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Introduction. The purpose of this note is to dispose of certain pre-
liminaries (and of some peripheral remarks) in the direction of a structure
theory of the Wedderburn-Artin-Jacobson type for a rather restricted
class of topological rings—namely, bounded ones. The notion of bounded-
ness, which may be looked on as an algebraic analogue of compactness,
was introduced by Shafarevich [6] and later considered by Kaplansky [3].
It is not unexpected that in an algebraic approach to the study of
topological rings the concept of boundedness should prove fruitful where,
by an algebraic approach is meant one in which the use of deep topo-
logical facts is avoided—thus, for example, we shall not use any results
about the structure of locally compact groups, since such results depend
on Haar measure, the Peter-Weyl theorem and Pontrjagin duality.

Since the study of the radical is one of the foundation stones of
the classical structure theory of rings, and in view of our self-imposed
restrictions on available techniques, it is natural to attempt to extend
the notion of radical in such a wτay as to take the topology of the ring
into account. Such an attempt is the primary concern of this note.
The proofs will often be merely slight extensions of the standard ones
for discrete rings.

l Definitions and preliminaries* As usual, (see, for example, [3])
by a topological ring we mean a set R which is a ring and a Hausdorff
space and such that the mappings (x,y)-+x—y and (x,y)-*xy of
RxR->R are both continuous. A subset S of R is left bounded if for
any neighborhood U of 0 there exists a neighborhood V of 0 (V depends
on U) such that V S<ZU, where V-S= {xy\x e V, y e S}. Right bounded-
ness is defined in an analogous way. We say that S is bounded if it is
both left and right bounded. It is clear that a subset S of R is bounded
if and only if, for any neighborhood U of 0, there exists a neighborhood
V of 0 such that 7 S 7 ζ i 7 . If the set R itself is bounded, we say
that R is a bounded ring.

Let M be a left Λ-module; M is called a topological left R-module
when: R is a topological ring, M is a topological group (this includes
Hausdorff), and the map (a, x) -> ax of R x M-> M is continuous. Similarly,
the notion of topological right i?-module is defined. Since there is no
essential distinction between right and left, we shall usually state things
only for topological left i2-modules.
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DEFINITION 1. Let M be a topological left i?-module. A subset S
of M is R-bounded if for every neighborhood U of 0 in M, there exists
a neighborhood V of 0 in R such that F S C C . A subset S of R is
M-bounded is for every neighborhood U of 0 in M there exists a neigh-
borhood V of 0 in M such that S F C ^ If M is an jβ-bounded set,
we say that M is R-bounded; and similarly we define R is M-bounded.

Some of the elementary properties1 of topological left ϋ?-modules
are the following:

(1) If for each a, MΛ is a topological left R-module, then the direct
product M= Π MΛ becomes a topological left R-module in a

natural way moreover, if each Ma is R-bounded, then M is
R-bounded.

(2) Any finite set in a topological left R-module M is R-bounded.
(3) Any subset of an R-bounded set is R-bounded.
( 4 ) The union of a finite number of R-bounded sets is R-bounded.
( 5 ) The closure of an R-bounded set is R-bounded.
( 6 ) Every compact set in M is R-bounded.
( 7 ) If S and T are both R-bounded, then S+T is R-bounded.
( 8 ) If M is discrete, then R is M-bounded.
( 9 ) If R is discrete, then M is R-bounded.
(10) Any convergent sequence {αj in M is R-bounded.
(11) // T is an R-bounded subset of M, and S is a left bounded

subset of R, then S'T is an R-bounded subset of M.

