
SOME THEOREMS ON BERNOULLI NUMBERS

OF HIGHER ORDER

L. CARLITZ

l Introduction. We define the Bernoulli numbers of order k by means of

[3, Chapter 6]

I + \k °° tm

t

= Σ -7 S i λ ) ( \ t \ < 2 n ) ;
e « _ l / mToml m

in particular, Bm - B^ denotes the ordinary Bernoulli number. Not much seems

to be known about divisibility properties of B . Using different notation, 5.

Wachs [4] proved a result which may be stated in the form

(1.1) s£+2° = 0 (rnodp2),

where p is a prime >̂  3. In attempting to simplify Wachs' proof, the writer found

the stronger result

(1.2) B^2

ι)

 Ξ 0 (modp 3 ) (p > 3 ) .

We remark that # 5

( 4 ) = - 9.

The proof of (1.2) depends on some well-known properties of the Bernoulli

numbers and factorial coefficients; in particular, we make use of some theorems

of Glaisher and Nielsen. The necessary formulas are collected in §2; the proof

of (1.2) is given in §3. In §4 we prove

(1.3) 4 P ) Ξ " P 2 (modp 3 ) (p > 3 ) ;
p 2

the proυi of this result is somewhat simpler than that of (1.2). For the residue

of Bip) (mod p 4 ) , see (4.5) below.

In §5 we prove several formulas of a similar nature (p > 3) :
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(1.4) β ( P \ Ξ - p-±- + - p * ( m o d p 3 ) ,

(1.5)

(1.6)

In §6 we discuss the number B^' for arbitrary m; this requires the consider-

ation of a number of cases. In particular, we mention the following special

results (p > 3) :

(1.7) β<P> S - I p r + 1 (p - 1) δ (mod p r + 2 )

for r > 1;

(1.8) β , i p ) - i P ( p - l ) β m - ι ( m o d p r + 2 )

for m = 1 (mod p Γ (p - 1 ) ) .

It also follows from the results of §6 that B*P' is integral (mod p), p >_ 3,

unless m = 0 (mod p - 1 ) and m = 0 or p - 1 (mod p), in which case pB^' is

integral.

The number B^P+ι' requires a more detailed discussion than BJjP'; this will

be omitted from the present paper. However, we note the special formula

( +1) r l Bpr~ι Bpr-p I

PΓ " 2 pΓ - 1 p Γ ~ I

for p > 3, r > 1. The residue (mod pΓ 3 ) can be specified.

2. Some preliminary results. We first state a number of formulas involving

B^ ' which may be found in [3, Chapter 6].

/ m \ k lk\ Bm-s

\k + lj s=o \ s l S m~s '
m l \

(2.2) ( x - 1 ) ( % - 2 ) . . U - in) - £
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We shall require the special values

1 1 1
(9 ^ RW — — U R\k' — — Jc (Q I- ~\ λ R\k' — — lc2 ( k — Λ \

1 2 2 12 ' 3 8

If we define the factorial coefficients by means of

m-ί

( % + l ) ( * + m - l ) = ] Γ
s=o

we see at once that

(2.4) (- 1)

We have also the recurrence formula

(2.5) C ( m + ι ) =
S

1

In the next place [1, p. 325; 2, p. 328] for p a prime > 3,

(2.6) C.(P> s - p — ( m o d p 2 ) (2 < 2r < p - 3 ) ,
2 2r ~~ "**

(2r + l ) β 2 r

(2.7) C£lt ^ p2 (modp3) ( r > 1),

(2.8) C £ \ = (p - 1 ) ! = p ( - l + β p - i ) ( m o d p 2 ) .

It follows immediately from (2.8) and Wilson's theorem that

(2.9) p(p + Ό f i p - ! s (p - 1) ! ( m o d p 2 ) .

We shall require the following special case of Kummer's congruence [2,

Chapter 14]:

m+pl m

(2.10) Ξ (modp) ( p - l + m);
m + p - 1 m

also, the Staudt-Clausen theorem [3, 32] which we quote in the following form:
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(2.11) pBm ΞE - 1 (modp) (p - 1 | m).

A formula of a different sort that will be used is [3, p. 146, formula (83)]

In particular, replacing m by 2m, this becomes

m " 1 /2m\
(2.12) (2/τι + 1) β 2 m + 2 B2tB2m-2t = 0

ί=i * 2 ί '

provided m > 1, a formula due to Euler. The formula [3, p. 145]

(2.13)

will also be employed. In particular, we note that

(2.14) ^ m + l ) = ( - 1 Γ m!

