
UNBOUNDED SPECTRAL OPERATORS

WILLIAM G. BADE

1. Introduction. Our purpose in the present paper is to study the structure

and operational calculus of unbounded spectral operators. Bounded spectral

operators have been introduced and studied by N. Dunford in [2] and [ 3 ] , and

the present paper is an investigation in the unbounded case of certain of the

results of [ 3 ] . Interest in the abstract theory of unbounded spectral operators

arises from important results of J. Schwartz [7] , who has shown that the

members of a large class of differential operators on a finite interval determine

unbounded spectral operators in Hubert space.

Let 13 denote the Borel subsets of the complex plane, and let X be a com-

plex Banach space. We shall call a mapping E from 13 to projection operators in

X a resolution of the identity if it is a homomorphism. That is,

E ( e ) E ( f ) = E ( e f ) , E ( e ) u E { f ) = E ( e u f ) , e , f e 13

£ ( e ' ) = / - £ ' ( e ) , E(φ) = 0, E(p) = l, e e B ;

E ( e ) i s bounded,

| £ ( e ) | <M, e G B ;

a n d 1 the vector-valued set function E(e)x is countably additive. Here φ is the

void set, p the plane, and e ' the complement of e in p.

A closed operator T will be called a spectral operator if there is a resolution

of the identity E such that:

(1) The domain D (T) of T contains the dense subspace X0 = l x \ x - E (σ)x9

σ G IS, σ bounded | .

(2) I f σ e 6 , E ( σ ) D ( T ) c D ( T ) a n d E ( σ ) T x = TE { σ ) x , x e D ( T ) .

l rΓhe last condition is somewhat more restrictive than in [ 3 j .
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(3) σ ( Γ , £ ( g ) ϊ ) C σ where σ{ 7 ,1(σ) X ) is the spectrum of T in the sub-

space E (σ) X .

If σ is a bounded set, then Ί is a bounded spectral operator in the subspace

E(σ)X, and in this subspace its structure and operational calculus are known

from [ 3 ] , The idea of the present paper is to determine the properties of T in

X from those of the sequence of approximating bounded spectral operators

TE {σn ), where 1 σn \ is an increasing sequence of bounded sets for which

l U σΛ=/.
* n = l '

We outline briefly the main results:

The simplest type of spectral operator S is that of scalar type:

= lim / XE(dλ)x,

where this limit exists and

en =

each spectral operator T we can construct an associated scalar type oper-

ator S from its resolution of the identity. One of the principal results of the

bounded case is the characterization theorem [3, Theorem 8] that T is a bound-

ed spectral operator if and only if T — S + /V, where S is a bounded scalar type

operator and N is a generalized nilpotent operator commuting with S, In the

unbounded case the relation of T to S is not so simple, as we shall show by

examples. The operator Λ' = T — S (with suitably defined domain) may be bound-

ed but not a generalized nilpotent or even unbounded with spectrum covering

the plane. We give a sufficient condition (Theorem 4.1) that 7 -S + N shall

be a spectral operator.

If S is a spectral operator of scalar type, it has an operational calculus

exactly analogous to that of an unbounded normal operator in Hubert space

(which is an example of a spectral operator). To each 13orel measurable function

/ on σ(S) we can assign a densely defined closed operator/(5) which is also

a spectral operator of scalar type, the operators corresponding to f and | f \

having the same domain. In case 7 = S + N is a general spectral operator we

can, by the formula
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00
 N

n
 r

f(T)x = HIT; Σ, ~ j f
in)
(λ)E(dλ)x,

assign a densely defined operator f(T) to each function analytic and single-

valued in the complement of a set θ for which E{θ)~ 0. (Here \en\ is an in-

creasing sequence of compact sets on each of which / is analytic and with

E(Unτzι en ) = /.) However, as we shall show by an example, this operator need

not be a spectral operator without other restrictions. If / is a rational function,

f(T) is always a spectral operator. Conditions are given to ensure that f(T)

is bounded. A result of the calculus is the theorem that a closed operator T

with nonempty resolvent set is a spectral operator if and only if (λ/ — T)~ι is

a bounded spectral operator for some λ jέ σ(T), In case T is of the form Γ = S + /V,

where N is a generalized nilpotent, we obtain quite an extensive operational

calculus of spectral operators. In order that f (T) shall be a spectral operator

it is sufficient that the singularities of / ( λ ) in the finite plane (with the pos-

sible exception of a finite set of poles on σ(T)) shall not get arbitrarily close

t o σ ( 7 ) .

