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1. Introduction. It is the purpose of this paper to prove several theorems

describing the rate of increase, as t—»+oo, of real solutions of algebraic dif-

ferential-difference equations of the form

(1) P ( t , u ( t ) , u ' i t ) , u ( t + l ) , u ' ( ί + D ) = 0 .

In this equation, and throughout this paper, P (t9u9v9 •) denotes a polynomial

in the variables t9 u9 v9 , with real coefficients, and a prime denotes dif-

ferentiation with respect to έ. In order to explain the significance and limita-

tions of these theorems, it is first necessary to summarize the work, by other

investigators, which suggested the present discussion.

In 1899, E. Borel, [ l ] , published a memoir in which he studied the magni-

tude of solutions of algebraic differential equations. His result, as later im-

proved by E. Lindelδf, [4], is quoted here for reference:

Let u(t) be a real function which is defined and which has a continuous

first derivative for all t larger than to, and which satisfies the first order alge-

braic differential equation

(2) P(t,u(t),u'(t)) = 0

for t > t0. Then there is a positive number ks which depends only on P9 such

that

\u(t)\ < exp (tk/k)

for t >_ £Q

It is noteworthy that it is impossible to prove a result of the above type for

higher order equations. For a discussion of this point, refer to Vijayaraghavan,

[ 7 ] .
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Extensions of the Borel-Lindelof method to difference equations have already

been effected by Lancaster, [3], and Shah, [5] and [β] . Shah demonstrated

that no theorem comparable to that of Borel and Lindelδf can be obtained for

the class of algebraic difference equations of the form

(3) P i t , u i t ) , u i t + l ) ) = 0 .

For, let git) be an arbitrary increasing function which becomes indefinitely

large as t—» + oo. Shah proved that it is poss ible to construct an equation of

the type ( 3 ) with a real solution uit) which exis t s and is continuous for t >_t0

and which exceeds git) at each point of a sequence \tn\ such that tn — » + o o

as n—>oc. The situation with respect to higher order equations is similar.

Shah did, however, obtain the following weaker resul ts concerning the possible

rate of growth of solutions of ( 3 ) :

There exists a positive number A, which depends only on the polynomial P,

with the following property: if uit) is, for all t >_ to, a real continuous solution

o / ( 3 ) , then there is no number T such that1

I uit) I > e2iAt) for all t > T.

That is, for each such solution uit) there is a sequence tχ$ t2, itn—> + oc

as n —> oo) such that

( 4 ) \uit)\ <e2iAt)

for t — t\, t2 , . If uit) is a real, continuous, monotonic solution o / ( 3 ) for

t >_ to, then there exists a number T >_ £Q such that ( 4 ) holds for all t >_ T.

We shall now turn to a discussion of the c lass of differential-difference

equations of the form ( 1 ) . We first make the following definition.

DEFINITION. A real function uit) will be said to be a proper solution of

a differential-difference equation ( 1 ) if there exis t s a number t0 such that uit)

exists and is a solution of ( 1 ) for all t >_ t0, and such that uit) has a con-

tinuous first derivative for t >_ to.

In view of Shah's resul ts on difference equations, it is not to be expected

that a theorem analogous to the Borel-Lindelof theorem should hold for first

We here employ the notation e2ix)= exp iex ) which was adopted by G. H. Hardy,
[ 2 ] .
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order differential-difference equations. However, it might be expected that a

result like that of Shah could be obtained for equations of the class (1) . This

is not the case, as is shown by the following theorem.

THEOREM 1. Let git) be an arbitrary increasing function which becomes

indefinitely large as t — > + oo. It is possible to construct an algebraic dif-

ferential-difference equation of the form

(1) P ( t , u ( t ) , u'it), uit + 1 ) , u'(t + l ) ) = 0

which has a proper solution u ( t ) which exceeds git) for all t. This statement

remains valid if equation ( 1 ) is replaced by the equation

( 5 ) P(t,u(t),u'(t),u'(t+l)) = Q.

Proof, We shall prove this theorem at once by constructing a suitable ex-

ample. Define a function uit) as follows. Let uit) = gin + 2) + 1 in the in-

terval \_nt n + 1 ] , for n - 0, 2, 4, . ϊn the intervals [n9 n + l ] , where n = 1, 3,

5, , let uit) be any continuous, non-decreasing function which has a con-

tinuous first derivative, and for which

u i n ) = g i n + D + I , a U + l ) = g U + 3 ) + l , u ' i n ) = u ' i n + D = 0.

