_{0s}, \dots, v_{ps}, T_{rs})^R, \sum_{s=1}^m n_s = N,$$

satisfying these conditions: none of the m_{rs} is zero; for the same s $(1 \le s \le m)$, $1 \le r_1 \le r_2 \le n_s$, the mappings T_{r_1s} and T_{r_2s} are not identical on $|v_{0s}, \dots, v_{ps}|$; for $1 \le s_1 \le s_2 \le m$, the p-cells $(v_{0s_1}, \dots, v_{ps_1})$ and $(v_{0s_2}, \dots, v_{ps_2})$ are distinct in K (see §1.1). Now for each s $(1 \le s \le m)$ clearly each of the chains

$$c_{ps}^{R} = \sum_{j=1}^{n_{s}} m_{rs} (v_{0s}, \cdots, v_{ps}, T_{rs})^{R}$$

is an elementary *n*-chain in R (see §2.7). The proof is carried forth by an inductive reasoning on m. If m = 1 then c_p^R is an elementary *n*-chain in R, and the representation (ii) already has the prescribed form. So assume that c_p^R , whose representation (i) has at most N terms, has a representation of the prescribed form whenever its representation (ii) has at most m = M - 1 terms (M > 1). Suppose now that C_p^R is a chain whose representation (i) has N terms while its representation (ii) has M terms

$$\sum_{s=1}^{M} n_s = \Lambda$$

Subcase 2.1. Assume that for $1 \le s_1 \le s_2 \le M$ the point sets $v_{0s_1}, \dots, v_{ps_1}$ and $v_{0s_2}, \dots, v_{ps_2}$ are distinct. From §2.9 it is clear that c_p^R is itself an element in N_p^R and representation (ii) has the prescribed form.

Subcase 2.2. Assume that there are distinct integers s — with no loss of generality one may assume these to be s = 1 and s = 2 — such that the sets v_{01}, \dots, v_{p1} and v_{02}, \dots, v_{p2} are the same. It follows that the sequence v_{02}, \dots, v_{p2} is obtainable from v_{01}, \dots, v_{p1} by a positive number l of transpositions. Hence by the lemma in §2.5 there exists for each r in $1 \le r \le n_1$ an element t_{pr}^R in T_p^R such that

$$(v_{01}, \dots, v_{p1}, T_{r1})^R = (-1)^l (v_{02}, \dots, v_{p2}, T_{r1})^R + t_{pr}^R \qquad (1 \le r \le n_1).$$

Since T_p^R is a subgroup of C_p^R , the chain

$$\sum_{r=1}^{n_1} m_{r1} t_{pr}^R$$

is an element t_{p*}^R in T_p^R . Consequently,

$$c_{p}^{R} = t_{p*}^{R} + \left[\sum_{r=1}^{n_{1}} (-1)^{l} m_{r1} (v_{02}, \dots, v_{p2}, T_{r1})^{R} + \sum_{s=2}^{M} \sum_{r=1}^{n_{s}} m_{rs} (v_{0s}, \dots, v_{ps}, T_{rs})^{R}\right]$$

Clearly the terms in square brackets may be rearranged into the form (ii) with an integer $m \leq M - 1$, and their representation in form (i) has an integer $n \leq N$. By the inductive assumption there are elements $t_{p^{\#}}^{R}$ in T_{p}^{R} , d_{p}^{R} , in D_{p}^{R} and n_{p}^{R} in N_p^R such that $c_p^R = (t_{p*}^R + t_{p\#}^R) + d_p^R + n_p^R$, and the existence of a representation of the prescribed form for c_p^R now follows in Case 2. Indeed, it is obvious in this case that $d_p^R = 0 \in C_p^R$. So the lemma is completely established.

2.13. LEMMA. If
$$c_p^R$$
 is any chain in C_p^R for which $\beta_p^R c_p^R = 0$, then
 $\beta_{p+1}^R \rho_{*p}^R c_p^R = 0$.

The proof follows at once from the lemmas in \S 2.3, 2.4, 2.11, 2.12.

RESULTS

3.1. In [3, §4.1] (see also [4, §8]) Radó has established a lemma from which one derives the following statement by replacing the barycentric homotopy operator ρ_p^R by the modified barycentric homotopy operator ρ_{*p}^R (see §§1.2, 2.1).

LEMMA. Let $\{G_p\}$ be an identifier for R (see §0.3) such that the following conditions hold:

(i) $c_p^R \in G_p$ implies that $\beta_p^R c_p^R = 0$; (ii) $c_p^R \in G_p$ implies that $\rho_{*p}^R c_p^R \in G_{p+1}$.

Then $\{G_p\}$ is unessential.

3.2. For each integer p let $N(\beta_p^R)$ be the nucleus of the homomorphism $\beta_p^R: C_p^R \longrightarrow C_p^R$ (see §2.1). Since β_p^R is a chain mapping (see §2.2) it is clear that the nuclei $N(\beta_p^R)$ constitute an identifier for R (see §0.3). Now in view of the lemma in §2.13, conditions (i) and (ii) of the lemma above are clearly fulfilled for the identifier $\{N(\beta_p^R)\}$, and furthermore, this choice of an identifier yields the maximum amount of information that may be obtained from that lemma. Thus the $\{N(\beta_p^R)\}$ constitute an unessential identifier for R, and one of the main results is now established (see §0.4). It is summarized in the following statement.