It should be noted that the above statements are true when R and M
are interchanged—provided the new statement has meaning. The proofs
are rather trivial however, for the convenience of the reader, we remark
that the proof of (6) is essentially the same as that of [3, Lemma 10],
and we also give the proof of (5). Let ^/ί denote the set of all neighbor-
hoods of 0 in M, and έ% denote the set of all neighborhoods of 0 in R.
Suppose that £ is an ^-bounded subset of M, and let Z7e ̂ # ; there exists
a Uf e ^€ such that V + U' C U by boundedness, there exists V € & such
that P S C TJ' finally, there exist V" e & and W e ^ such that F '

WCZU'. Since S"= A (S+W), for V=V f\V" we have: F S C
w3i

'

OS-f w)cv-s+v*wc:u.
Suppose that R is a topological ring, then R+, the additive group

of R, may be viewed as either a topological left i2-module or as a
topological right j?-module. Thus, to show that a subset S of R is

1 Most of these are merely translations to the module case of statements to be found
in [3, p. 161].
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bounded, is equivalent to showing that S is an .β-bounded subset of R+

in the left and right module cases. In particular, the properties listed
above are valid for topological rings—for example, a compact subset of
a topological ring is bounded.2

Since in the sequel, we shall be concerned mostly with the study
of bounded rings, it is perhaps of interest to determine what applicability
our results can have to normed algebras. The answer is given in the
following:

THEOREM 1. Let R be a topological ring, and suppose that R is a
locally convex topological linear space over F (the reals or complexes).
Then, for any bounded additive subgroup B of R, we have R B=(0).

Proof. Suppose that B is bounded as a subset of R. Let / be a
fixed continuous linear functional on i?+, and let //= {a e R\f(a J?)=(0)}
so Ifφφ. If is a subgroup of R+, so that if we show that it is open
then it is also closed, and therefore, If=R since R is connected. From
this it follows that f(R J5)=(0) for all continuous linear functionals f;
hence, by the Hahn-Banach theorem, R B=(0).

It remains to show that // is open. Let U be a neighborhood of 0
in R+ such that f(U)<Cil by boundedness of B, there exists Ve & such
that V- BCZU. It suffices to show that 7 C / / . For every xeV and
every integer n, we have nxB=x(nB)(ZxB CZU; hence, for every beB
and every integer n, f(nxb)=nf(xb)<Ci; therefore, f(xB)==(0) and

vcif.
From the theorem we have immediately:

COROLLARY 1. Let R be a normed algebra, then R cannot be a
bounded topological ring unless its multiplication is trivial.

It may be remarked that essentially the same proof as that given
for Theorem 1 yields:

PROPOSITION 1. Let M be a locally convex topological linear space
over F (reals or complexes), then M contains no F-bounded subgroups
other than (0).

2* Topological right quasi*regularity*

DEFINITION 2. An element x of a topological ring R is topologically
right quasi-regular3 if for any neighborhood U of 0 in R, there exists
an element y (depending on U) such that xoye U, where χoy*=χ-hχy-{-y.

2 This is precisely [3, Lemma 10].
3 A generalization of the notion of right quasi-regularity, [2, Def. 1].
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An ideal / of R is topologically right quasi-regular if every element of I
is topologically right quasi regular. We shall abbreviate both of these
by top rqr.

Our immediate aim is to prove:

THEOREM 2. Let R be a left bounded topological ring, and let N
denote the sum of all top rqr right ideals. Then N is a closed two-sided
ideal of R.

The proof will be an immediate corollary of the lemmas which
follow:

LEMMA 1. Let I be a top rqr right ideal in the left bounded ring R;
if xel and if y is any top rqr element of R, then xΛ-y is top rqr.

Proof. Suppose we are given Ue & there exists We & such that
W+W+WC.U; and, by left-boundedness, there exists a Ve & such
that VC TFand V RCZ W also, since y is top rqr, there exists y' eR
with yoyr e V. We have then:

(x-f y)oyf=xΛ- xy' -f yΛ-yyr + y/==x-J

Γ xy' 4-y°yf .

Finally, since x + xy'el, there exists zeR such t h a t {x + xy')oze V;

consequently,

(x±y)oy'oZ e (x + xy')oz± V+V ZCZV+V+ WC U .

COROLLARY 2. In a left bounded ring, the sum of two top rqr right
ideals is a top rqr right ideal.

From this corollary, it follows immediately that N is a top rqr
right ideal.