It is clear that the function so defined satisfies the equation

( 6 ) i t ' ( ί ) i ί ' ( ί + D = 0

for all t > 0. Furthermore, uit) is non-decreasing for all t and uit) > git)

for t >̂  0. Since equation (6) is in the class of equations of the form ( 1 ) , and

in the class of equations of the form ( 5 ) , the proof of Theorem 1 is complete.

This theorem is in sharp contrast to those for algebraic differential or dif-

ference equations. It shows that no bound at all can be placed on the rate of

growth of solutions of differential-difference equations of the form ( 1 ) . The

same difficulty intrudes even if we speak only of monotone solutions.

It is, however, possible to obtain useful bounds on the rate of growth of

solutions of less general classes of differential-difference equations. We ob-

serve first of all that, according to Theorem 1, no results like those of Borel

or Shah can be obtained for the class of equations of the form ( 5 ) . We shall,

however, prove analogous results for equations of the following types:

(7) Pit,uit), u ' ( ί + l ) ) = 0
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( 8 ) P ( t , u ( t ) , u ' ( t ) , u ( t + l ) ) = 0

( 9 ) P ( t 9 u ' ( t ) , u ( t + l ) ) = 0 .

Even for such equations it is not possible to establish a theorem like the βorel-

Lindelδf theorem. This may be seen from the following simple counterexample.

Let git) be an arbitrary real, continuous, increasing function which becomes

indefinitely large as t —» + oo. Let m be any non-negative integer. Let u{t) = tm

for t in the intervals [2n, 2n + 1 ] , n - 0, 1, 2 , . . . . For t in the intervals (2n + 1,

2/z + 2) , n = 0, 1, 2 , . . . , let u ( t ) be defined in any convenient fashion for which

u'(t) is continuous and ui2n + 3/2) > g ( 2 π + 3/2). This function uit) ex-

ceeds g ( ί ) for arbitrarily large values of t, and satisf ies each of the following

equations for all t > 0:

( 1 0 ) U ' ( t + l ) - m ( t + l Γ - ι H i x ( t ) » ί ' π i = O

( I D U ( ί + i ) - ( ί + i ) m ] U ' ( f ) - / H ί ' 7 | - ι ] = o .

Note that ( 1 0 ) is an equation in the class ( 7 ) and equation ( 1 1 ) is in the

class ( 8 ) and ( 9 ) . Furthermore, all the above remarks are correct for m = 0,

in which case ( 1 0 ) and ( 1 1 ) are equations with constant coefficients. The

following theorem has therefore been proved.

THEOREM 2. Let # ( ί ) be an arbitrary increasing function which becomes

indefinitely large as t — > + oc. It is possible to construct a first order algebraic

differential-difference equation of the form

( 7 ) P ( t , u ( t ) , u'(t+ l ) ) = 0

with a proper solution u ( t ) which exceeds git) at each point of a sequence

\tn\ for which tn—> + oc a s n — » o o . The statement remains true if ( 7 ) is

replaced by equation ( 8 ) o r equation ( 9 ) , or by one of the equations

( 1 2 ) / ) ( « ( t ) , u ' ( i + l ) ) = 0

( 1 3 ) P ( i ί ' ( ί ) , « ( ί + l ) ) = 0 .

Although we cannot establish theorems of the ΰorel-Lindelδf type for the

c l a s s e s of equations mentioned above, we have proved several resul ts analogous

to those of Shah. These results are stated in Theorems 3, 5, and 6 of t 3 below.

Moreover, in Theorem 4, s tated below, we have proved a theorem of the Borel-

Lindelδf type for a certain subclass of equations of the type ( 7 ) . No theorems
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are given in this paper for equations with higher order derivatives or differences,

since results like those mentioned above can be obtained only for rather special

classes of such equations.

2. Lemmas. In this section, we shall prove several lemmas which will be

required in proving the theorems of V 3.

LEMMA 1. Suppose that u{t) is, for all t >_ t0} a positive function with a

continuous first derivative. Let Λ and B be two positive numbers for which

B < e . Let C be an arbitrary non-negative number. Suppose that there is a

sequence { τn \ for which τn —> + oo as n —> oo and for which u(τn) >_ e2( Aτn).

Then there exists a sequence \ tn \ for which tn—> + oo as n —» oc and for which

u'(tn + 1) > tC u(tn)
B.n n n

Proof. Assume that u(t) is a positive function with a continuous first

derivative, and that

( 1 4 ) „ ' ( * + 1 ) < ! C u ( t ) B

for all t > T. We shall prove that as a consequence there is a number T2 such

that

(15) u(t) < e2(Λt)

for t >_ T2. This will prove Lemma 1. We divide the proof of (15) into two cases.