2. Closed extensions. In this first section we establish the existence of

a closed extension of certain densely defined operators. This result will be

the main tool of the paper and it will be convenient to formulate it under rather

general conditions. We shall suppose throughout this section the existence of

a resolution of the identity E.

DEFINITION 2.1. Let Q be an operator defined on a dense subspace DQ(Q)

of X. Let there be associated with Q a class 21 of Borel sets satisfying:

(a) 21 is closed under finite unions and contains any Borel subset of one

of its members;

(b) H e G2I, then£(e)3C C D0(Q)andQ is bounded in E(e)l;

(c) E(e)QE(e) = QE(e), e β 21

(d) 21 contains an increasing sequence \en\ such that £ ( U W = 1 en)-l.

Under these conditions we say Q satisfies condition id) and write

X ĵ = \x \ x - E (e)x for some e G 21 }.

An important case occurs when 21 consists of all bounded Borel sets. We

shall be interested in finding a particular closed extension of Q, The con-

struction will be based on two lemmas.
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LEMMA 2.1 . Let \dn\ and \en\ be two increasing sequences of sets from

or which

E( U dΛ = E( U βΛ] = /.

//% G Ϊ j ατιJ lim^^oo O£ (dn)x existsi then

lim ζ ? £ ( e Λ ) Λ ; = lim QE(dn)x.
n —»oo 77. —» oo

Proof. Given 6 > 0, let m 0 be chosen so that if m > m0 then

\QE(dm-dmo)x\ < - 1 .
όih

Now, as £ ( U m = 0 e π ) = / and 0 is bounded in £ (dmQ)^, we can find an n 0 such

that, if n > rc0,

| ρ £ U m o - e ; i ) * | < I .
o

For any such fixed n > no we can, for the same reasons, find an mi > mo so

that

\QE(en-dmι)x\ < | .
o

Now, since

Q) = E(en -dmι) + E{en)E(dmι - dmQ) -E(dmQ -

it follows that

DEFINITION 2 2. Let {en\ be any increasing sequence of s e t s from

for which £ ( U m = 1 en) = I. We define

= {* I lim QE{en)x e x i s t s } ,

and se t Qx = lim^^oo Q£ ( e Λ ) % for % G D (())•
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LEMMA 2.2. The operator Q with domain D(Q) is closed and is the minimal

closed extension of Q on Xψ. Further5 if xED (Q), and e £ \i, then E {e)xEu (Q)

and E ( e ) Q x = QE (e)x. Also, 09 with domain E (e) D (Q)$ is the minimal closed

extension in E ( e ) X of Q on Xor , 211 = ί eσ \ σ G 21 | .

Proof. C l e a r l y , f i r s t , if e £ 2I(<?) and * G D ( £ ) , t h e n QE (e)x = E (e)Qx

s i n c e we can s u p p o s e e a member of the s e q u e n c e { en \, Now l e t xn £zD{Q)

(n = 1, 2, ) and

x0 = lim Λ;^, y 0 = lim ()Λ;Λ .
Π —» oo 72 —» oo

For any m,

and

Oh ( e w ) x0 = lim ^ £ ( e m )xn

n —»oo

a s @ i s bounded in £ ( e m ) 1 . Uut s i n c e

QE (em)xn = E (em)Qxn ,

we have

lim QE {em )x0 = lim £ ( e m )y0 = y0 .

Thus χ0 <ED(Q) and Qx0 = yQ. Clearly the extension is minimal. Finally let

x eD(Q), e £B. Then

£ ( e ) ^ = lim E{een)x

a n d

converges to £ (e )()*. The last statement follows easily.

We will also need:

LEMMA 2.3. Let \en\ be an increasing sequence of sets from 21 for which
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<t U en
* n = l

//, for each n, λ e p (Q, E ( e n ) X ) αrac?

lim (λl-QTιE(en)x

n—»oo

exists for each % G Ϊ , ί/ien λ E ρ(Q).

