SOME THEOREMS ON GENERALIZED DEDEKIND SUMS

L. CARLITZ

1. Introduction. Using a method developed by Rademacher [5], Apostol
[1] has proved a transformation formula for the function

(1.1) Gp(x) = Z n"P ™" (x| < 1),

m, n=1

where p is a fixed odd integer > 1. The formula involves the coefficients

(1.2) cr(h, k) = 2 Pp+l.r (ﬁ) P,(E) (0<r< p + 1),
wu(mod k) k k

where (A, k) = 1, the summation is over a complete residue system (mod k),
and P,(x) = B;(x), the Bernoulli function.

We shall show in this note that the transformation formula for (1.1) implies
a reciprocity relation involving ¢ (h, k), which for r= p reduces to Apostol’s
reciprocity theorem [1, Th. 1; 2, Th. 2] for the generalized Dedekind sum
cp(h, k). In addition, we prove some formulas for ¢ (k, k) which generalize
certain results proved by Rademacher and Whiteman [6]1. Finally we derive a

representation of ¢, (h, k) in terms of so-called ‘““Eulerian numbers”’,

2. Some preliminaries. It will be convenient to recall some properties of
the Bernoulli function P,(x); by definition, Pr(x)= B;(x) for 0 < x < 1, and
P.(x + 1)= P, (x). Also we have the formulas

k-1
(2.1) > P (t+-£-) = k' Pr(kt), Pr(-2)=(~1)"Pr(x).

r=o

It follows from the second of (2.1) that ¢, (h, k) =0 for p evenand 0<r<p + L.
We have also
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(2.2) colhy k) =cpey (hy k) = kPBpsy
provided (h, k) = 1. Further, it is clear from the second of (2.1) that
(2.3) cy =k k) = (=1) c (b, k).

Now as in [ 5, 321] put x = e27%7,

iz+h , iz7'+h’
T = y T = —
k k

so that, on eliminating z, we get

hT+ k’
CkT- h

(2.4) T’ (hh’ + kk’ + 1 = 0);

thus (2.4) is a unimodular transformation. Now Apostol’s transformation formula
[1, Th. 2] reads (in our notation)

. .. 1 {27z\P Bp#
27ETY _ (;,)P"1 2miT’y _
Cp(e™77) = (=) 6p (707 2( k) (p+1)!
;p-1 2 p B + 27i)P
+ l— (—”) P + (27i) cp (b, k)
2z \ k (p+1)! 2.p!

(2nP2P B2 (p a1\ oy e h’#) ;
e E—— - - P,. P, -
+2(p+1)!rz=:o(r+l)e ¢ E pr(k r“(k)

Making use of (1.2), (2.2), and (2.3), we easily verify that this result can be
put in the form

miT - mir’ (27i)P .
(25 Gp(e?iM) = (k7= WP Gple® ™7y v mmsy [y s ),
where
pt+i
(2.6) flh k) = 5 (p+l)(k"r—h)""cr(h,k).
r=o VT

We remark that (2.6) can be written in the symbolic form
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(2.7) (k7—=h) fChy ks 7) = (kT—h+c(h, k)P,

where it is understood that after expanding the right member of (2.7) by the
binomial theorem, ¢’ (%, k) is replaced by ¢, (4, k).

We shall require an explicit formula for f(0, 1; 7). Since, by (1.2),
Cr(O, 1)=Pp+l-r(0) P (0) = Bp+l-rBr!

it is clear that (2.6) implies

1 P pyl 1
(2.8) f(0,1; 7) = — Z (p )Bp+1-rBr’Tp+l'r=—(B+TB)p“.
T r=o T T

If in (2.4) we replace 7 by —1/7, then 7 becomes

(2.9) T * =M_ .
hT +k

and (2.5) becomes

. hr 4+ E\P°! . (27i)P 1
2. G, (e2Ti/T =( ) G (e2miT*y "7 (h, ;--),
(2.10) ple ) T ple )+2(p+1)! f k T

By (2.5) and (2.8) we have

. . (27i)P
(2.11) G ( 21n7')=7,p-lc ( -217;/7) —_—t (B B p+1’
pre pre +2T(p+1)!( +78)
and by (2.5) and (2.9),
2mi

e f(=k, b 7).