LEMMA 2. Let S be any set of top rqr elements in the left bounded
ring R. Then any element x in the closure of S is top rqr.

Proof. Given any Ue&, there exists Ve & such that V+V+
VC.U then there ί s a ^ e ^ such that: W = - W, W R C V and
W<CV. Since x+W is a neighborhood of x, there exists yeS with
yex-hW also, there is a yf e R, such that yoy' e W. From the identity,

it follows that

χoyf e TF4- W+ W R C V+ VΛ- V C U .
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The lemma clearly implies:

COROLLARY 3. In a left bounded topological ring R, both N and the
set of all top rqr elements are closed sets.

LEMMA 3. In a left bounded ring R, ze N if and only if {nz + za} is
top rqr for all integers n and all ae R.

Proof. Trivial, since N is a top rqr right idea land {nz + za} is the
smallest right ideal containing z.

LEMMA 4. In a left bounded ring R, if the element zb is top rqr,
then so is bz.

Proof. Given Ue &, there exists We & such that (-&) WCZU;
and, by boundedness, there is a F e & with V R C W hence, ( — b)
V 'RCZU. Now, there exists toeR such that (zb)ow e V; therefore,

(bz)o( — bz — bwz) = bz — bz — bwz~-bzbz — bzbwz= —b(zbow)z e ( — fe) V-R C U

COROLLARY 4. In a left bounded ring R, N is a left ideal.
This also completes the proof of Theorem 2.

3* Some properties of JV

PROPOSITION 2. Let R be a left bounded ring, and denote its Jacobson
radical1 by J, then J cZ N moreover, if R is discrete or compact, J=N.

Proof. The inclusion JC.N requires no boundedness assumption.
The discrete case is trivial while the statement for the compact case
follows from:

LEMMA 5. In a compact ring R, x is top rqr <=> x is rqr.

Proof, x is top rqr implies that 0 e xoR but xoR is the continuous
image of a compact set, hence is closed thus, 0 6 XoR which means that
x is rqr.

An example of a situation in which J φ N is the following: Let P
be the ring of p-adic integers, R the ring of row-finite matrices over
P. Topologizing R with the finite topology, namely, by taking as
neighborhoods of 0 all matrices with first n rows all 0, gives R the

4 See [2, p. 303J.
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structure of a left bounded ring. It is known5 that in this case J is not
closed; hence JφN.

PROPOSITION 3. Let R be a left bounded ring, then N contains no
idempotents other than 0.

Proof. Let ee Nbe an idempotent. Given any Ue &, there exists
Ve & such that eVcZU. Since — eeN, it is top rqr, hence there exists
yeR with ( — e)oye V. Thus, — e — ey + ye V and — e — ey±eyeeVC.U.
This means that —eeU for every U e &, therefore e=0.

For every element aeR, we denote by Za the right ideal of R
composed of all the elements {x-\-ax} where x runs over R.

PROPOSITION 4. In any topological ring R, Za is dense in R if and
only if a is top rqr.

Proof. Suppose that Za=R then, in particular, for any Ve &
there exists an xeR such that x + axe — a+V; that is, there exists
xe R with aoxe V. Conversely, suppose that a is top rqr then given
any Ue& there exists yeR with aoyeU; this means that ae — y-h
a(-~y) + U(ZZa-hU. Therefore, aeZa and Za=R.

LEMMA 6. In any topological ring R, if a subsequence of {xn} ap-
proaches 0, then x is top rqr.

Proof. Clearly, for every positive integer i, we have: xι-\-xί+1eZx.
For even integers 2n, this gives: xln + xeZx, while for odd integers
2τι4-l we have: xm+1 — xeZx. Since a subsequence of either {x2n} or {x2n+1}

approaches 0, we see that xeZx so ZX=R and x is top rqr.

DEFINITION 3. Let R be a topological ring; we say that xeR is
topologically nilpotent (top nilpotent) if xn-+0. An ideal is top nil if
every element is top nilpotent. An ideal / is top nilpotent if given
Ue& there exists an integer m with InCZU for n^>m.