Case 1. We assume that B > 1. We may, of course, suppose that T is as

large as is convenient; choose T so large that

(16) β/- ι log T > / - I (; = 1 ,2,3, . . . ) .

This is certainly true for / sufficiently large if log T > 0, and by choosing T

large enough we can ensure that it is true for all /. Then for / = 1, 2, 3, ,

(17) (2T)B}'1 > 2TB3'1 > T + eΐ'1 > T + j .

Having chosen T, define

M' = max u(t), M = m a x (M', 1 ) .

T <t < T+ 1

We shall now prove by induction that
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(18) nit) <MBnf\ (T + j
7 = 0

for T + n < t < T + n + 1 (n = 0, 1, 2, ). This is evident for n ~ 0. Suppose

that (18) has been proved for n = k - 1 (A > 1). Then by (18) and (14)

for T + k — 1 <. £ <^ T + k. Upon observing that the right hand side of inequality

(18) is an increasing function of n, and employing (14) again, we get

u'(t + l)dt

< i / + ( 7 ' + A ) c ( * - l ) , W β * Π ( F

On integrating the first inequality under ( 1 8 ) from J + k - 1 to t, where t < T + k$

and combining with the inequality jus t derived, we obtain

u(t + l) <t(T + k)cMB Π ( Γ + / ) ( c + ι ) β "' ( Γ + fc-l^ί^Γ + A) .

7=o

Replacing t by J + & in the right member of the above inequality, we see that

( 1 8 ) is valid for n — k. This completes the inductive proof of ( 1 8 ) .

We now employ ( 1 7 ) . ( 1 8 ) takes the form

u ( ί ) < [ i f ( 2 ί ) U + l ) ( c + ι ) f = β 2 in log B + log ί ( 1 + n)(C + 1) log ( 2 7 ) + log M \]

for Γ + Λ < t < T + n + 1. Let Λ = max ( 2 Γ , Aί). Then

w ( ί ) < e 2 [ ̂  log β + log (nC + n + C + 2) + log log R ]

ίor T + n <^t <_ Γ + 7& + 1. Since log B < A by hypothesis, ( 1 5 ) follows.
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Case 2. We now assume that B < 1. Using the same method as in Case 1,

we can easily prove by induction that

n

(19) uit) <M Π ( 7 + / ) c + 1

for T + n < t < T + n + 1 (n = 0, 1, 2, . . . ) . Hence

u(t) <M(T + n ) U + ϊ ) { C + ί ) < , W i ( C + l ) ( ί - Γ + l )

for 7 +72 <_ ί < 7 + 72 + 1. ( 1 5 ) follows at once. This completes the proof of

Lemma 1.

LEMMA 2. Suppose that u{t) is, for all t >_ to, a positive non-decreasing

function with a continuous first derivative, and that uit) >_ eiiAt) for t >_ ίo

Let B and C be any non-negative numbers for which B + C < e , and let D be

any non-negative number. Then, given any positive number €$ there exists a

sequence tγ, t2 , (tn — > + co as n — > oc ) such that

(20) u(tn + 1 ) > u(tn)
Bu'(tn)

C

( Λ = 1 , 2 , . . . ) .

(21) t ° u i t n ) < u ' { t n ) < u ( t n ) i + 6

Proof. We divide the proof into two cases .

Case 1. Suppose that u'(t) ^tDu(t) for all sufficiently large t, say for

t >_ to. It will be sufficient to prove the lemma for values of £ so small that

( β + C ) ( l + e ) < e / 1 . Let e be any such number, and let Cί = ( B + C) ( 1 + e ) .

Borel, [ l ] , proved that if a function uit) i s , for all t >_ to, a posit ive, non-

decreasing function with a continuous first derivative, then, given any positive

number e, u' (t) >_ uit) e at most on a set of intervals the sum of whose

lengths is a finite number (which depends on e). This result will hereafter be

referred to as Borel 's Lemma,

If uit) satisf ies the hypotheses of Lemma 2, then by Borel 's Lemma there

is a number T >^ t0 such that u'it) <uit)l + € for all t > T, except for t be-

longing to a set E of intervals of total length less than 1/2. We can now choose

a number r > T such that no point of the sequence r , r + 1, τ + 2, , belongs

to E. It follows that ( 2 1 ) holds for each point tn — T + n. We shall now show
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t h a t ( 2 0 ) h o l d s a t the p o i n t s of an inf in i te s u b s e q u e n c e of t h e s e q u e n c e {τ+ n\

If t h i s i s not t rue , t h e r e i s an i n t e g e r /V s u c h t h a t

u { r + n + 1 ) < u i τ + n ) B u ' ( τ + n ) C for all τι > /V.