3. Proof of (1.2). Let p be a prime > 3. In (2.1), taking k = p, m = p + 2,

we get

(p) Bp

P
= (P + i) (P + 2) y {-i)P's (p) Bp+2's sjp+

s=o \ e / P + 2 - s

t=0

= (p + ] ) (p + 2) A,

say. We break the sum A into several parts:

(p-3)/2

(3.2) 4 = u 0 + »i + Σ

where
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ut = ( P ) Bof^] P*l~2t (0 < t < p - I).
t \ 2 ί + 1/ 2 ί + I p + 1 - 2ί - ~

Then by (2.2) and (2.3) we have

1 p + 1 2

and

(3.4) u, w = - B2 B{P+ι) = - —
( P - D / 2 2 P 12

by (2.14). As for u{ we have, by (2.3),

thus, by (2.8),

— ( p 3 + 2p 2 ) ( m o d p 4 ) ;
48

. PBp-ι 1 o (p - 1 ) !
2 + 2 P ) — — Ξ ( p 2 2 )

1 . Ppι 1 o

ux Ξ ( p 2 + 2 P ) — — Ξ ( p 2 + 2p)
48 p - 1 48 p 2 -

(3.5) Ξ — ( p 2 + 2p) (p - 1 ) 1 ( m o d p 3 ) .
48

In the next place, by (2.4) and (2.5),

/ p

2 t +

+ 1 M
4ί 2 ί /

-Π-jp-rl^

2ί — 1
= - P 2 B2t (mod p 3 )

At

for 2 < t < (p - 3)/2. Hence
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ut = P Bp + ι-2t (modp3),

so that

(p-3)/2 (p-3)/2 ^

(3.6) X ut^p2 Σ — B2tBp + ι-2t ( m o d p 3 ) .
ί = 2 ί = 2 4 ί

On the other hand, by (2.12),

(p-O/2 , + l χ

(p + 2 ) 5 p + 1 + Σ ( ) B2tBp + ι-2t = 0,

which implies

1 2 ί p 1 2

( p + 2 ) β p + 1 + - p ( p + l ) V i Ξ P ( p + D Σ "
6 Y 2ί p + 1 -

(p-3)/2 2 ί p + 1 2 ί

"

2ί

(p-3)/2 -̂

(3.61) = 2p Σ —B2tBp+ι-2t (modp2);
2 ^

the last crngruence is a consequence of

(modp).

Now

(3.7)

1

2 ί

using (3.6) we

(p-3)/2

2

P

see

Ξ 7

1

" 7

1

+ 1 -

that

P(P +

2ί

, 2 )

• 2 )

2 « ( p

Bp + ι +

1

+ i

24

1

24

-2ί)

P2(P

p(p •

by (2.9). Collecting from (3.3), (3.4), (3.5), and (3.7) we get, after some simpli-

fication,

" 2 ^ 2 ( ) !
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1

4

ΞΞ 0

p 2

(

v
p + ]

, mod

L

L

P 3 )

1 r

+ 48 P

, 1

48

by (2.10). Therefore, by (3.1), β£p++O = 0 (mod p 3 ) .

It would be of interest to determine the residue of ZΓ^.*1 ' (mod p 4 ). We have

already noted that # £ 4 ) φ 0 (mod 3 3 ) ; for small p at least, it can be verified

0 ( m o d p 4 ) .

4 . Proof of ( 1 . 3 ) . We now t a k e m = p > 3 , A; = p - 1 in (2 .1) , s o t h a t

p-l

(4.1)

= P Σ2 r 2

by (2.3) and (2.4). Now, again using (2.4), we have

P - 1

+ 1/
p

( 2 ί
= - P

\t
(mod p 3 ).

Hence, the sum Q in the right member of (4.1) sat i s f ies Q = 0 (mod p 2 ) ; more

precisely, we see that

(4.2)
(p~3)/2 χ

Σ —

to which we return presently. Thus, it is clear that (4.1) reduces to

Ξ - ( p β p _ , - ( p - 1 ) ! ) ( π i o d p 3 ) .