Lemma 6 thus implies:

COROLLARY 5. In a left bounded ring, N contains all top nil right
ideals.

LEMMA 7. Let S denote the set of all top rqr elements of R.

5 See [5, p. 810].
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(1) If R is left bounded then:

beb(-S)=}b=O

(2) Let M be a topological right R-module such that R is M-

bounded, then if be M is such that beb(-S) then 6=0.

Proof. We prove (1) only, the proof of (2) being identical. To be
more explicit, we must show that, if b e R satisfies the following condition:
for every U e & there is an xπeR with — xπ top rqr and such that
bxu=bJ

rμ, where μeU, then 6=0.
Now, starting with Z7, there exists a symmetric Ur e & such that

U' R C U and V + W 4- V C U and, there is a symmetric We & with
WC.U' and W-RC.U'; finally, there is a symmetric Ve & with

ί7. By hypothesis, we have:

(i) bxw — b — w=0 for some we ΫK

and since —xw is top rqr, there exists yeR with (—xw)oye V; that is,
Xwye V. From (i) we have:

(ii) bxwy-by-wy=0 .

Adding, (i) and (ii) yield b{xwyΛ-xw—y)~b — w — wy-= 0. Hence b=b(xwy +
xw~y)-w-wyebV-¥W+W - RCZU. Thus, 6eί7 for every Ue&,
and 6=0.

It may be remarked that Lemma 7 is important for applications.
It is decisive for the proof of the next theorem. The module formulation
will be needed in the consideration of irreducible rings of endomorphisms.

THEOREM 3. Let R be a left bounded ring with descending chain
condition on closed right ideals, then N is algebraically nilpotent.

Proof. Consider: N=N^> N2 DΪV3 D Zϊ~Nn D . This is a

descending chain of closed right ideals; hence, for some integer n,

Wn=N* for all k^n. We show that M=Nn=(0). Note first that:

N2nCM*CZM and that since J^n=ikf, we have: M2=M. Suppose

Mφ (0) then since M2 is dense in Λf, M2Φ (0). Let £f be the collection

of all closed right ideals / satisfying the two conditions: ICZM and

/ MΦ (0). ^ i s nonempty as M e £S. Let ϊe £f be a minimal element.

Since ΪMφ (0) there exists 6 e /, 6 φ 0 such that bMφ (0). Now

and bMM^bM2φ(0), since 6M2=(0)=φ 6iί^=(0)=φ 6Af=(0). Hence,

bMC.1; thus, by minimality of /, bW=ϊ. Therefore, the
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conditions of Lemma 7 are satisfied, which implies that δ=0, a contra-
diction. Hence M=(0).

COROLLARY 6. In a left bounded ring with descending chain condition
on closed right ideals, every algebraically nil ideal is algebraically nilpotent
in fact, every top nil right ideal is algebraically nilpotent.

The following may be considered as a slight generalization of a
theorem of Kaplansky.6

THEOREM 4. Let R be a left bounded dual ring with no algebraically
nilpotent ideals, th&n N=(0).

Proof. N is closed hence, by [4, Theorem 2] N is also a dual ring.
Take any xeN; since in the dual ring JV, xexN, we have x=xys±e
with ε arbitrarily close to 0 in N. Now, yQe N, so —ys is top rqr hence,
given UG& there exists zσeR with (—y2)°zπ=ue U. Therefore,
x=(x—xys)(l + zσ)—xu; and thus x=ε + εzσ—xu. Hence x=0, because
the right side can be made as near to 0 as desired.

4* Miscellany* Kaplansky7 has defined the notion of Qr ring. We
extend this somewhat to the following.

DEFINITION 4. A topological ring R is LQr if the set of all rqr
elements contains a neighborhood of 0. We say that R is TQr if the
set S of all top rqr elements is open, and that R is LTQr if S contains
a neighborhood of 0.

It is known8 that in any topological ring, LQr and Qr are equivalent
we now show:

PROPOSITION 5. Let R be a left bounded ring, then R is LTQr if
and only if it is TQr.

