
CONGRUENT IMBEDDING IN F-METRIC SPACES

A. WALD

1. Introduction. An F-metric space arises by associating with each pair

x9 γ of elements ("points") of an abstract set S an element xy2 (the "squared-

distance") of a field F. It is required of the association merely that xy2 = yx2

9

xx = 0, and if x ^ γ then xz ψ yz2 for at least one point z of S. In this note we

establish some fundamental distance-geometric properties of the two F-metric

spaces Fm Fn (αi , ,α n ) obtained by attaching to each two elements

2 , , χ n ) f y = ( y ί 9 y 2 9 •••, y n )

of the set of ordered rc-tuples of F the elements

l = l
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as squared-distances respectively, where, in the second instance, the coef-

ficients aia29 9an belong to F. (Translators note: In the manuscript

"dis tance" rather than "squared-distance" is used; for example, Σ ι = 1 (x^-y^)2

is spoken of as the distance of the points x = (xί$ x2 , , xn ), y = (y{9

y2 , , yn). In order that the developments of the paper should more exactly

generalize the euclidean case (in which F is the real field) it seemed desir-

able to call Σ j = 1 (x. - y. ) 2 the squared-distance of x9 y and to make the neces-

sary minor changes in the manuscript. There is, of course, no implication that

"d i s tance" is meaningful. The reader is asked to interpret all such terms as

"congruent", "congruence order", "metric basis", etc. in the sense of squared-

distance. For definitions of these and other Distance Geometry concepts used

in this paper see L. M. Blumenthal, Theory and Applications of Distance Ge-

ometry 9 The Clarendon P r e s s , Oxford 1953.) It is assumed throughout that F has

character i s t ic 0, while in § 3 it is further supposed that ( 1 ) each sum of squares

of elements of F is a square of an element of F and ( 2 ) F does not contain

2. Congruence order of Fn. It is shown in this section that Fn has con-

gruence order n + 3 with respect to the class of F-metric spaces; that is, any

F-metric space can be mapped into Fn with preservation of squared-distances

whenever that is true for each (n + 3 )-tuple of the space. We prove first some

lemmas.

LEMMA 2 . 1 . Each {k + D-tuple p Q , p t , •••,?£ of Fn (k = 1 , 2 ,

for which the Cayleγ-Menger determinant

, n)

0 1

1 0 PoPk

PiPo2

PkPΪ

is not zero forms a metric basis for the k-dimensional subspace they determine.

Proof. P u t t i n g pQ = ( 0 , 0 , •••, 0 ) , we note t h a t e a c h point p of the s u b -

s p a c e can be wr i t ten

P = λ l P l + λ 2 p 2 + . . . + λkpk.

T h e n a necessary c o n d i t i o n t h a t s u c h a p o i n t p h a v e a s s i g n e d s q u a r e d - d i s t a n c e s
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from p 0 , pt , , p^ i s that λ i , λ 2 ? •••, λ^ satisfy the system of linear equa-

tions

(p, p . ) = ( 1 / 2 ) ( P o p 2

 + P o p . 2 - . p p . 2 )

(i = 1, 2, , k), where ( , •) denotes a scalar product. The coefficient

determinant | ( p ^ p . ) | ( ι , / = 1, 2, , &) is the Gram determinant G ( t Ί ,
V2> > ̂ /c) °ί t n e vectors vι - [p Q , p^ ] (i = 1, 2, , &), and from the relation

it d o e s n o t v a n i s h . H e n c e λ 1 ? λ 2 , •••, λ^ a r e u n i q u e l y d e t e r m i n e d .

LEMMA 2 . 2 . Let k be any one of the first n integers, and let p Q , p χ , , p^

be a (k + D-tuple of Fn with D ( p Q , p χ , , p k ) Φ 0 . If p^* p[f ••• 9 p£ is a

{k + l)-tuple of Fn with PiP? = p / P , ' 2 (h j = 0> 1 > > k ) {symbolized by

writing p Q 9 p χ , •••* pu ~ s p j j p[t •••? p ^ )> ίAe i a nonsingular linear trans-

formation that maps p^ on p ^ ( i = 0, 1 , . . . , & ) also maps the k-dimensional

subspace S^ determined by p ^ p ι 9 •••, p» congruentlγ {that is9 with preserva-

tion of squared-distances) onto the k-dimensional subspace S^ determined by

P0> Pi'' •••' P'k-

Proof. Putting pQ = pj = (0, 0, , 0), we note that any such transforma-

tion clearly maps S, onto Si and associates with each point

of Sfc t h e p o i n t

oϊS'k. If

q = μιpι +μ2p2 +

and
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are corresponding points of S^ and S£ , respectively, then it is seen that

PR2- Σ. Σ (V^MV^Mpi.p,.)
/=i 7=1

since

= ( 1 / 2 ) ( p 0 ' p / 2 + P o ' p / 2 - p.' p / 2 ) = ( p / , pf) U = 1, 2 , . . . , A ) .