Proof. Clearly XI - Q is a closed one-to-one mapping of

D(λ/-ρ) = D(ρ)

into X. We must show it is onto. Let x G X and

yn = (λl-Q)-ιE(en)x.

Then lim^^oo y^ = y exists by hypothesis, and

l i m (λΙ-Q)y = l i m E {en)x = %.

n —»

Hence y G D (^) and (λ/ - Q )γ = Λ.

We note that if T is a spectral operator and To is the closed operator ob-

tained by taking for ?ί the class of bounded Borel sets and defining Qx = Tx9

x £ X^, then T = J o ΓAus α spectral operator has no proper closed extension

which is a spectral operator.

3. Scalar type spectral operators. We begin by studying the simplest type

of spectral operators, those which can be constructed from a resolution of the

identity E by integrating scalar functions. The integral we use for bounded

functions over bounded sets is that introduced by Dunford [3, Lemma 6] We

particularly recall the relations

(3.1) — — i n f \f(λ)\ < I f f ( λ ) E ( d λ ) \ < υ ( E ) s u p | / ( λ ) |
V^E) λβe J e λGe

and

(3.2) f f(λ)g(λ)E(dλ)= f f(λ)E{dλ) fg(μ)E(dμ),
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where e is a bounded Borel set, v(E)= 4M, and / and g are bounded Borel

measurable functions. 1 We denote by ΪFL the set of Horel raeasurable functions

/ each of which is finite-valued in the complement of a set φr for which

A ( ό / ) = 0.

If / G ϊίl, we let ?I be the class of bounded Borel sets on which | / ( λ ) | is

bounded and take

en = { λ I | λ | < n, | / ( λ ) | < n\ ( n = 1 , 2 , . . . ) .

We define

= lϊm

on the set D(f(S)) of % for which this limit exists . Lemma 2.2 shows that

f (S) is a closed operator, and Lemma 2.1 that we would have obtained the same

result by using any other increasing sequence { σn \ from ?τ for which

We shall denote by S the operator obtained by taking f {K) — λ and call it the

scalar operator associated with E (or if E is the resolution of the identity of

a spectral operator 7, we call S the scalar operator associated with T), Now

S is a generalization of an unbounded normal operator in Hubert space. 2 The

method we have used to construct the operators f (S) is an extension of the

method of forming direct sums of ϋilbert spaces ( s e e [ 6 , p. 4 3 ] ) .

T H E O R E M 3 . 1 . Concerning the operator f ( S ) υ e h a v e :

( 1 ) iffeh, t h e n ί Π f ( S ) ) = ί ) ( \ f \ ( S ) ) ;

( 2 ) ///, g e ϊϊl α n r f | / ( λ ) | < Λ | f f ( λ ) | , then U (g ( S ) ) C U ( / ( S ) ) ;

( 3 ) g(S) is bounded if and only if g is essentially bounded with respect

to\E(e)\;

(4) i f f e ^ a n d g ( S ) i s b o u n d e d , t h e n g ( S ) D ( / ( S ) ) C D (f ( S ) ) .

Proof, \\e note that ( 3 ) follows from formula ( 3 . 1 ) . To prove ( 1 ) , let

1 The first half of (3.1) does not appear explicitly in [3] but follows from the
second half and (3.2).

2 "Maximal normal operator" in the terminology of Stone [ 8 ] ,
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6 > 0 be given, and let

We define s ( λ ) to be | / ( λ ) | [ / ( λ ) ] " 1 for λ £ μ, and zero for λ G μ. T h e n if

x G D (/ ( S ) ) , for any n we have

\f{λ)\E(dλ)x = s(S) f f(λ)E(dλ)x+ f \f(λ)\E(dλ)x.

But | s ( S ) | < ! ? ( £ ) , and the l a s t term is in norm not greater than e υ{E). It

follows that the s e q u e n c e

is a Cauchy s e q u e n c e if

a l s o i s o n e . T h u s D ( / ( S ) ) C D ( | / | ( S ) ) T h e converse i n c l u s i o n and ( 2 ) are

proved s i m i l a r l y . F i n a l l y ( 4 ) follows from ( 3 . 2 ) , s i n c e

f{λ)E(dλ)g(S)x= f f(λ)g{λ)E(dλ)x = g(S) f f(λ)E(dλ)x.
n Jen Jen

T H E O R E M 3.2. Let { and g e lΐl.