This implies that

u{τ+n + 1 ) < u(τ+n)a for rc > /V.

It follows that

u ( τ + N + m ) < e 2 [ m l o g (X + l o g l o g u ( r + N ) ]

for m = 1, 2, 3 , . S i n c e log Cί < A, t h i s c o n t r a d i c t s the h y p o t h e s i s t h a t

u(t) >_ e2(At) for t >_ to. It fo l lows t h a t t h e r e i s an inf in i te s u b s e q u e n c e of

the s e q u e n c e j r + n \ a t which ( 2 0 ) i s v a l i d . T h i s c o m p l e t e s the proof in C a s e

1.

Case 2. T h e a l t e r n a t i v e to the s u p p o s i t i o n of C a s e 1 i s t h a t u'(t) < t u(t)

for a r b i t r a r i l y l a rge v a l u e s of £. We def ine Cί a s in C a s e 1, and a g a i n s u p p o s e

6 so s m a l l t h a t log (X < A. From t h e fact t h a t u(t) >_ e 2 ( ^ ί ) it fo l lows t h a t

u' (t) > t uit) for a r b i t r a r i l y l a r g e ί. By c o n t i n u i t y of u ( t ) a n d u' (t), u' (t) <

tDu(t) in o p e n i n t e r v a l s , a n d u ' ( ί ) > ί uit) in c l o s e d i n t e r v a l s . L e t t h e

o p e n i n t e r v a l s be

(au bι\ (a2$b2 ) , • • • , (an, b n ) , .••

(αi >_ to) and let the closed intervals be

[ bί9 a2 X [ b2, a3 ], , [ bn, α^ + i J, .

Note that an —» + oc and bn —» + oc, and that

(22) u'(an) = a»u(an) a n d u'(bn) = b £ u ( b n ) .

By Borel 's Lemma, u'(t) <u(t)1 € for all t except for ί in a set E of

open intervals of finite total length. Let En be the subset of E contained in

[bnfan + ι] and let Ln be the sum of the lengths of the intervals of En. Then

lim Ln — 0 as n —»oo. We shall prove that there are arbitrarily large values of

n for which there is at least one point tn in the interval [bn, α n + i l such that

u(tn + l) ^ u ( t n ) B u ' ( t n ) C
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and such that tn is not in En The proof will be by contradiction. Assume the

contrary. Then there is a positive integer N such that, for every n >_ N,

(23) u(t + 1 ) < u(t)Bu'(t)C

for a l l t w h i c h a re in ίbn9an + ι] b u t not in En.

F i r s t we s u p p o s e t h a t 0 < OC <_ 1. S i n c e u(t) >^ β2^At), we may s e l e c t

a n i n t e g e r p >_ /V s u c h t h a t

u{bn)
e > b® for all n > p .

Equations ( 2 2 ) therefore imply that

u ( bn) > u' ( bn) for all n >^ p .

Hence bn is not in En if n >_ p. Consequently ( 2 3 ) implies that

u ( b p + 1 ) < u ( b p ) B u ' { b p ) C < u ( b p ) a < u ( b p ) .

But u{t) is non-decreasing. Thus we have reached a contradiction, and (23)

cannot be true if 0 < α < 1.

Suppose, then, that Cί > 1. Just as before, we may select an integer p >̂  N

such that bn is not in En for n >_ p. We also choose p so large that Ln < 1 for

n >_ p and so large that

(D+l)ζD

 mb

(24) max < α p log u ( bp ) .
ζ > bp cίζ log α

This is possible because the right-hand member becomes indefinitely large as

p — > + o c , since u(t) > e 2 ( ^ ί ) and A > log Cί, and because the maximum in

the left member is finite. Define cp = bp. We shall now employ an inductive

method to establish the existence of a sequence cp) cp+ι, Cp+2, , for which

(25) l o g i t ( c p + i ) < α C p + i ' C p + Σ δ M o g u ( C p )