Proof. Suppose that R is LTQr, and let x be any element of S, U any
element of ^ , and Or a neighborhood of 0 all elements of which are
top rqr. There then exist: We^ with W+W+WC.U and Ve&
such that VC.Wand V RC.W. Next, we have y e R with xoy e V, and
V'e^ such that V'+V R<Z0r. Thus, for any αe V, a-hay is top
rqr; so there exists zeR such that (a + ay)oze V. From the identity:

e See [4, Theorem 3].
7 [3, p. 154].
8 [3, Lemma 2].
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(a + x)oyoz=(a -h ay)oz-{- xoy -\- (xoy)z

it follows that

x)oyozeV+ V+ W C U

so that any element of x+Vf is top rqr. Hence, R is TQr and the
proof is complete.

PROPOSITION 6. Let R be a left bounded LTQr ring, then in R* =
22/JV, iV* = (0).

Proof. The natural map π :R-+RjN is continuous and open; also,
iV* is a closed two sided ideal of 22* of form MjN where M is a closed
two sided ideal of R, containing N. To show JV* = (O), it suffices to show
that any xe M is top rqr. Given any Ue &, let Or be a neighborhood
of 0 with all elements top rqr; since π{x) is top rqr, there exists yeR
with π(x)oπ(y) e π(Or). Hence, xoy 6 Or + N and #o?/ is top rqr therefore,
# is top rqr.

PROPOSITION 7. Lβ£ R be a left bounded LTQr ring, then:
( 1 ) zeNζ=$RzRC.N;
( 2 ) ze iV<̂ =φ 2α is ίop rqr for every aeR.

Proof. The standard one goes through see for example, [2, Corollary
to Theorem 5].

LEMMA 8. Let R be a left bounded LTQr ring, then N is open.

Proof. Let Or be as above, then there is a Ve & with V RC.Or.
Therefore, given xeV, we have xa is top rqr for every aeR; hence
xeN. Thus VCZN and N is open.

COROLLARY 7. A left bounded LTQr ring with N={0) is discrete.

COROLLARY 8. A compact, semi-simple9 LTQr ring is finite.

PROPOSITION 8. Let R be a locally compact left bounded ring satisfy-
ing the 2nd axiom of countability, then: R is LTQr <£=φ R contains a
neighborhood W of 0 all of whose elements are top nilpotent.

Proof. If such a neighborhood W exists, every element of W is
top rqr by a previous lemma.

For the converse, let U be a compact neighborhood of 0. There

9 Meaning that iV=J r=(0).
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exists F e ^ such that W RC. U hence, for xe W, we have xne U
for every positive integer n. Thus, {xn} has a limit point ae U=U, and
there exists a subsequence {a?**} such that xnι-+a. Then a sub-
sequence of {xni+i'nί} approaches some yeU. Clearly ay=a. Now, U
can be taken symmetric and small enough so that all its elements are
top rqr. In particular, — y is top rqr; so that for any V e & there
exists zv such that {—y)ozveV where V e & is such that aV C V.
Thus —y + zv — yzveV and — ay—azv— ayzv e aV C F, that is: —ayeV
for every F e ^ . Hence, ay=0=a and every element of TF is top
nilpotent.

The definition of a regular ring10 is standard we generalize slightly
to:

DEFINITION 5. A topological ring R is topologically regular if for
any ae R, ae aRa that is, for any Ue & there exists vσeR with
avσa=a-{-u, ueU.

PROPOSITION 9. In a left bounded topologically regular ring, JV=(0).

Proof. Given any aeR and Ue &. If ae N, we have: avσa=a-i-u1,
with u^eU. Also, since — vσa is top rqr, there exists yσ such that
( — vua)oyσ=u2e U. It follows that : —avua

J

rayσ—avuayσ=^au2, and there-
fore: — a—u1 + ayσ—ayπ—u1yπ=au.z, that is: —a=u1 + u1yσ + au2. Now,
by a standard use of left boundedness, the right side can be made as
small as desired.
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