THEOREM. The system of nuclei $N(\beta_p^R)$ of the barycentric homomorphisms $\beta_p^R: C_p^R \longrightarrow C_p^R$ constitutes an unessential identifier for R.

3.3. In order to compare this result with those in Radó [3; 4], first observe that it follows from the lemmas in \S 2.3, 2.4 that

$$N(\beta_p^R) \supset T_p^R + D_p^R \qquad (-\infty$$

Moreover, since C_p^R is a free group, it is clear that the division hull of $N(\beta_p^R)$

must be identical with the group $N(\beta_p^R)$. Thus the group $N(\beta_p^R)$ also contains the the division hull of the group $T_p^R + D_p^R$ for all integers p. An example is now given to show that the group $N(\beta_p^R)$ generally contains more.

3.4. Denote by d_0 , d_1 , d the points (1, 0, 0, ...), (0, 1, 0, 0, ...), (1/2, 1/2, 0, 0, ...) respectively, let X be Euclidean x-space, and define transformations by the following relations:

$T_1: x = v_0 - 1/2$	$(v \in d_0, d_1);$
$T_2: x = \begin{cases} 0 \\ v_0 - 1/2 \end{cases}$	$(v \in d_0, d);$ $(v \in d , d_1);$
$T_3: x = \begin{cases} v_0 - 1/2 \\ 0 \end{cases}$	$(v \in d_0, d);$ $(v \in d , d_1);$
$T_4: x = 0$	$(v \in d_0, d_1).$

Clearly

$$c_1^R = (d_0, d_1, T_1)^R - (d_0, d_1, T_2)^R - (d_0, d_1, T_3)^R + (d_0, d_1, T_4)^R$$

belongs to C_1^R and $\beta_1^R c_1^R = 0$. Moreover, c_1^R is an elementary *n*-chain (see §2.7). An elementary reasoning shows that it cannot belong to the division hull for the group $T_1^R + D_1^R$.

3.5. In order to describe the largest unessential identifier for R obtained by Radó, a further definition is needed. For integers $p \ge 0$, let $(v_0, \dots, v_p, T)^R$ be any p-cell in R (see §0.1). Let w_0, \dots, w_p be any set sequence of p + 1 linearly independent points in E_{∞} . Then there is a linear mapping

 $\alpha: |w_0, \cdots, w_p| \longrightarrow |v_0, \cdots, v_p|$

such that $\alpha(w_i) = v_i$ for $0 \leq i \leq p$. The p-chain

$$c_p^R = (v_0, \dots, v_p, T)^R - (w_0, \dots, w_p, T\alpha)^R$$

is termed an *elementary a-chain* in R (see [3, §3.4]), and the subgroup of C_p^R generated by the elementary *a*-chains is denoted by A_p^R . For p < 0, A_p^R consists of the zero element alone. In [3, §3.4] Radó has a simple characterization for the group A_p^R which he uses to define the group in [4, §7].

3.6. For each integer p, put $\Gamma_p^R = A_p^R + D_p^R + T_p^R$ (see §§2.3, 2.4, 3.5), and let $\hat{\Gamma}_p^R$ denote the division hull of Γ_p^R . Then Radó shows that $\{\hat{\Gamma}_p^R\}$ is an

unessential identifier in R (see [3, §4.7] or [4, §9]), and this is his best result. If one sets $\Delta_p^R = A_p^R + N(\beta_p^R)$ (see §3.2) and lets $\hat{\Delta}_p^R$ denote the division hull of Δ_p^R , then clearly $\Delta_p^R \supset \Gamma_p^R$, and hence $\hat{\Delta}_p^R \supset \hat{\Gamma}_p^R$. If one modifies the reasoning of Radó in [3, §4] by replacing the barycentric homotopy operator ρ_p^R by the modified barycentric homotopy operator ρ_{*p}^R (see §2.1), one finds that $\hat{\Delta}_p^R$ is an unessential identifier for R. Thus one obtains the following result.

THEOREM. If $\hat{\Delta}_p^R$ is the division hull of the group $A_p^R + N(\beta_p^R)$ then the system $\{\hat{\Delta}_p^R\}$ is an unessential identifier for R.

REFERENCES

1. S. Eilenberg and N. E. Steenrod, Foundations of Algebraic Topology (unpublished).

2. T. Radó, On identifications in singular homology theory, Rivista Mat. Univ. Parma, 2 (1951), 3-18.

3. ———, An approach to singular homology theory, Pacific J. Math. 1 (1951), 265-290.

4. ____, On the foundations of singular homology theory, to appear in Mem. Accad. Sci. Ist. Bologna, Cl. Sci. Fis.

CHIO STATE UNIVERSITY