LEMMA 2.3 Le£ Po> P t > > P/^ P, <7 6e ά + 3 points of Fn{0 < k <^n) for

which D(pQ9 p^ , •••, p , , pf q) vanishes9 along with each of its bordered prin-

cipal minors of order k + 3. // D(p0, p t > > p^. ) 5̂  0 ίΛerc ίΛe k-dimensional

subspace S^.(p 0 , p t , •••, p^. ) determined by p Q , Pĵ  , •••, pi contains points

p, ςr sαcΛ

Proof. Put p 0 = (0 , 0, •• , 0 ) and denote by F * the closed algebraic ex-

tension of F. Now every element of F * is a square, and according to a theorem

of 0 . Taussky F* contains a (k + 3 )-tuple p Q , p * , , p^, p*, 7* with

Po> Pi » • " ' P/c> P̂  ^ ^s Po» P * ' ' " ' P^» P*» ^ * '

and

p*, ?* G S^ ( p 0 , P l , p 2 , . . . , P / c J . 1

Let T denote a l inear transformation of Fn with p t = T {pf) (i = 1, 2 , •• , &),

p o = Γ ( p 0 ) , and let p = 71 ( p * ) , ^ = Γ ( 7 * ) . By Lemma 2.2,

P o ' Pi*» • " ' Pk> P*> ^ * " s Po» P f P2 '••" 'P/c* P» ^

1 0 . Taussky (Mrs. John Todd), Abstracte Kδrper und Metrik. Erste Mitteilung:
Endliche Mengen und Kδrperpotenzen, Ergebnisse eines mathematischen {Colloquiums
(Wien) Heft 6 (1935), pp. 20-23. The reference is to Theorem II (p. 23) in which it is
assumed that every element of the base field is a square.



CONGRUENT IMBEDDING IN F-METRIC SPACES 309

( * ) P o > P i ' ~ >Pk» P> ^ ~s P o > P i ' '•• » P A » P ? •

S i n c e J c a r r i e s Sk{pQ, p * , • ••, p ^ ) i n t o S^{pQ, p t , •••, p ^ ) , t h e λ - d i m e n -

s i o n a l s u b s p a c e of F* d e t e r m i n e d b y p Q 9 pχ , , p k , t h e n

and so

p = λ ι P ι + λ 2 p 2 + . . . + λ Λ p A , ^= μίpί + μ 2 p 2 +••• + μ* PΛ >

where λ^ , μ̂  G f* ( i = 1, 2, , k). To complete the proof, we show that

λ., μ. are a lso elements of F {i — \, 2 , , fe )

Now

(pi Pj ) = λ j ί p j , p . ) + λ 2 ( p 2 , p ) + . . . + λ A . ( p A ; , p ) U = 1, 2, . . . , A),

(7, p ί ) = μ 1 ( p 1 , p i ) + μ 2 ( p 2 f P/) + ••• +^/c^P/c» P p ( i = 1, 2 , . , fe),

and s ince

Po> Pi» '••' Pk> P' ^ e Fn

it follows from ( * ) that all of the coefficients in these two systems of equations

(as well a s the left members) belong to F . The relation between the determinant

G{υl9 v2 9 •••, Vk) and D (pQ, pt , , pk) exhibited in Lemma 2 .1, together

with the nonvanishing (by hypothes i s ) of the latter determinant, imply that

λ 1 ? λ 2 , . . , λ^ and μ t , μ 2 , , μ^ are uniquely determined and belong to F .

THEOREM 2.1. The space Fn has congruence order τι + 3 with respect to

the class of F-metric spaces, where F is any field of characteristic zero.

Proof. L e t S be any F-raetric s p a c e with the property that each (n -V 3)-tuple

of S may be mapped in a squared-distance preserving manner into Fn We show

that S itself may be so mapped into Fn.