( 1 ) If x G D ( / ( S ) ) n D ( g ( S ) ) , then x £ D ( ( / + g ) (S )) and [f (S) +

x = (f+g)(S)x.

( 2 ) If xeDig(S)) and g(S)x € D (f ( S ) ) , ί^ew x e D ( ( / g ) ( S ) )

Proof. ( 1 ) is clear. For ( 2 ) , let II consist of the bounded Borel s e t s on

which both / ( λ ) and g ( λ ) are bounded, and let

, \g(λ)\ a n d | λ | < n

Then, for any n,
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f f(λ)E(dλ)g(S)x= lira f f(λ)E(dλ) f g(μ)E(dμ)

= / fMg(k)E(dλ)x,
en

since [e f {λ)E {dλ) is a bounded operator. Thus / ( S ) g{S)x ~ {fg){S)x.

For the next theorem we will need a lemma which it will be convenient later

to have formulated for a general spectral operator.

LEMMA 3 . 1 . // T is a spectral operator E(σ(T)) = l9 and if { en\ is an in-

creasing sequence of bounded Borel sets for which

then

= u

Proof. The argument follows that of [ 3 , Theorem ]_]. Let

μ = U σ{T,E{en)X).

Clearly μC σ( T). If σ is a closed subset of μ', then, for each n9 σ ( T9 E (σen) 3C)

is a subset of both σ and σ{T9 E (e n ) 3C). Thus

E(σen) = 09 £ ( σ ) = 0, and £ ( μ / ) = 0 .

Hence E (μ) = I and μ = σ( T).

THEOREM 3.3. / / / G ΪH, ίAe/2 / ( S ) is α spectral operator whose resolution

of the identity is given by

) = E(fι(e)),

and spectrum by
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σ(f(S))= Π JJ7).
E ( e ) = I

Proof, I et σ be a fixed Borel set. If λ 0 i <J then

is bounded, and the equations

g ( S ) ( λ o / - / ( S ) ) * = *, xeE(σ)D(f(S)),

U 0 I - f ( S ) ) g ( S ) x = x9 x £ E ( σ ) X ,

s h o w λ o / - / ( S ) i s a c l o s e d o n e - t o - o n e m a p of E ( σ ) D (f ( S ) ) o n t o E ( a ) % .

T h u s σ ( / ( 5 ) , / , γ ( σ ) ϊ ) C σ .

N o w l e t

By I 3, Theorem 16 I,

Π
E(e)=E{en)

Now, by Lemma 3.1,

σ ( / ( S ) ) = U

Let

Π
E ( e ) = 7

Clearly μ^Cμ for each n. If

U

we can pick a 8 > 0 and for each rc a ίjorel set σΛ C en such that

and dist. (λ, / (σn )) > δ .
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Now if

n=l

then E ( σ 0 ) = / and λ jέ / ( σ 0 ) , and thus λ jέ μ. Hence

=5 U
71 = 1

4. The relation of T to its scalar operator. One of Dunford's principal re-

sults for bounded spectral operators is the characterization theorem [3, Theorem

8] that T is a bounded spectral operator if and only if T = S + N, where

S=J λE(dλ)

is the associated scalar type operator and N is a generalized nilpotent operator

commuting with Ί. The absence of such a theorem in the unbounded case greatly

complicates the theory. While in each subspace £(σ)3C, σ bounded, N =T -S

will be a generalized nilpotent, the natural closed extension provided by Lemma

2.2 of N on Xs)j, ( ?ϊ the class of bounded Borel sets ) may be bounded but not a

generalized nilpotent, or even unbounded. We now construct two examples which

exhibit these possibilities.

EXAMPLE 1. For each n, let §rc be rc-dimensional unitary space and let

$2 be the space of sequences [ xn J, where

•ίδ
Then § is a Hubert space. We denote by E (n) the orthogonal projection mapping

§ onto § . The Boolean algebra E of projections

7i Gσ

where α is any subset of the positive integers, is a resolution of the identity
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of the self-adjoint operator S which we define in § by

Sxn = (nξln ,...,nξnn)

and extend by Lemma 2.2 to

The operator N we define in § n by

The extension to § yields an operator of norm one which is nilpotent of order

n on § Λ We shall show that the operator

is a spectral operator. Let σ be any subset of the positive integers and CX jέ σ.