But by (2.8) this implies

(4.3) m o d p 3 ) .
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Since £ 3

( 3 ) = - 9/4 = 9/2 (mod 27), (4.3) holds for p > 3.

(10)],

To determine the residue of β'P' (mod p 4 ) we make use of i.2, p. 366, formula

(4.4) 2 — BV BP'i-2t = — (*p - Kp ) - Ifp (mod p ) ,
ί = l

where Up, # p are defined by

(p _ 1 ) 1 + 1 = pifp, aP"1 - 1 = pfc(α) (p + α ) f

Kp = fc(l) + fc(2) + . - + ^c(p ~ 1 ) .

Then, by (4.1) and (4.2),

B{

p

p) = - p{pβp-ι + 1 - P&P - P2WP\ ( m o d p 4 ) ;

since Wp = Kp (mod p ), this may also be put in the form

(4.5) β ^ ^ I p ^ β p - , + 1 - (p + DKp] ( m o d p 4 ) .

That (4.5) includes (4.3) is easily verified.

5. Proof of (1.4), (1.5), (1.6). In the remainder of the paper let p > 3.

In (2.13) take k = p, m = p + 2; then

Therefore, by (1.2),

(5.1) - B&\ + (p + 2) β £ \ - 0 (mod p 3 ) .
p * *

Now take A; = p ~ l , m = p + 2 in (2.1), so that

s P + 2 - s

Clearly only odd values of s need be considered; we get, using (2.4),
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ί \ IP + 1\ ( P " 3 ) / 2 , v δp + l-2ί

= (p + 2 ) r - - P - — + - p2 - ί — (modp3)
\p - 1/ \ 2 p + 1 8 p - 1/

by (2.3) and (2.7); next, by (2.9) and (2.10), we get

(5.2) β(P>2 Ξ - L p 2 ( m o d p 3 ) .

In view of (5.1) we have also

(5.3) βίP.), - - ^ " P ( m o d p 2 ) .

However, (5.2) and (5.3) do not imply (5.1) but only the weaker result with modu-

lus p 2 .

To improve these results we follow the method of §3. Thus

(5.4)
S=0 ^

and

P + 1 P - 1 ί= 2 P + 1 - 2i 12

But, by (3.61),

(p-3)/2 βp+l-2ί (p-3)/2 β 2 ί βp + 1 - 2

ί=2

P + 2 1

p + 1 6

so that after some simplification we get

p i 1
A = -~ + — p (mod p ) ,

p + 1 8
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and therefore, by (5.4) and (2.10),

/ \ ^ p + i 1

(5.5) Bfi\ Ξ - p _ _ + — P2 (mod p 3 ) .

In view of (5.1) this implies

(5.6)

That (5.5) and (5.6) include (5.3) and (5.2) is evident; also (5.5) and (5.6) imply

(1.2).

We remark also that using (2.13), (5.5), and (1.3) we get

(5.7) β<P++O s _ L ! l _ J _ p U o d p 2 ) .

6. Discussion of B^. Let first m > p be odd, so that (2.1) implies

t \ l m

p) ~ 2 £ T 1 m - 1 - 2 *

Now let m = a (mod p ) , 0 _ < α < p ; m = b (mod p ^ l ) , 0 <_ 6 < p - 1.

Also, let p Γ I m - α, p Γ + ι \ m - α, so that the binomial coefficient / ^ ) is

divisible by exactly p Γ "" ι Clearly 6 is odd. Now by a well-known theorem [2,

p. 252], if a Φ 6, the quotient Bm-a/(m - a) is integral (mod p ) . Thus, by (2.7),

the right member of (6.1), except for the terms corresponding to t = 0, ( 6 - 1 )/2,

is a multiple of p Γ + 2 . As for the exceptional terms

(6.2) Mι = p [ C<P) , u 6 = p f
\ P / m - ι \P

there are several possibilities.

( i ) Suppose 6 = 1 , so that the two terms in (6.2) coincide. Then if a Φ 1,

we see that the term in question is exactly divisible by pΓ. On the other hand if

a = 1, the term is integral (mod p) but not divisible by p.

( i i ) If b Φ 1, Uι and u^ in (6.2) are distinct. There are several cases to

consider. If a = 6, then ut is divisible by pΓ ι , while u^ is divisible by exactly

p Γ + ι . Thus, in this sub-case B^P' = 0 (mod p Γ + 1 ) ; for m = p + 2 this is less

precise than (5.2).