Since the Cayley-Menger determinants of all (n + 2)- tuples and (n + 3)-

tuples of Fn vanish, the same is true of such subsets of S.2 Let k (k < n)

2 The vanishing of the Cayley-Menger determinant D of each m-tuple of Fn for
m > n + 1 may be proved in the same way in which this result is established for
euclidean n-space. See, for example, Theorem 40.1 (page 99) of the book referred to in
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denote the largest natural number for which k + 1 points of S exist with non-

vanishing determinant D, and let pQ, p t , . . . , pk be such a (k + l)-tuple. The

Fn contains, by hypothesis, k + 1 points p'op[ , , p^ with

Po Pi - " ' P * ~s Po' P i ' •••' PA

If p, <7 β S(p j£q), elements p Q ", p " , . . . , p^ ' , p " , <y" of F^ exist such that

P> R ~s V"> P"> *» ?k> ?">

and by Lemma 2.3 we may suppose that p " , q" belong to S^ip", p", ••, vί'}

A linear transformation that carries p j ' , p", , p ^ ' into p^, p [ , , p^ ,

respectively, carries S^ip", p " , •••, p^') into Sk{p^9 p[, •••, p^) and con-

sequently sends the points p " , q" into points, say p ' , ςr', of the latter A -

dimensional hyperplane. According to Lemma 2.2, this linear transformation

preserves squared-distances, and so

Po » Pi ' ' # ' Pk * P * ? ^s Po> P i ' * :

Use of Lemma 2.1 shows that the point p ' corresponding to p by the proce-

dure described is unique, and so S is mapped in a squared-distance preserving

manner into a A -dimensional subspace of Fn.

THEOREM 2.2. Let Fn ( α b a2 , •••, an) denote the space obtained by as-

sociating with each two n-tuples

x = U i , χ 2 , , χ n ) f y = ( y i » y 2 » • ' • > y n )

o/α /ieZo? F, ifiίΛ characteristic zero, the element

n
2 V*χr

as squared-distance, where ai$ a2 , •••, an are n selected elements of F. The

space Fn{a^9 a2j •••» a>n ) ^ α s congruence order n + 3 lϋiίA respect to the class

of all F-metric spaces.

Proof. The closed algebraic extension F * of F contains elements

(i = 1, 2 , , 7i). If to each point (xi9 x2 , , xn ) of F n ( α l f α 2 , , an )
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there is associated the point

(yfά[ %ι 9 \fa~2 oc2 , , \fa^ xn )

of Fn it is seen that Fn{aΪ9 a2 , 9 an) is congruently contained in F% which

has, by Theorem 2.1, congruence order n + 3 with respect to F -metric spaces

and hence also with respect to F-metric s p a c e s . Thus, if S is any F-metric

space with each ( n + 3 ) - t u p l e imbeddable congruently in Fn(aί9 a2 , •••, an)

then S is congruent with a subset of Fn .

Let k be the greatest natural number such that a {k + 1)-tuple pQ9 p , , p,

of S ex is t s with

^ ( P o * Pι> '••» P&) ^ 0 .

Then k <^ n, and p Q ? p , ••• , p, are congruent with a (k + 1)-tuple of Fn{a^9

a2 5 ' 9 an ) which, in turn, is congruent with a (k + 1)-tuple ( p j , p{9 , p£ )

of Fn*. We have, putting pQ' = (0 , 0, . . . , 0 ) ,

' xj2 9 ( = 1 , 2 , , A ) ,

where %ym G F (/ = 1, 2, , A; m = 1, 2 , ,τ ι) . We see that S i s congruent

with a subset S ' of the A-dimensional hyperplane of F Λ determined by p ^ ,

If p' eS' then p ^ = λ χ p t" + λ 2 p^ + + λ̂ . p^ and λ ^ λ 2 , , λ^ satisfy

the system of equations.

with all coefficients in F and with nonvanishing determinant. Hence λ i , λ 2 , ••,

λ^ E F, and so each point p ' of S ' has coordinates

V ^ ϊ ' χ\ 9 \fθ2 *2> ••• > V ^ i * n ) with αci, Λ 2 , •• , Λ;Π E F

If, now, we make correspond to each such point p/ of S ' the point {x\9 x2 ? 9 #π)

of Fn(aγ9 a2, •••, α π ) , the correspondence is clearly a congruence, and S ' is

mapped congruently onto a subset of Fn{aΪ9 a2 , •••, an ). It follows that S is

congruent with a subset of Fn(ai9 a2 , , α Λ ), and the theorem is proved.