If 7i E σ, the operator

ι=o (Oί - n)ι + ι

is the resolvent operator of T in the subspace § . Because of the quadratic

nature of the norm in Hubert space, CX will be in the resolvent set of T in

E (σ)ξ> if and only if | Ka( T, § Λ ) | is uniformly bounded for all n in σ. But this

is satisfied; in fact,

lim | Λ ( Γ , S ) | = 0,
n-*oo

where n is not restricted to σ. For, given 1 > e > 0, we can pick an n0 so

large that

I (X - 7i Γ L < — for n > n0 .
2

Then, if 7i > τι0 ,

n-l i

i = 0 I Oί — 7i I
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Thus σ(T, E(σ)S^) C σ, and T is a spectral operator. To show that N is not a

generalized nilpotent, let x — \ X(\9 where

T h e n 1*1 = 1, but

I y v n

Λ

The transformation N is of a type studied by H. Hamburger [ 4 ] .

EXAMPLE 2. In this case let §^ be two-dimensional unitary space for

each n9 and form ξ> as the Hubert space of sequences \xn\ with xn- (ζlniζ2n ) ^

$}n as before. In fyn we define

Sxn = (wf l Λ, ^^2^)»

and T = S + N. Then

<oo

with similar expressions for D(S) and D(/V). As D(S) C D(Λ'), we have

D ( Γ ) = D ( S ) . Now /V has the entire plane as its spectrum since, clearly,

OGσ(IΫ), and, if β £ 0, the formula

shows that | Rβ{N$ $2n) \ is unbounded with n. However, Γ is a spectral operator.

If σ is a set of integers and Oί f£ σ then, for n G σ,

\a-n (a-n)2 (Ci-n)

Thus | β α ( ^ » § n ) | i s bounded, n & σ.
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The last example shows the degree of pathology that may arise. It is in-

teresting that we do have the following result which covers the case of Example

1.

THEOREM 4.1. Let S be an unbounded scalar type operator, and let N be a

bounded operator which commutes with the resolution of the identity for S and

is a generalized nilpotent on each of the subspaces £(σ)3C, σ bounded. Then

T - S + N is a spectral operator with the same resolution of the identity.

Proof. The relation σ ( Γ , £ ( σ ) ϊ ) C σ is clearly satisfied for all bounded

Borel sets. Let σ be an unbounded Borel set and let

en = \λ\\λ\ <^n\.

By [3, Lemma 3], the resolvent of T in E (σen ) 3£ is given by

-i ^ i f £ ( ^

j=0 σen \ A — μ )

We conclude the proof by showing that

lira (λl-T)'1 E(σen)x

exists for each x £ £ ( σ ) 3 £ and applying Lemma 2.3 in that subspace. We show

in fact that the series

E(dμ)

converges. For given 0 .< e < 1, we may pick τι0 so large that

2\N\ < e dist ( λ , e π ' o ) , 2v(E) < dist (λ , e n

and pick an nx > «o such that for any m and n with m > n > n

\i + l

Then, using (3.1), we get
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m r E{dμ) e m . I r
Ϊ+Σ\N\1\J ,
2 i=n I Jσe"o

E(dμ)

1, " w £ίi<
2 dial ( λ , β ί 0 ) fr, ϊ'

5. Operational calculus for a general spectral operator. When T is a bounded

operator and / is a function analytic on σ ( ί ) , it is well known [ l ; 9 ] that a

comprehensive operational calculus is obtained by defining

(5.1) = — f fix) (\i-τrιdλ,
9 7τ / *r

w h e r e C i s a b o u n d e d p o s i t i v e l y o r i e n t e d c o n t o u r c o n t a i n i n g σ(T) a n d e x c l u d i n g

t h e s i n g u l a r i t i e s of /. A l s o ,

(5.2) σ ( f ( T ) ) = f ( σ ( T ) ) .

Moreover, in the c a s e t h a t Γ ( = S + /V) i s a bounded s p e c t r a l operator , Dunford

h a s shown [ 3 , Theorem 9 ] tha t the operator f{T) may be e x p r e s s e d in terms of

the v a l u e s of / and i ts d e r i v a t i v e s on σ ( T) by the formula

(5.3)

the series converging absolutely in the uniform operator topology. We shall

make formula (5.3) the basis of an operational calculus in the unbounded case.