(i = 0, 1, 2, ), where the summation is over all j >_ p for which bj <_ cp + ι.ι,

and where the δy are defined below. In the first place, it is clear that (25) is

true for ί = 0. Suppose that we have established the existence of points cp+ι,

cp + 2> , cn+A;-1 (A: >_ 1) for which ( 25) holds. There are now two possibilities:
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( a ) One possibil ity is that the point Cp+k-i l ies in an interval [ ^ α ^ + i l

for some value of q. If this is so, Cp+ji.ι may lie in Eg, or it may not. Let eq ι

be the smallest non-negative number such that Cp+fo. t — eqy\ * s i n t^σ> α σ + i ]

but not in Eg. Such a number exists , s ince bg is not in Eg. Then, by ( 2 3 ) ,

) ll'll' ( C p + & . i - 6q f

By B o r e l ' s Lemma and the fact t h a t uit) i s n o n - d e c r e a s i n g , t h i s g ives r i s e to

Since £gfι < Lg < 1, the points Cp+^.i and Cp+^.i + 1 — £qfι cannot lie in the

same interval of Eg. If Cp + k-ι + 1 - 6 ^ 1 > α^ + i, we define Cp+k= Cp+^.i +

1 — eq, l If n°t> w e proceed as follows. Let €qf2 be the smallest non-negative

number such that Cp+^.i + 1— €„ ι — e^ 2 is i n [bq, a,q + ι] but not in Eg, Using

( 23) again, we find that

u(cp+k.ι + 2 - 6gfi - 6gf2) < U ( Cp + ^ . 1 + 1 - 6 ^ 1 - 6 9 , 2 ) α

and therefore that

log zi(cp+fc.i + 2 - e 9 > i - 6qf2) < a2 log w ί c p + ^ . i ) .

We continue in this manner, obtaining a sequence of points

Cp+k-l » Cp+k-l + 1 ~ eq, 1 > c p+/c-l + ^ - β ^ 1 - £q,2 9 ' ' ' 9

no two of which can lie in the same interval of Eg. Let

cp+kΊ + r ~ eq,l ~ ' •• ~ eq,r

be the first point in this sequence which is larger than α^ + i; such a point must

.exist since

δq = 6gf 1 + e ^ 2 + + ^ , r < Lq < 1 .

Define

cp+k = + 6 6

T h e n
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lozu(cp+k) < aΓ l o g u(cp+kmi) = oίCp + k~Cp+k'1 + ^ l o g u

C o m b i n i n g t h i s r e s u l t wi th ( 2 5 ) for ι = k - 1, we find t h a t ( 2 5 ) h o l d s for ί = k,

with t h e c h o i c e of Cp+fc made a b o v e .

( b ) T h e a l t e r n a t i v e to ( a ) i s t h a t Cp+fr.γ l i e s in an i n t e r v a l (aq, bq) for

some v a l u e of q. ( I n t h i s c a s e k >_ 2, s i n c e cp - bp.) Now u'(t) < tD u{t)

for a l l t in t h i s i n t e r v a l . H e n c e , by i n t e g r a t i o n ,

( 2 6 ) u(bq) < ϋ

In this case, we define Cp+fo = bq, We shall now show that, with this choice

of Cp+k, (25) is satisfied for i - k. From the extended theorem of the mean and

the inequality (24) we can deduce

This inequality will still be true if, in the right member, we place the additional

factor

Σs,
α ' ,

where the summation is over all / >_ p for which bj < Cp+/C.2 Using this result,

( 26), and ( 25) for i = k - 1, we obtain

log u(cp+k) < c°:i - c ^ + l o g u ( C p + A . ι )

The inequality ( 2 5 ) for i ~ k is an immediate consequence.

This completes the proof that there is a sequence of points Cp+i for which

( 2 5 ) is valid. It is clear that cp+i—> + oc as i —»oo. Since the sum of the

δj (/ = 1, 2, •) is no greater than the sum L of the lengths of all the intervals

of E,

log u ( t ) < a Cp log u ( Cp) - exp [( t - cp -f L) log Cί + log log u(cp)]

for t - Cp+i ( i = 0, 1, 2, ). Since log Cί < A9 it is a consequence of the above

inequality that there is a positive integer / such that log u{t) < exp (At) for

t = Cp + i {i > / ) . This contradicts the hypothesis of Lemma 2. Therefore ( 2 3 )

cannot be true if (X > 1. Hence, no matter what the value of (X, there are arbi-

trarily large values of n for which there is at leas t one point tn in the interval
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[bn9 an + ι] such t h a t

u(tn + l) >_uitn)
Bu'itn)

C,

a n d s u c h t h a t tn i s n o t i n E n . S i n c e tn i s n o t i n E n 9 u'{tn) ^ u i t n ) 1 * 6 f o r

e a c h s u c h t n . S i n c e tn l i e s i n [bn9 an + ι], w e h a v e u'{tn) >_tΌuitn). T h i s

completes the proof of the lemma.