2miTYy _ p-1 2miT *
(2.12) Gp(e )= (hT+ k)P Gy(e )+————-—2(p+1)!

Comparison of (2.10), (2.11), (2.12) yields
1 1
f(=k, by 7) = TP} f(h, k; —-) + = (B + 7B)P*!,
T T

or with 7 replaced by -1/7,
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(2.13) f(h, k; T)=7P'1f(—k, h;i),, LB+ )",
T T

(For the above, compare [3, pp.162-1631).

3. The main results. In (2.7) replace k, k, 7 by —k, h, —1/7 respectively;
we get

kT—h 1 kT—-h ptt
f —-k,h;——)=( +c(—k,h)) .
T T T

By (2.3), it is clear that (2.13) becomes
(3.1) T(kT = h + c(hy k))PH?
=(7c(k, k)= Tk + )P + (k7= B)(B + TB)P*L,

Comparison of the coefficients of 7"*! in both members of (3.1) leads immedi-
ately to:

THEOREM 1. Forpodd>1,0<r <p,

p+1

(3.2) ("* 1) K (e (h k) = B)PHT = ( 1) RPT(c (hy B) — B)HL
T

r+

+ kBp+l.rBr —th.rBr+1 .
In the next place, if for brevity we put w = k7~ h, then (3.1) becomes

(3.3) EP(w+ k) (w+ c(h, k)P

=((w+h)elk, h) —wk)P*' + w(Bk + (w+h)B)P*,

We now compare coefficients of w'*! in both members of (3.3); a little care

is required in connection with the extreme right member. We state the result as:

THEOREM 2. Forpodd>1,0<r <p,

1
(3.4) (p+l)hkpcp-,(h,k)+ (":l)kpcpﬂ-,(h,k)

r+
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p+1 p+1
=( 1)h”"’(c(ls,h)-k)""cf"'(lc,h)+( . )(Bk+B’h)P“"B”,

r+
where
pti-r 1-
(Bk + B’R)P\TB*T - S (P +s r) Bys1ores Bras EPHLIT-ShS |
s=0

For r=0, (3.4) becomes
(p+1)hkPcp (b, k) + kP cp4y (b, k)
= (p+ 1)AP Lepay (ky B) = kep (K, h)} + (p + 1) (BE + BR)P*Y,
which reduces to

(3.5)  (p+1){hkPcp(h, k) + kPhep (K, h)} = (p + 1)(Bk + BR)P*! + pBp4y.

This is Apostol’s reciprocity theorem.

If we take r =1 in (3.4), we get

p{hzkpcp_l(h, k)-k*hPepy (K, h)}
=~ 2UhkP cp (h, k) + phhP c, (h, k)} + pBp+y + 2(Bk + B’h)P B’A.

If in this formula we interchange % and & and add we again get (3.5), while if

we subtract we get
(3.6) pihzkpcp-l(h, k)—k2hp6p-l(k, h)}
=(p~1) {hkPcp (b, k) — khPecp (k, k)Y~ (Bk + Bh )P (Bk — Bh).

In view of (3.6), it does not seem likely that Theorem 2 will yield a simple
expression for

R kP cpp (hy k) + (1) K™ AP ey p (K, R) (r>0).

We remark that Theorems 1 and 2 are equivalent. Indeed it is evident that



518 L. CARLITZ

(3.2) is equivalent to (3.1), and (3.4) is equivalent to (3.3); also it is clear
that (3.1) and (3.3) are equivalent.

4. Some additional results. We next prove ( compare [ 6, Th. 1]):

THEOREM 3. Forp,q¢ > 1,0 <r < p+1, we have
(4.1) cr(qhy, qgk)=q"Pec, (B, k).

Note that we now do not assume p odd, (k, k) =1.