Given an unbounded spectral operator T, we denote by R the class of func-

tions / each analytic and single-valued in the complement of a closed set θr for

which E (θr) = 0. If for / e R we take

n = I λ I | λ | < n, d ist ( λ ,θf)> - I ,
} n J

then ί en \ is an increasing sequence of closed sets for which

E U e n = / ,
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and on each of which / is analytic. Moreover, T - S + N is a bounded spectral

operator in E ( e n ) 3C . Defining

f(T)x= lim Σ, — f fU)(λ)E(dλ)x

on the set D (f (T)) of x for which this limit exists, we obtain via Lemma 2.2

a closed densely defined operator. The class K is closed under sums and prod-

ucts, and by an argument exactly analogous to that of Theorem 3.2 we obtain:

T H E O R E M 5.1. Let f and g E R .

(1) // x e D ( f ( T ) ) n D ( g ( T ) \ t h e n x G D ( ( / + g ) ( T ) ) a n d ( / ( Γ ) +

g ( T ) ) x = ( f + g ) ( T ) x .

( 2 ) // xED(g(T)) and g(T)x G D (f (T))9 then xeD((fg)(T)) and

f(T)g(T)x = (fg){T)x.

As we show now by an e x a m p l e , the operator f(T) n e e d not be a s p e c t r a l

o p e r a t o r . L e t T be the operator of E x a m p l e 2 w h o s e spect rum is the s e t of

p o s i t i v e i n t e g e r s . T a k i n g

/ ( λ ) = γ 2 c o s e c 771λ + — J,

we s e e t h a t the spect rum of f {T) in E(σ)Sj) for σ any finite s u b s e t of σ(T)

i s the range of / ( λ ) on σ, t h a t i s , l i e s in the pai r of p o i n t s ± 1 . By L e m m a 3 . 1 ,

t h i s must be true a l s o of the c l o s e d operator f(T) on D (f ( T ) ) if it i s a s p e c -

t r a l opera tor . However , 0 G σ ( / ( Γ ) ) s i n c e , for xn G ίξ)Λ,

si]howing t h a t the norm of [/ ( T ) ] " ι in §n i s unbounded with n. In fact , σ(f (T))

i s the whole p l a n e .

In c o n n e c t i o n with E x a m p l e 1, it i s worth not ing t h a t there are bounded

o p e r a t o r s which are s p e c t r a l o p e r a t o r s on e a c h of an i n c r e a s i n g s e q u e n c e

E ( e n ) X of s u b s p a c e s for which

Y U e π ) = / ,
* n=ί '
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without being spectral operators on X. Such an operator in the case of Example

1 is given by S" ι + N9 where

en = {p I 1 < p <n\.

We n o w g i v e c o n d i t i o n s u n d e r w h i c h f (T) i s a s p e c t r a l o p e r a t o r .

THEOREM 5.2. Let T be a spectral operator, and let f be analytic on σ{T)

with the exception of a finite set θ- (p{, p2 , 3 p^ ) of poles for which

E{θ) = 0, and let f be either analytic at infinity or have a pole there. Then

f (T) is a spectral operator with resolution of the identity

(5.3) £ / ( e ) = £ ( f - 1 ( e ) )

and spectrum

(5.4) σ ( / ( Γ ) ) = / ( σ ( D ) .

For the proof we shall need the following lemma:

LEMMA 5.1. Let f and T satisfy the conditions of Theorem 5.2. Then

σ(f(T))Qf(σ(T)).

Proof. C l e a r l y we can s u p p o s e t h a t f{σ(T)) i s not the ent i re p l a n e . L e t

λ 0 j έ / ( σ ( T ) ) , and define the function g{λ) to be [ λ o - / ( λ ) ] ~ ι where / i s

a n a l y t i c and zero at the p o l e s of / . T h e n g i s a n a l y t i c on σ{T) and at inf inity.