In the next place, let m be even and define α, 6, r as above so that 6 is now
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even.. Then we have

, , m 2 t

Σ * — - Σ »,
Then by (2.6) the right member, except for the terms u0, u^, u , is a multiple

of p Γ + 1 . We consider a number of cases.

(i i i) If b = 0, there are only two distinct terms u0, u If a - 0, we find

that puQ is integral (mod p); indeed pu0 = — 1 (mod p) by the Staudt-Clausen

theorem (2.11). On the other hand, u ι is divisible by p Γ ~ ι ; indeed u _^ =

m/(m — p + 1) (mod p Γ ) . If a = p - 1, then *z0 = (m - p + 1 )/m (mod pΓ) while

piip-i = 1 (mod p). If a φ. 0 or p - 1 then it can be verified that u0 + up^ί is

divisible by pΓ.

(iv) If b Φ 0, then all three terms uQt u^, Up~x are distinct. By means of

Kummer's congruence (2.10) we find that u0 + Up-{ = 0 (p Γ 1 ); in other words;

(6.4) β i P ) ^ " 6 (modpr+1) (MO).

As for ιx ,̂ there are several possibilities. If a = b, it is easily seen that u^ is

integral (mod p); moreover, by (2.6), ub = 0 (mod p) if and only if B^ = 0

(mod p) . If α ^ 6, then u^ is divisible by p r at least; indeed using (6.4) we get

(6.5) B%> Ξ Bh (mod p r + ι ) (a £ b, b± 0).
b (m — b )

This result evidently includes (5.3) but not (5.5).

We remark that B P* is integral (mod p ) in cases ( i ) , ( i i ) , ( i v ) . In case

( i i i ) , however, if a = 0 or p - 1, then B^' is no longer integral, but pB^P' is

integral; indeed it is easily verified that

- 1 (mod p) (α = 0 ) ,

+ 1 (mod p ) (a = p - 1 ) .

7. Some special cases. Clearly m = pr, r > 1, falls under ( i ) above with

α = 0, b - 1. Thus,

(7.1) β(p) Ξ _ i p ' - i ( p - 1 ) B ( m o d p r + 2 ) ,

Pr 2 P Γ ~ ι

and in particular,



138 L. CARLITZ

p) Ξ - I p

r (modp Γ + l ) .
* &

F o r m = 1 ( m o d p Γ ( p — 1 ) ) , w e h a v e α = & = 1 w h i c h a l s o f a l l s u n d e r ( i ) ;

w e n o w h a v e

(7.3) = - ( p - l ) P S m - ! ( m o d p r + 2 ) .

For /n = cpΓ, where c is odd, p Jf c, we have o = 0, c = b (mod p — 1), which

evidently falls under ( i ) or ( i i ) . Thus, we get (r >_ 1)

(7.4) β(P> = I
cpr 2

JLJ B (modp r + 2)

for c = 1 (mod p - 1)

(7.5) B
cPT

1

b - 1
( m o d P

r + 2 )

for c = b (mod p - 1), 6 ^ 1 .

Similarly, for m- cpr, c even, p \ c, we have o = 0, c = b (mod p - 1),

which falls under (i i i) or ( iv). We consider only the case p - 1 \ c; that is,

b jί 0. Then, by (6.5), we have

(7.6) > s - - 1 p r δ , ( m o d p r + 1 ) .
Γ b2

Again for m = cpr + a, c odd, α even, we find

(7.7)

for & = 1, while

(7.8)

(p - 1) — ^ - (modp Γ + 2 )
1

( m o d p Γ + 2 )

for b £ 1; in these two formulas we have 0 < α < p — 1, b = c + a (mod p — 1).

For c even, α odd, (7.7) holds; but (7.8) requires modification. For c and a both

odd or both even, there are several cases; in particular, by (6.5) we have
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(7 9)
(modpΓ+l)

for a £ b, b £ 0.

For p = 2, 3 it follows at once from (2.1) that

/ Bm # m i
β<2> = - m(m - 1) +

m \ m m - 1

m{m - l)(m - 2 )
Bm Bm-l Bm-2

m m - 1 m — 2

by means of which numerous special formulas can eas i ly be obtained, for ex-

ample,

(m even > 2 ) ,

(m odd),

3

2*
(m odd > 1 ) .
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