3. F-metric spaces with F formally real. Let F be a field with characteristic
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0 such that every sum of squares of elements of F is the square of an element

of F . In case F contains \/"~ ~ϊ, Taussky has shown that every (n + 1)-tuple of

an F-metric space is congruently imbeddable in Fn, and an (rc + 3)-tuple p Q ,

Pi > > PΛ + 2 ^ a s t n * s P Γ O P e r ty if a n ( l o n l y if D (po> Pγ > * * ? PΛ + 2 ^ v a n i s n e s

along xwith each of its bordered principal minors of order n + 3. 3 In this section

we suppose that \/~l is not an element of F; that i s , F is a formally real field.

Let p Q , Pi > •••* Pβ he an F-metric space of k + 1 elements. As in Lemma

2.1, we call the ordered pointpairs [ p 0 * p ] vectors v 9 and define the scalar

product (vi, vj) of vectors V{, VJ by

( V / , VJ) = ( 1 / 2 ) ( P o p.2 + p 0 P / - P f P / ) ( i , / = 1, 2, - . . , * ) .

The Gram determinant \(VI9VJ)\ (ί9 j - 1, 2, , k) is denoted as before, by

v2 , , f/f).

THEOREM 3.1. /I necessary and sufficient condition that an F-metric

(k + l)-tuple p 0 , p t , •••, pj^ be congruently imbeddable in the Fn is that for

j > n every j of the vectors Vγ, v2 > ? vjς have a vanishing Gram determinant^

while for j <^ n9 the Gram determinant G(v{ 9 V( , •••, V{.) of each j of the

vectors V{y v2, •••, vfr be the square of an element of F.

Proof. Let p^$ p^, , p ^ be a {k + 1)-tuple of Fn.

Then D(pQ9 pf , pf , •••» p ' . ) vanishes for every j of the k 4- 1 points when

/ > n$ and consequently (by the relation in Lemma 2.1) G (vfι9 v[2 , , v(.) = 0

for every j of the vectors v[$ v2 ,••• ,t>j£ when / > τι. Since, moreover, G(vfι9

υi2 9 * ? ^Λ ) is easily shown to be the square of the determinant (the * 'volume-

determinant" ) formed by annexing a column of l ' s to the / x ( / + l ) rectangular

array of the j coordinates (/' < m) of the points po, p(v p{2, •••, pf. with

respect to a /-dimensional subspace Fj of Fn containing them (we put pQ '= (0,

0, •••, 0 ) ) , the necessity is established.

To prove the sufficiency, let p Q , p { , , p^ form an F-metric space satisfy-

ing the conditions of the theorem, and suppose v(i9 vι2, •••, V(. are j of the

vectors with nonvanishing Gram determinant. We show that the corresponding

( / + l)-tuple PQ$ Pi ? 9 Pi . is imbeddable in Fy. Assume this the case for

all positive integers less than y — an assumption that is obviously valid for

; = i

There exists a regular arrangement, say υΓχ9 vΓ2 , •••, vr., of the vectors

vi\9 υi2'» ' *' 9 vi s u c n that in the sequence

3 See footnote 1.
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G(vΓι), G(vΓι, vΓ2) , , G ( u Γ l , vr2, •••, v Γ / )

no two neighboring elements are zero. We consider two c a s e s .

Case I. G(vrι$ vΓ2, •••, vnml) Φ 0 According to the inductive hypothesis ,

Po> PΓ!» Pr2> '•'» PΓ β l

 a r e

image points in Fy. i, we put

a r e

P o ' = ( 0 , 0 , . . . , 0 ) , P r ' . = ( α a , α ί 2 > •-., a i f / . ! ) ( i = 1 , 2 , . . . , y - 1 ) ,

where the coordinates are all elements of F . Now by Taussky ' s theorem the

points PQ9 pr , pr ? ? P r . are imbeddable in FK where F * is the closed

algebraic extension of F and, indeed, in such a manner that the images of

Po> Prι> "•> Prjml

 a r e Po» P ^ ' ' ' •> P r ^ t ' respectively. Let

be the image of p r , where α t , CX2 , , Ot b e l o n g to F * . We h a v e

(vr.9 vr.)= α 1 α ί ι + α 2 α t 2 + ••• + α 7 β l α i f / β l (i = 1 , •••, y - 1),

which u n i q u e l y d e t e r m i n e the e l e m e n t s Cί^ Cί2 ?• ? OCy.2» s i n c e the s q u a r e of

the d e t e r m i n a n t | (Xιm \ {if m = 1 9 2 9 . . . , y - 1 ) of the c o e f f i c i e n t s i s

vf2
0 .

It fo l lows t h a t al9 α 2 , , OCy.i, G F .