T o show t h a t g(T) is a bounded operator , we can s u p p o s e that σ ( 7 ) i s not

the whole p l a n e , s i n c e otherwise g i s c o n s t a n t . Now A . E . T a y l o r [ 1 0 ] h a s

shown t h a t if T i s a c l o s e d operator w h o s e spectrum d o e s not cover the p l a n e ,

and g i s a function a n a l y t i c on σ{T) and a t infinity, then there i s an unbounded

C a u c h y domain D such that σ ( T) C D9 D i s c o n t a i n e d in the domain of g, and

an o p e r a t i o n a l c a l c u l u s i s e s t a b l i s h e d by def ining

g(λ)(λI-T)'ιdλ9

K

where K is the positively oriented bounded contour forming the boundary of D.

The operator g[T] is bounded, and, in the case T i s bounded, g [ T ] = g ( Γ ) ,

the operator of ( 5 . 1 ) . Now, recall ing the equivalence of ( 5 . 1 ) and ( 5 . 3 ) when

T is a bounded spectral operator, we let

- Ien = σ ( Γ ) n λ | | λ | < n, d i s t ( λ , < 9 ) > -
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and note that

g [Π= T-T ί gU)U)E{dλ)
•- i en

in E (en) X . T h u s , in X ,

III= lim

Moreover, g ( Γ ) = [ λ 0 / - / (71 ) ] " 1 i n £ ( e J X . Thus, by Lemma 2.3, λ 0 £σ(f(T)).

Proof of Theorem 5.2. Let σ be a fixed Borel set. Then

σ(T9E(f'ι{σ))X)Cf-ι(σ).

We now apply either ( 5 . 2 ) or the preceding lemma in the subspace E ( / " ι ( σ ) ) X,

depending on whether or not f~ι (σ) is a bounded set , to conclude that

σ(f{T),E(f'ι(σ))l)Cf(f'ι(σ))Cσ.

T h a t σ ( / ( Γ ) ) = f ( σ ( Γ ) ) follows from (5.2) and Lemma 3.1.

COROLLARY. Any polynomial in a spectral operator is a spectral operator.

A closed operator T is a spectral operator if and only if, for some λ0 j έσ(Γ),

(λ 0 / - T)mί is a bounded spectral operator.

Proof. The first statement is clear, as is the necessity of the second. For

the sufficiency we note that

T = / ( U o / - TYι ) , where / (λ) = λ0 - - .
A

If we restrict /V to be a generalized nilpotent we obtain a broad operational

calculus of spectral operators. All we need require of an analytic function / is

that its singularities in the finite plane (with the exception of a finite set of

poles as before) shall not be arbitrarily close to σ ( T ) .

THEOREM 5.3. Let T be a spectral operator and T = S + N9 where N is a

generalized nilpotent. Let f be a function for which there exists a constant

r > 0 such that f is analytic {with the possible exception of a finite set
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$ = (p t , , p^ ) of poles for which E (θ) — 0) in the open set

μ f = { λ \ d i s t ( λ , σ ( Γ ) ) < r } .

Then f (T) is a spectral operator whose resolution of the identity and spectrum

are given by ( 5 . 3 ) and ( 5 . 4 ) . The class of such functions is closed under sums

and products. If f if bounded on μ/ , then f (T) is bounded.

The proof proceeds exactly as before once we have:

LEMMA 5.2. / / / satisfies the conditions of Theorem 5.3, then

σ(f(T))Cf(σ(T)).

Proof. L e t / a n d r b e g i v e n a n d λ 0 £ f ( σ ( T ) ) . A g a i n w e d e f i n e g ( λ ) t o b e

)"1 where /is analytic and zero at the poles of /. Then as λ0 £f(σ(T))

there is a constant s > 0 such that g is analytic and bounded in

μ = U | d i s t ( λ , σ ( Γ ) ) < 2s i.
σ

T h e f o r m u l a

where C is a circle of radius s, shows that if | g ( λ ) | < K on μ , then

g(n)(λ)

Since

Ks-n, λ£σ(T).

lim \Nn\ι/n=0,
n—»oo

the series

n=0 "" v * '

converges in the uniform operator topology. Moreover, if

λ | | λ | < n9 dist (λ
l )

, θ) > - L
n )
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g{T) i s t h e r e s o l v e n t o f f ( T ) o n E{en)£. A p p l i c a t i o n o f L e m m a 2 . 3 s h o w s

t h a t λ 0 £ σ(f(T)).
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