LEMMA 3. Suppose that uit) is, for all t >_ ίO ί α positive function with a

continuous first derivative, and that uit) >^e2iAt) for all t >_ t 0 . Let C be

any non-negative number less than e . Then there is a sequence t\9 t2 >

( t n — > + co as n — > oo) such that

uitn + l) > u ' ( t n ) C , u'(tn) > e t n .

Proof. F i r s t we s u p p o s e that there i s a number T >^ t0 s u c h t h a t u'it) >_ eι

for t >_ T. Then uit) i s non-decreas ing for t >_ T, and the r e s u l t follows a t

once from Lemma 2.

On the other hand, s u p p o s e t h a t u'(t) < el for arbi trar i ly large v a l u e s of ί.

Since uit) >_ e2iAt), u'it) > e for arbitrari ly large v a l u e s of t. Therefore

there i s a s e q u e n c e of numbers t\f t2$ itn—> + oo a s n—»oo) such that

u' itn) = exp itn ). There e x i s t s a p o s i t i v e integer N such that

u i t n + D > e 2 l A ( t n + l ) \ > i e t n ) C = u ' i t n ) C

for n >_ N. This completes the proof of Lemma 3.

3. Theorems. We can now state and prove the theorems alluded to in the

last paragraph of the introduction. The first of these is the following.

THEOREM 3. Consider any equation of the form

(7)

There exists a positive number Λf which depends only on the polynomial P9

with the following property: to each proper solution uit) of ( 7 ) there corre-

sponds a sequence t\9 t2> ( t n — > + oo a s n — > oo) such that

( 4 ) | M ( ί ) | < e2iAt)

for t - tn in ~ 1, 2, 3, ). That is9 if uit) is a proper solution of%i7) then there
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i s n o n u m b e r T > 0 f o r w h i c h \ u ( t ) \ >_ e 2 ^ A t ) f o r a l l t >_ T.

Proof. Equation ( 7 ) may be written in the form

Σ, Σ Σ
1=0 /=0 /c = 0

where

The aijk are real numbers independent of t. Among the terms Ί^ there is one

term Tpqr se lected in the following way:

( 1 ) Choose r — K.

( 2 ) Choose q to be the greatest of the values of j among all the terms T(jr .

( 3 ) Choose p to be the greatest of the values of i among all the terms I ^ Γ .

The term Tpqr so defined will be called the principal term.

Except for constant factors, the ratios Tijk/Tpqr a r e ° ί the following three

possible types (excluding the ratio Tpqr/Tpqr):

( a )

where ΓQ and rγ are rational numbers and r > k.

ί2 ]q->
(b) —

where Γ2 is a rational number and q > j.

( c ) tf"P

where p > i. Let R be the least non-negative number which is greater than or

equal to the maximum value of ri for all ratios of type ( a ) . Let A be any posi-

tive number such that e > R.

Now suppose that u(t) is a proper solution of ( 7 ) and that u{t) >_

for t >_ T. Choose B so that R < B < e . I t follows from Lemma 1 that there

exists a sequence { tn\ for which tn —> + oo as n —»oo and for which u' (tn + l)>

uitn)
B. For each value t = tn9 the function u(t) sat is f ies not only equation
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(7), but also the equation

/ J K J

t 2 8 ) ΣΣΣr=°
i-0 ; = 0 k=0 pqr

Since uit) >_ e2iAt), all ratios of types ( b ) or ( c ) approach zero as tn —» + GO.

Each ratio of type ( a ) is bounded by

' « ( * ) *

uit)1

r-k

when t — tn, for appropriate values of ΓQ and k. Since B > R and r > k, each

such ratio approaches zero on the sequence { tn}. It now follows that we may

find a positive integer N such that the sum of all ratios Tij^/Ίpqj is less than

one in absolute value when t = £#, whereas Tpqr/Tpqr = 1. Thus ( 2 8 ) cannot

be satisfied at the point tf^ This contradiction shows that a proper solution

uit) of ( 7 ) cannot satisfy uit) >_ e2iAt) for all t >_ Ί.

Moreover, a proper solution uit) of ( 7 ) cannot satisfy uit) <^ — e2iAt)

for all t >_ T. For if it could, the function U it) = - uit) would satisfy Uit) >

e2iAt) for t > T and would be a proper solution of an equation of the type ( 7 ) .

We have just shown that this is impossible. Since a proper solution is con-

tinuous, this completes the proof of Theorem 3.