To prove (4.1), we have, using (1.2),

p hu
e 5 @l
p(mod gk) 9 .

vk +p h(vk +p)
Z Pp+l-r< qk ) Pr ( k )

v(mod gq)
p(mod k)

2 (F) Z e (7 5)

o B f) )

qr-p Cr(h, k)o

It

For brevity we define

(4.2) b (h K) = (c(h k)= h) = z (- 1)'-S( )h"scs(h k),

which occurs in Theorem 1. Clearly

cr(hy kE)Y=(b(h, K)+R).
THEOREM 4. Forp,q > 1,0 <r < p + 1, we have

(4.3) by (qh, qk) =g P by (h, k).
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By (4.1) and (4.2) we have

brtahy gb)= 3 (-1 (") (gh"o e, (gh, qh)

r
§=0 S

r

=2 (—1)"3(
s=0 S

) ™S q"Pes (b, k)

= qr-pbr(h’ k)'
If we define
(4.4) ay(hy k) =(c(hy k)= h) cP* 7 (h, k),
which is suggested by Theorem 2, we get:

THEOREM 5. Forp, ¢ >1,0<r<p+1,

(4.5) a;(qh, qk) = qa; (b, k).

The proof, which is exactly like the proof of (4.3), will be omitted.

We note that (4.4 ) implies

(4.6) BT P (b k) = 30 (-1)° ( )as(h, E)=(1-a(h, k)).

;
s=0 S

Also using (4.2) and (4.6), we get

(4.7) RP*YTh (hy k)= (1= a(h, k))P*'7a"(h, k),

and reciprocally from (4.4),

(4.8) ap(hy k)= (b(hy k) +R)PYTH (B, k).

Using a;(h, k) and b;(h, k), we can state Theorems 1 and 2 somewhat more
compactly.

5. Another property of c,(k, k). For the next theorem compare [6, Th. 2].

THEOREM 6. Forp > 1,0 < r < p, and q prime, we have



520 L. CARLITZ

q-1 .
(5.1) > crlh + mk, gk) = (g + q'P)e, (b, k) ~q' "¢, (ph, k).
m=0
By (1.2), the left member of (5.1) is equal to

2 £ () (22

m= =1

-1 h m
£ R
9k | n=o qk q

+ z o (1) ) - (%) o}

= q' "¢, (qh, qk) + qcr (hy k)~ q'Tc,(qh, k)

= (g"P+q)er(hy k) ~q " cr(qh, k),

by (4.1).

It does not seem possible to frame a result like (5.1) for the expressions

by (hy k) or a; (h, k) defined by (4.2) and (4.3).

6. Representation by Eulerian numbers. If & > 1, pk =1, p £ 1, we define
e ‘““Eulerian number”’ H,, (p) by means of [4, p.825]

1- it "
(6.1) —L = T Halp) =
e —-p m=0 m:

Then it is easily verified that [ 4, p. 825]

k-1
;
k™ 3 p"Bm (-ic.) = mel Hp. (p71),
r=0

which may be put in the more convenient form
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r m
(6.2) Y P, (I)=_ Hp.y (o).
r (mod k) p-1

Now consider the representation ( finite Fourier series)
r k-1 .
s=0

If we multiply both members of (6.3) by {"* and sum, we get

mk 1-m

]tAg =Z¢”Pm(7:')= é’t_l
' k*™B, (¢ =0),

Hp.1 (L) (¢ £0)

by (6.2) and (2.1). Thus (6.3) becomes

k-1 Hm-l(é-s)
(6.4) P, (-’f) = kB 4 mk Y e peks
k o Zl ¢ -1 ¢

Thus substituting from (6.4) in (1.2), we get after a little reduction

BpsyrBr  r(p+1-r) k-1 Hp-r(é"‘)Hr-l(C")
+ .
kP = (Mot -1)

(6.5) Cr(h’ k)=

Thus ¢, (h, k) has been explicitly evaluated in terms of the Eulerian numbers.
One or two special cases of (6.5) may be mentioned. For r = p we have

k-1 H . (é‘“)

P p-t

(6.6) cp(h, k)= —
P kP ,Zl (¢ -1)(¢t-1)

(P > 1)’

while for r = p = 1 we have

1 1k 1
SChy k) = — + — ,
) % E TRID@D

where s (A, k) =c, (h, k). Note that's (b, k) = s (k, k) + 1/4, where s (k, k) is
the ordinary Dedekind sum [6]. We also note that (6.4) becomes, for m=1,
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p (”) 1 . 1 k-1 4'”’5
i) =751t 7 T
k 2k k20 ¢5-1

which is equivalent to a formula of Eisenstein.

Possibly (6.5) can be used to give a direct proof of Theorem 1 or Theorem 2.
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