In F * we have

(i, m = 1, 2 , . . . , y - 1 ) ,

, i ; Γ y - l f v Γ y ) = \ β i n
i, m = 1, 2 , , y ) ,

with

i, m = 1 , 2 , . . , / - » = 1, 2 , . . . , / - 1 ) ,

= 1 . 2 , . • . , / ) ,
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and hence

G(ι>Γ ι» ^r 2 , ••• > vr.) = α^ G(vΓι, vr2 , . . . , iVy^)-

But the two Gram determinants in this relation are different from zero, and are

squares of elements of F. Consequently Oty G F and the theorem is proved in

this case .

Case II. G(vrι9 vTl , , tYy^) = 0 Then G(vrχi vr2, . . , ^ Γ ; _2 ) ^ 0, and,

as in Case I, the points p , p r , « , p r are imbeddable in F * with the respec-

tive image points

p0' - (0, 0, ... , 0 ) ,

Pr'i = ( α i i ' ••*' aij-2> ° ' 0 ) ( ί ' = 1 > 2 ' •• » y - 2 ) ,

p r ' . = ( β l t ,βj),

where &im & F (i, m = 1, 2 , , / - 2 ) , and CCj, •• , α , , βχ, ,β- are

elements of F * . The argument used in Case I may be applied here to show that
α i »•*•» α / . 2

 a n t ^ β i ' **• 'βj-2 a r e e l e r a e n t s °f f Hence ( α ^ α 2 , •••, α . 2 ) €

F a l o n S w i t h PO a n d P ' ( 1 2 2 ) d i i t h t h t
i / 2 j

Fy-2 a l o n S w i t h PO a n d Pr'. ( ί = 1, 2 , ••• , ; - 2 ) , and it is easy to show that

+ α ;

2 =

fo l lows from t h e v a n i s h i n g of G(vrι9 vTl, , vr.ml). We may s u p p o s e t h a t

G ( v Γ ι 9 v r 2 , - . . , v r . m 2 $ v r . ) = 0 ,

for in the contrary case the argument of Case I may be applied with vr. taking

the place of vΓ. ^ Hence we have

β]x + βj = °

P u t t i n g α . β l = λ, we t a k e <Xj = λ V ^ T . T h e n from β.^^μ i t fo l lows t h a t

jg . = - μ yj — \f s i n c e G(vr 9 vr 9 , vr.) v a n i s h e s ( c o n t r a r y t o h y p o t h e s i s )

T h e s c a l a r p r o d u c t (vr.ml, vr.) G F; t h a t i s ,
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C X l i S l + 0 ί 2 ^ 2 + * + aj-2^j-2 + λ μ + λ μ E F ,

a n d s o λ μ £ F s i n c e a χ 9 , α 2 a n d β χ 9 , ) 8 . 2 b e l o n g t o F. F u r t h e r

G(vΓι, vr2 , . . . , vr.) = - 4 λ 2 μ 2

and since these nonvanishing Gramians are squares of elements of F then

- λ 2 μ 2 is the square of an element of F. It follows that V~--T is the square of

an element of F, contrary to the assumed character of the field F. This con-

tradition shows that Case II is impossible.

Now let / be an integer such that G(vl9 v2 , •••, VJ) 41 0 (with appropriate

labelling of the vectors) , while the Gram determinant of every y + 1 of the

vectors vanishes . Let

PO' = (O, 0, . . . , 0 ) , p / = ( a a , a . 2 , . . . ,ct.y.) (£ = 1, 2, - . , k)

be points of F * congruent ( in the " s q u a r e d - d i s t a n c e " sense ) to pQf pχ9 , p^ 9

with pi and p? corresponding (i = 0, 1, « , k). By the previous part of the

proof, pQ9 pχ9 ••., p . are imbeddable in Fj, and the imbedding in F * can be

done so that CX ( i , m = 1, 2 , « «, / ) are elements of F The proof is completed

by showing that also for t > /, α n , CXί2 , •••, CK. G F. The system of l inear

equations

a i ί a t l

 + ai2at2 + - ' + aijatj-{vi'Vt>> ( ί = l , 2 , . . . , ; )

h a s n o n v a n i s h i n g d e t e r m i n a n t |Cί | {ism = l929 9j) ( t h e s q u a r e of t h i s

d e t e r m i n a n t i s G(vχ9 v2, •••> VJ)) a n d a l l c o e f f i c i e n t s , t o g e t h e r w i t h ( V J , f ^ )

( i = 1, 2 , , ) a r e in F I t f o l l o w s t h a t α n , Cί ί 2 , , α f E F , a n d t h e

t h e o r e m i s p r o v e d .