The following theorem gives a much stronger result than does Theorem 3,

but for a smaller c lass of equations.

THEOREM 4. Let uit) be a non-decreasing or non-increasing proper solution

of an equation of the form

I

( 2 9 ) 2 1 aiLKtϊuit^u'it + Ό* + 2^ aijkt
iu{tYu'(t+ 1 ) A = 0 ,

wherein the a^j^. are constants and the latter summation is a triple summation

over the ranges i = 0, 1, , /; j = 0, 1, •••,/; k - 0, 1, , K - 1. ( L may be

greater than /, equal to /, or less than J.) Then there exists a number A > 0,

ivhich depends only on the form of (29), and there exists a number T > 0, which

depends on (29) and on uit), such that

(4) \uit)\ < e2iAt)
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for all t > T.

Proof. The method used in the proof of Theorem 3 for selecting the principal

term Tpqr leads to the choice p = /, q = L, r = K ίor the equation ( 2 9 ) . Except

for constant factors, the rat ios Ύij]i/Ύpqτ are of the following two poss ib le types

(excluding the ratio Tpqr/Tpqr):

( a )

where r 0 and r\ are rational and K > k.

where / > i. Define R, A, and B as in the proof of Theorem 3. Let C be any

positive number for which C/2 is larger than the maximum value of r 0 for all

ratios of type ( a ) .

Now suppose that u(t) is a proper, non-decreasing solution of ( 2 9 ) for

which u(t) >_ e2(^.1) for a sequence { τn \ of values of t for which τn —» + 00 a s

n—> 00. It follows from Lemma 1 that there exis ts a sequence \ tn\ for which

tn—> + 00 and for which u' ( t n + 1) > tR u ( t n ) . For each value t = tn, the

function u(t) sat is f ies not only equation ( 2 9 ) , but also the equation ( 2 8 ) ob-

tained by dividing by the principal term. But for t = tn all ratios of type ( b )

approach zero as n —> 00. Each ratio of type ( a ) is bounded by

t C / 2 u ( t ) R

t C u ( t ) B

K-k

S i n c e B > R a n d K > ks a n d s i n c e u(tn)—» + 00 a s tn—»+oo, e a c h s u c h

r a t i o a p p r o a c h e s z e r o . We t h u s o b t a i n t h e s a m e c o n t r a d i c t i o n a s in t h e proof of

T h e o r e m 3. No s u c h s o l u t i o n u(t) c a n e x i s t . T h e r e f o r e to e a c h p r o p e r non-

d e c r e a s i n g s o l u t i o n u(t) t h e r e c o r r e s p o n d s a T > 0 s u c h t h a t | w ( ί ) | < β 2 ( / 4 ί )

for a l l t > T.

If a p r o p e r , n o n - i n c r e a s i n g s o l u t i o n u(t) e x i s t s for w h i c h u(t) £ - e2(At)

for t = τn ( n = 1, 2, . ) , w h e r e τn —» + oc a s n — > 00, we de f ine U ( ί ) = - u(t),

and o b t a i n t h e s a m e c o n t r a d i c t i o n . T h e r e f o r e t o e a c h p r o p e r , n o n - i n c r e a s i n g

s o l u t i o n u(t) t h e r e c o r r e s p o n d s a Ί > 0 s u c h t h a t | w ( ί ) | < e2(At) for a l l

t >_ T. T h i s c o m p l e t e s t h e proof of T h e o r e m 4.

Our n e x t t h e o r e m i s a s f o l l o w s .
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THEOREM 5. Consider any equation of the form

( 8 ) P(tfu(t),u'(t),u(t + l)) = O.

There exists a positive number A, which depends only on the polynomial P>

with the following property: to each proper non-decreasing or non-increasing

solution u(t) of ( 8 ) there corresponds a sequence t\, t2, (tn—> + 00 as

n —» 03) such that

( 4 ) \ u ( t ) \ < e2(Λt)

for t = tn (n = 1, 2 , . ) . That is, if u(t) is any proper non-decreasing or non-

increasing solution 0 / ( 8 ) , there is no number T > 0 for which \u(t)\ >_ e2(At)

for all t >_ T.

Proof, Equation ( 8 ) may be written in the form

H I J K

Σ Σ Σ Σ τhiik-o

Λ=o ί=o 7=0 k=0

where

T h i j k = a h i j k t h u ( t Y u ' i t ) ' u ( t + l ) k .

The ahijfc are real numbers independent of ί. We select a principal term TpqΓS in

the following way. Let S be the set of all terms Thijk* Let S t be the subset of

S consisting of those terms for which k = K. Let Mi be the maximum value of

i + j for all terms in S l β Let 52 be the set consisting of those terms of Si for

which i + j = M\. Let M2 be the maximum value of j for all terms in S 2 . Let

S3 be the set containing those terms of S2 for which j — M2. Let Λ/3 be the

maximum value of h for all terms in S 3 . There is a unique term in S3 for which

h = M3. This term will be called the principal term. We shall use the symbol

Tpqrs f o Γ it.

Except for constant factors, the ratios Thijk/Tpqrs are of the following

possible types (excluding the ratio TpqΓS/TpqΓS):

t u\t) u
( a )

u(t+l) I

where ΓQS Γ I , and τ2 are rational numbers and s > k.
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(b)

where q + r > i + /. Since i s /, q9 and r are i n t e g e r s , terms of type ( b ) fall into

one of the following two s u b - c l a s s e s .

u'{t)m+n

where m is an integer, h — p is an integer, n is a positive integer, and m + n is

a non-negative integer.

( 2 )
t3u'(t)

Lω 1 + Γ 4

m

where m and n are positive integers, h - p is an integer, r 3 is a rational number,

and Γ4 is a positive rational number.

( c )
Puit)

u'it)

where re, is a rational number and r > /.

(d) &P

where p > h.

Let Ro be the maximum value of Γo for all ratios of type ( a ) . Let R' be the

maximum value of rL for all ratios of type ( a ) , and let Rι = max ( 0 , R^). Let

/v' be the maximum value of Γ2 for all ratios of type ( a ) , and let R2 — max

(0, β p . Let A be any number such that e > ^ i +/?2 Select any numbers B

and C for which B > R\, C > R2, and B + C < e . Let /?3 be the maximum

value of Γ3 and let M be the maximum value of m for all ratios of type ( b 2 ) . Let

R4 be the minimum value of r$ for all ratios of type ( b 2 ) . Let e be any positive

number less than /v4/2. Let R^ be the maximum value of Γ5 for all rat ios of

type ( c ) , and let R$ = max (0 , R$). Select any number D for which D > R5.

Now assume that there exis ts a proper, non-decreasing solution nit) of ( 8 )

for which uit) >^ e2(At) for all t >_ ίo By Lemma 2 there exis ts a sequence

{ tn ] such that ( 2 0 ) and ( 2 1 ) are satisfied. For each value t = tn, uit) sat is f ies

not only equation ( 8 ) , but also the equation
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h-0 /=o

N o w s i n c e uit) >_ e2iAt) a n d u' it) >_ tDuit) w h e n t - tn, a l l r a t i o s of t y p e s

( b l ) , ( c ) , a n d ( d ) a p p r o a c h z e r o a s tn—» + oo. A l s o , e a c h r a t i o of t y p e ( a )

i s , a c c o r d i n g t o ( 2 0 ) , b o u n d e d b y

tRou(t)Rιu'(t)R2 s-k

u(t)Bu'(t)C

when t = tn; and each ratio of type (b2) is, according to (21), bounded by

vω
uit) l + 2 e

R3 // \
ί U it)

u'it)uitY

when t — tn. Since B > R\ and C > R2, all these ratios tend to zero as tn—> + oo.

This conclusion yields a contradiction, just as in the proofs of the earlier

theorems. Therefore no such solution uit) can exist.

The assumption that a proper, non-increasing solution uit) sat is f ies uit) <^

- e2iAt) for all t >_ t0 may be shown to lead to a contradiction by defining

The conclusion stated in Theorem 5 follows.

Our final theorem is the following.

THEOREM 6. Consider any equation of the form

(9) Pit,u'it), u(t

There exists a positive number A, which depends only on the polynomial P, with

the following property: to each proper solution uit) of ( 9 ) there corresponds a

sequence tχ9 £2* i^n — > + <x> as n — > 00) such that

( 4 ) \uit)\ < e2iAt)

for t - t n in = 1 , 2 , ) . Γ Λ α ί i s , if uit) is any proper solution of ( 9 ) , there is

no positive number T for which \uit)\ >_ e2iAt) for all t >_ T.

Proof. Equation ( 9 ) may be written in the form ( 2 7 ) , where
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The principal term TpqΓ is selected as follows:

(1) r=K;

(2) q is the greatest of the values of / among all terms T(jr;

(3) p is the greatest of the values of i among all terms TiqΓ,

By using Lemma 3, the proof of Theorem 6 may now be completed in much the

same way as before. We omit the details.
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